リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「オリーブオイル副産物の生理活性:生理活性成分の回収・利用による付加価値創出」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

オリーブオイル副産物の生理活性:生理活性成分の回収・利用による付加価値創出

ロジャース, ムワカルクワ ROGERS, MWAKALUKWA 九州大学

2020.09.25

概要

A recent global increase in demand for olive oil leads to an increase in the amount of olive oil by-products (OOBPs) produced – olive mill waste (OMW) and leaves. The OOBPs raise environmental concerns due to high organic contents which are not easily biodegradable, especially in OMW. To address this problem, new ways to utilize these by-products are needed to save the environment and the general ecosystem. Fortunately, research has proved that they constitute useful bioactive compounds, more than 98% of the total olive biophenol content. This means that, OOBPs may be further utilized and can no longer be regarded as ‘wastes’ but as a ‘cheap source of valuable compounds’. One of the most promising ways to utilize them is through the recovery of those valuable compounds, which can be utilized in different fields – a process called valorization. To address the usefulness of OOBPs, the biological potential of the compounds recovered from OOBPs was explored in this work. In the process we targeted non-communicable diseases – allergy, diabetes, and Alzheimer’s (AD) because of the alarming rise in their prevalence, globally. To evaluate the anti-allergic and anti-diabetic activity, we used the OMW sample, and in both cases the bioassay-guided fractionation approach was employed and led to the isolation of ten anti-allergic compounds and eight anti-diabetic compounds, respectively. While for AD, the olive leaves sample was used, and contrastingly, a non-targeted metabolomics approach for the determination of anti-AD metabolites was employed using six cultivars of olive leaves.

 In the anti-allergic study, the activity of the isolated compounds on the commonest form of an allergic reaction, ‘type 1 allergy’ was investigated. In type 1 allergy, basophil cells play important roles by releasing histamines or other cytokines after being mediated by IgE – a process called degranulation, which is accompanied by the rise of intracellular Ca2+ levels, [Ca2+]i. It was found that five compounds, including a novel one, actively inhibited degranulation by >80% (11-oxomaslinic acid, new HDOA, luteolin, hydroxytyrosol acetate, 1-acetoxypinoresinol). Additionally, we evaluated their ability to reduce; intracellular Ca2+ levels and the expression of calcium channel proteins in rat basophilic (RBL-2H3) cells, to assist the possible characterization of the mechanisms involved. Our findings revealed that they reduce [Ca2+]i by decreasing the expression of calcium channel proteins, suggesting that they act mainly as ‘mast cell stabilizers’ to reduce RBL-2H3 cells’ degranulation – a marker of an allergic reaction.

 While in the anti-diabetic study, we investigated the ability of isolated compounds to inhibit α-glucosidase and α-amylase enzymes. These enzymes were targeted because, in controlling diabetes and its complications, it is of vital importance to control postprandial hyperglycemia, which is a result of hydrolysis of carbohydrates – which is primarily catalyzed by α-glucosidase and α-amylase enzymes. We found that four compounds showed strong inhibitory activity on both α-glucosidase and α-amylase enzymes with more potency or close to that of acarbose (Oleanolic acid, maslinic acid, 1-acetoxypinoresinol, and luteolin-7-O-β-D-glucoside). We also characterized their inhibitory kinetics to the enzyme α-glucosidase to understand the mechanisms involved, and the inhibitory kinetics analysis revealed that oleanolic acid, 1-acetoxypinoresinol, and luteolin-7-O-β-D-glucoside inhibit α-glucosidase in a mixed-type, non-competitive and uncompetitive mechanisms, respectively. Our findings were backed up by the calculated inhibition rate constants (Ki) values.

 On the other hand, we applied a metabolomics approach as it is informative, predictive, and discriminative – thus it could inform, predict, and discriminate the anti-AD compounds in six cultivars of olive leaves. In the study, a novel UPLC/QTOF–MS-based non-targeted metabolomics with MSn data acquired through all-ion fragmentation (AIF) mode, was carried out to analyze any cultivar-specific alteration in metabolites among six olive leaves cultivars. Briefly, LC/QTOF-MS in combination with the multivariate analysis was performed to achieve our aim. At first, the secondary metabolites in olive cultivars (phenolic and triterpenic compounds) were acquired from LC/MS analysis and exported as molecular features (MFs). Then, they were imported into a differential analysis software (MPP) for further processing including alignment, normalization, defining sample sets, and filtering by frequency (FbF) – in the end, after recursion, a total of 66 MFs were qualified as major metabolites in the cultivars. At last, the multivariate analysis (unsupervised principal component analysis (PCA) and supervised partial least square (PLS-DA) models), were applied for discrimination analysis whereby the marker metabolites from the cultivars were correlated with the anti-AD activity. Until now, to identify final metabolites that contribute the most to the anti-AD is ongoing.

 In summary, our findings, even though they are based on in-vitro assays, highlight the potential of OOBPs and their constituents against allergy, diabetes and AD. This, in turn, attracts more attention to OOBPs as an important source of lead compounds that may be used as ingredients in food additives, food supplements, or for structural modification to develop novel drugs for the management/ treatment of allergies, AD and diabetes. Also, this work adds value to the importance of metabolomics application in the field of natural product chemistry especially in identifying the specific biomarkers in closely related plant samples (eg, cultivars or varieties) which may differ in terms of their bioactivity. That is to say, this work gives more scientific-driven evidence to support the utilization of the OOBPs in the cosmetic, pharmaceutical, and food industry.

この論文で使われている画像

参考文献

(1) Molina Alcaide, E.; Nefzaoui, A. Recycling of Olive Oil By-Products: Possibilities of Utilization in Animal Nutrition. Int. Biodeterior. Biodegrad. 1996, 38 (3–4), 227–235. https://doi.org/10.1016/s0964-8305(96)00055-8.

(2) Fernández-Bolaños, J.; Rodríguez, G.; Rodríguez, R.; Guillén, R.; Jiménez, A. Extraction of Interesting Organic Compounds from Olive Oil Waste. Grasas y Aceites 2006, 57 (1), 95–106. https://doi.org/10.3989/gya.2006.v57.i1.25.

(3) Vossen, P. Olive Oil: History, Production, and Characteristics of the World’s Classic Oils. HortScience 2007, 42 (5), 1093–1100.

(4) Ghanbari, R.; Anwar, F.; Alkharfy, K. M.; Gilani, A. H.; Saari, N. Valuable Nutrients and Functional Bioactives in Different Parts of Olive (Olea Europaea L.)-a Review. International journal of molecular sciences. Molecular Diversity Preservation International March 12, 2012, pp 3291–3340. https://doi.org/10.3390/ijms13033291.

(5) De Leonardis, A.; Aretini, A.; Alfano, G.; MacCiola, V.; Ranalli, G. Isolation of a Hydroxytyrosol-Rich Extract from Olive Leaves (Olea Europaea L.) and Evaluation of Its Antioxidant Properties and Bioactivity. Eur. Food Res. Technol. 2008, 226 (4), 653–659. https://doi.org/10.1007/s00217-007-0574-3.

(6) S. Z., T. R. A.; J., G.; Sreekrishnan. Technologies for Olive Mill Wastewater (OMW) Treatment - a Review. J. Chem. Technol. Biotechnol. 2006, 81, 1475–1485. https://doi.org/10.1002/jctb.

(7) Vinha, A. F.; Ferreres, F.; Silva, B. M.; Valentão, P.; Gonçalves, A.; Pereira, J. A.; Oliveira, M. B.; Seabra, R. M.; Andrade, P. B. Phenolic Profiles of Portuguese Olive Fruits (Olea Europaea L.): Influences of Cultivar and Geographical Origin. Food Chem. 2005, 89 (4), 561–568. https://doi.org/10.1016/j.foodchem.2004.03.012.

(8) Kapellakis, I. E.; Tsagarakis, K. P.; Crowther, J. C. Olive Oil History, Production and by-Product Management. Rev. Environ. Sci. Biotechnol. 2008, 7 (1), 1–26. https://doi.org/10.1007/s11157-007-9120-9.

(9) Roselló-Soto, E.; Barba, F. J.; Parniakov, O.; Galanakis, C. M.; Lebovka, N.; Grimi, N.; Vorobiev, E. High Voltage Electrical Discharges, Pulsed Electric Field, and Ultrasound Assisted Extraction of Protein and Phenolic Compounds from Olive Kernel. Food Bioprocess Technol. 2015, 8 (4), 885–894. https://doi.org/10.1007/s11947-014-1456-x.

(10) Sayadi, S.; Allouche, N.; Jaoua, M.; Aloui, F. Detrimental Effects of High Molecular-Mass Polyphenols on Olive Mill Wastewater Biotreatment. Process Biochem. 2000, 35, 725–735.

(11) Azbar, N.; Bayram, A.; Filibeli, A.; Muezzinoglu, A.; Sengul, F.; Ozer, A. A Review of Waste Management Options in Olive Oil Production. Crit. Rev. Environ. Sci. Technol. 2004, 34 (3), 209–247. https://doi.org/10.1080/10643380490279932.

(12) Ouallagui, Z. B.; Ouaziz, M. B.; An, J. H.; Oukhris, M. B.; Igane, G. R.; Riha, I. F.; Emai, H. J.; Ki, I. F.; Horbel, H. G.; Soda, H. I.; et al. Valorization of Olive Processing By-Products : Characterization , Investigation of Chemico- Biological Activities and Identification of Active Compounds. J. Arid L. Stud. 2012, 64 (22 (1)), 61–64.

(13) Galanakis, C. M. Olive Oil Production Sector: Environmental Effects and Sustainability Challenges. In Olive Mill Waste: Recent advances for Sustainable management; Souilem, S., El-Abbassi, A., Kiai, H., Hafidi, A., Sayadi, S., Galanakis, C. M., Eds.; Elsevier: Oxford, 2017; pp 1–28. https://doi.org/10.1080/01436590050004300.

(14) Bouknana, D.; Hammouti, B.; Salghi, R.; Jodeh, S.; Zarrouk, A.; Warad, I.; Aouniti, A.; Sbaa, M. Physicochemical Characterization of Olive Oil Mill Wastewaters in the Eastern Region of Morocco. J. Mater. Environ. Sci. 2014, 5 (4), 1039–1058.

(15) Galanakis, C. M. Recovery of High Added-Value Components from Food Wastes: Conventional, Emerging Technologies and Commercialized Applications. Trends Food Sci. Technol. 2012, 26 (2), 68–87. https://doi.org/10.1016/j.tifs.2012.03.003.

(16) de Jong, E.; Jungmeier, G. Biorefinery Concepts in Comparison to Petrochemical Refineries. In Industrial Biorefineries and White Biotechnology; Ashok, P., Rainer, H., Christian, L., Mohammad, T., Madhavan, N. (Eds), Eds.; Elsevier B.V.: Waltham, USA, 2015; pp 3–33. https://doi.org/10.1016/B978-0-444-63453-5.00001-X.

(17) Obied, H. K.; Allen, M. S.; Bedgood, D. R.; Prenzler, P. D.; Robards, K.; Stockmann, R. Bioactivity and Analysis of Biophenols Recovered from Olive Mill Waste. J. Agric. Food Chem. 2005, 53 (4), 823–837. https://doi.org/10.1021/jf048569x.

(18) Visioli, F.; Romani, A.; Mulinacci, N.; Zarini, S.; Conte, D.; Vincieri, F. F.; Galli, C. Antioxidant and Other Biological Activities of Olive Mill Waste Waters. J. Agric. Food Chem. 1999, 47 (8), 3397–3401. https://doi.org/10.1021/jf9900534.

(19) Visioli, F.; Bellosta, S.; Galli, C. Cardioprotective Properties of Olive Oil- Derived Polyphenols. Atherosclerosis 1997, 134, 336.

(20) Sheabar, F. Z.; Neeman, I. Separation and Concentration of Natural Antioxidants from the Rape of Olives. J. Am. Oil Chem. Soc. 1988, 65 (6), 990–993. https://doi.org/10.1007/BF02544526.

(21) Servili, M.; Taticchi, A.; Esposto, S.; Urbani, S.; Selvaggini, R.; Montedoro, G. F. Effect of Olive Stoning on the Volatile and Phenolic Composition of Virgin Olive Oil. J. Agric. Food Chem. 2007, 55 (17), 7028–7035. https://doi.org/10.1021/jf070600i.

(22) Kishikawa, A.; Ashour, A.; Zhu, Q.; Yasuda, M.; Ishikawa, H.; Shimizu, K. Multiple Biological Effects of Olive Oil By-Products Such as Leaves, Stems, Flowers, Olive Milled Waste, Fruit Pulp, and Seeds of the Olive Plant on Skin. Phyther. Res. 2015, 29 (6), 877–886. https://doi.org/10.1002/ptr.5326.

(23) Obied, H. K.; Bedgood Jr, D. R.; Prenzler, P. D.; Robards, K. Bioscreening of Australian Olive Mill Waste Extracts : Biophenol Content , Antioxidant , Antimicrobial and Molluscicidal Activities. Food Chem. Toxicol. 2007, 45, 1238–1248. https://doi.org/10.1016/j.fct.2007.01.004.

(24) Peralbo-Molina, Á.; Luque deCastro, M. D. Potential of Residues from the Mediterranean Agriculture and Agrifood Industry. Trends Food Sci. Technol. 2013, 32 (1), 16–24. https://doi.org/10.1016/j.tifs.2013.03.007.

(25) Herrero, M.; Temirzoda, T. N.; Segura-Carretero, A.; Quirantes, R.; Plaza, M.; Ibañez, E. New Possibilities for the Valorization of Olive Oil By-Products. J. Chromatogr. A 2011, 1218 (42), 7511–7520. https://doi.org/10.1016/j.chroma.2011.04.053.

(26) Mulinacci, N.; Romani, A.; Galardi, C.; Pinelli, P.; Giaccherini, C.; Vincieri, F. F. Polyphenolic Content in Olive Oil Waste Waters and Related Olive Samples. J. Agric. Food Chem. 2001, 49 (8), 3509–3514. https://doi.org/10.1021/jf000972q.

(27) Amro, B.; Aburjai, T.; Al-Khalil, S. Antioxidative and Radical Scavenging Effects of Olive Cake Extract. Fitoterapia 2002, 73 (6), 456–461. https://doi.org/10.1016/S0367-326X(02)00173-9.

(28) Hassen, I.; Casabianca, H.; Hosni, K. Biological Activities of the Natural Antioxidant Oleuropein: Exceeding the Expectation - A Mini-Review. J. Funct. Foods 2015, 18 (2015), 926–940. https://doi.org/10.1016/j.jff.2014.09.001.

(29) Speroni, E.; Guerra, M. C.; Minghetti, A.; Crespi-Perellino, N.; Pasini, P.; Piazza, F.; Roda, A. Oleuropein Evaluated in Vitro and in Vivo as an Antioxidant. Phyther. Res. 1998, 12 (SUPPL. 1), 1997–1999. https://doi.org/10.1002/(SICI)1099-1573(1998)12:1+<S98::AID- PTR263>3.0.CO;2-M.

(30) Czerwińska, M.; Kiss, A. K.; Naruszewicz, M. A Comparison of Antioxidant Activities of Oleuropein and Its Dialdehydic Derivative from Olive Oil, Oleacein. Food Chem. 2012, 131 (3), 940–947. https://doi.org/10.1016/j.foodchem.2011.09.082.

(31) Saija, A.; Trombetta, D.; Tomaino, A.; Lo Cascio, R.; Princi, P.; Uccella, N.; Bonina, F.; Castelli, F. “In Vitro” Evaluation of the Antioxidant Activity and Biomembrane Interaction of the Plant Phenols Oleuropein and Hydroxytyrosol. Int. J. Pharm. 1998, 166 (2), 123–133. https://doi.org/10.1016/S0378-5173(98)00018-0.

(32) Omar, S. H. Cardioprotective and Neuroprotective Roles of Oleuropein in Olive. Saudi Pharm. J. 2010, 18 (3), 111–121. https://doi.org/10.1016/J.JSPS.2010.05.005.

(33) Andrikopoulos, N. K.; Antonopoulou, S.; Kaliora, A. C. Oleuropein Inhibits LDL Oxidation Induced by Cooking Oil Frying By-Products and Platelet Aggregation Induced by Platelet-Activating Factor. LWT - Food Sci. Technol. 2002, 35 (6), 479–484. https://doi.org/https://doi.org/10.1006/fstl.2002.0893.

(34) Ruíz-Gutiérrez, V.; Muriana, F. J. G.; Maestro, R.; Graciani, E. Oleuropein on Lipid and Fatty Acid Composition of Rat Heart. Nutr. Res. 1995, 15 (1), 37– 51. https://doi.org/https://doi.org/10.1016/0271-5317(95)91651-R.

(35) Gutierrez, V. R.; De La Puerta, R.; Catalá, A. The Effect of Tyrosol, Hydroxytyrosol and Oleuropein on the Non-Enzymic Lipid Peroxidation of Rat Liver Microsomes. Mol. Cell. Biochem. 2001, 217 (1–2), 35–41. https://doi.org/10.1023/A:1007219931090.

(36) Alirezaei, M.; Dezfoulian, O.; Neamati, S.; Rashidipour, M.; Tanideh, N.; Kheradmand, A. Oleuropein Prevents Ethanol-Induced Gastric Ulcers via Elevation of Antioxidant Enzyme Activities in Rats. J. Physiol. Biochem. 2012, 68 (4), 583–592. https://doi.org/10.1007/s13105-012-0177-8.

(37) Jemai, H.; Feki, A. E. L.; Sayadi, S. Antidiabetic and Antioxidant Effects of Hydroxytyrosol and Oleuropein from Olive Leaves in Alloxan-Diabetic Rats. J. Agric. Food Chem. 2009, 57 (19), 8798–8804. https://doi.org/10.1021/jf901280r.

(38) Ahmadvand, H.; Noori, A.; Dehnoo, M. G.; Bagheri, S.; Cheraghi, R. A. Hypoglycemic, Hypolipidemic and Antiatherogenic Effects of Oleuropein in Alloxan-Induced Type 1 Diabetic Rats. Asian Pacific J. Trop. Dis. 2014, 4 (S1). https://doi.org/10.1016/S2222-1808(14)60481-3.

(39) Duarte, J.; Perez, O.; Zarzuelo, A.; Jimenez, J.; Perez-Vizcaino, F.; Tamargo, J. Effects of Oleuropeoside in Isolated Guinea-Pig Atria. Planta Med. 1993, 59 (4), 318–322. https://doi.org/10.1055/s-2006-959690.

(40) Haloui, E.; Marzouk, B.; Marzouk, Z.; Bouraoui, A.; Fenina, N. Hydroxytyrosol and Oleuropein from Olive Leaves: Potent Anti-Inflammatory and Analgesic Activities. J. Food, Agric. Environ. 2011, 9 (3–4), 128–133.

(41) De La Puerta, R.; Gutierrez, V. R.; Hoult, J. R. S. Inhibition of Leukocyte 5- Lipoxygenase by Phenolics from Virgin Olive Oil. Biochem. Pharmacol. 1999, 57 (4), 445–449. https://doi.org/10.1016/S0006-2952(98)00320-7.

(42) Bisignano, G.; Tomaino, A.; Lo Cascio, R.; Crisafi, G.; Uccella, N.; Saija, A. On the In-Vitro Antimicrobial Activity of Oleuropein and Hydroxytyrosol. J. Pharm. Pharmacol. 1999, 51, 971–974. https://doi.org/10.1211/0022357991773258.

(43) Furneri, P. M.; Piperno, A.; Sajia, A.; Bisignano, G. Antimycoplasmal Activity of Hydroxytyrosol. Antimicrob. Agents Chemother. 2004, 48 (12), 4892–4894. https://doi.org/10.1128/AAC.48.12.4892-4894.2004.

(44) Zorić, N.; Kopjar, N.; Bobnjarić, I.; Horvat, I.; Tomić, S.; Kosalec, I. Antifungal Activity of Oleuropein against Candida Albicans-the in Vitro Study. Molecules 2016, 21 (12). https://doi.org/10.3390/molecules21121631.

(45) Lee-Huang, S.; Zhang, L.; Huang, P. L.; Chang, Y. T.; Huang, P. L. Anti-HIV Activity of Olive Leaf Extract (OLE) and Modulation of Host Cell Gene Expression by HIV-1 Infection and OLE Treatment. Biochem. Biophys. Res. Commun. 2003, 307 (4), 1029–1037. https://doi.org/10.1016/S0006- 291X(03)01292-0.

(46) Mahmoudi, A.; Ghorbel, H.; Feki, I.; Bouallagui, Z.; Guermazi, F.; Ayadi, L.; Sayadi, S. Oleuropein and Hydroxytyrosol Protect Rats’ Pups against Bisphenol A Induced Hypothyroidism. Biomed. Pharmacother. 2018, 103, 1115–1126. https://doi.org/https://doi.org/10.1016/j.biopha.2018.03.004.

(47) -ÖZKAYA, F. D.; ÖZKAYA, M. T. Oleuropein Using as an Additive for Feed and Products Used for Humans. J. Food Process. Technol. 2011, 02 (03). https://doi.org/10.4172/2157-7110.1000113.

(48) Khalatbary, A. R.; Ahmadvand, H. Neuroprotective Effect of Oleuropein Following Spinal Cord Injury in Rats. Neurol. Res. 2012, 34 (1), 44–51. https://doi.org/10.1179/1743132811Y.0000000058.

(49) Pourkhodadad, S.; Alirezaei, M.; Moghaddasi, M.; Ahmadvand, H.; Karami, M.; Delfan, B.; Khanipour, Z. Neuroprotective Effects of Oleuropein against Cognitive Dysfunction Induced by Colchicine in Hippocampal CA1 Area in Rats. J. Physiol. Sci. 2016, 66 (5), 397–405. https://doi.org/10.1007/s12576-016-0437-4.

(50) Ceccon, L.; Saccù, D.; Procida, G.; Cardinali, S. Liquid Chromatographic Determination of Simple Phenolic Compounds in Waste Waters from Olive Oil Production Plants. J. AOAC Int. 2001, 84 (6), 1739–1744. https://doi.org/10.1093/jaoac/84.6.1739.

(51) Funes, L.; Fernández-Arroyo, S.; Laporta, O.; Pons, A.; Roche, E.; Segura- Carretero, A.; Fernández-Gutiérrez, A.; Micol, V. Correlation between Plasma Antioxidant Capacity and Verbascoside Levels in Rats after Oral Administration of Lemon Verbena Extract. Food Chem. 2009, 117 (4), 589–598. https://doi.org/10.1016/j.foodchem.2009.04.059.

(52) Capasso, R.; Evidente, A.; Avolio, S.; Solla, F. A Highly Convenient Synthesis of Hydroxytyrosol and Its Recovery from Agricultural Waste Waters. J. Agric. Food Chem. 1999, 47 (4), 1745–1748. https://doi.org/10.1021/jf9809030.

(53) Visioli, F.; Caruso, D.; Plasmati, E.; Patelli, R.; Mulinacci, N.; Romani, A.; Galli, G.; Galli, C. Hydroxytyrosol, as a Component of Olive Mill Waste Water, Is Dose- Dependently Absorbed and Increases the Antioxidant Capacity of Rat Plasma. Free Radic. Res. 2001, 34 (3), 301–305. https://doi.org/10.1080/10715760100300271.

(54) Casalino, E.; Calzaretti, G.; Sblano, C.; Landriscina, V.; Tecce, M. F.; Landriscina, C. Antioxidant Effect of Hydroxytyrosol (DPE) and Mn2+ in Liver of Cadmium-Intoxicated Rats. Comp. Biochem. Physiol. - C Toxicol. Pharmacol. 2002, 133 (4), 625–632. https://doi.org/10.1016/S1532-0456(02)00180-1.

(55) Manna, C.; Galletti, P.; Cucciolla, V.; Montedoro, G.; Zappia, V. Olive Oil Hydroxytyrosol Protects Human Erythrocytes against Oxidative Damages. J. Nutr. Biochem. 1999, 10 (3), 159–165. https://doi.org/10.1016/S0955-2863(98)00085-0.

(56) Leger, C. L.; Kadiri-Hassani, N.; Descomps, B. Decreased Superoxide Anion Production in Cultured Human Promonocyte Cells (THP-1) Due to Polyphenol Mixtures from Olive Oil Processing Wastewaters. J. Agric. Food Chem. 2000, 48 (10), 5061–5067. https://doi.org/10.1021/jf991349c.

(57) Hu, T.; He, X.-W.; Jiang, J.-G.; Xu, X.-L. Hydroxytyrosol and Its Potential Therapeutic Effects. J. Agric. Food Chem. 2014, 62 (7), 1449–1455. https://doi.org/10.1021/jf405820v.

(58) Loru, D.; Incani, A.; Deiana, M.; Corona, G.; Atzeri, A.; Melis, M.; Rosa, A.; Dessì, M. Protective Effect of Hydroxytyrosol and Tyrosol against Oxidative Stress in Kidney Cells. Toxicol. Ind. Health 2009, 25 (5), 301–310. https://doi.org/10.1177/0748233709103028.

(59) Fabiani, R.; De Bartolomeo, A.; Rosignoli, P.; Servili, M.; Montedoro, G. F.; Morozzi, G. Cancer Chemoprevention by Hydroxytyrosol Isolated from Virgin Olive Oil through G1 Cell Cycle Arrest and Apoptosis. Eur. J. Cancer Prev. 2002, 11 (4), 351–358.

(60) Ragione, F. Della; Cucciolla, V.; Borriello, A.; Pietra, V. Della; Pontoni, G.; Racioppi, L.; Manna, C.; Galletti, P.; Zappia, V. Hydroxytyrosol, a Natural Molecule Occurring in Olive Oil, Induces Cytochrome c-Dependent Apoptosis. Biochem. Biophys. Res. Commun. 2000, 278 (3), 733–739. https://doi.org/10.1006/BBRC.2000.3875.

(61) Bertelli, M.; Kiani, A. K.; Paolacci, S.; Manara, E.; Kurti, D.; Dhuli, K.; Bushati, V.; Miertus, J.; Pangallo, D.; Baglivo, M.; et al. Hydroxytyrosol: A Natural Compound with Promising Pharmacological Activities. J. Biotechnol. 2020, 309, 29–33. https://doi.org/https://doi.org/10.1016/j.jbiotec.2019.12.016.

(62) Fuccelli, R.; Fabiani, R.; Rosignoli, P. Hydroxytyrosol Exerts Anti- Inflammatory and Anti-Oxidant Activities in a Mouse Model of Systemic Inflammation. Molecules 2018, 23 (12). https://doi.org/10.3390/molecules23123212.

(63) Beerens, K.; Desmet, T.; Soetaert, W.; Elbein, A. D.; Pan, Y. T.; Pastuszak, I.; Carroll, D.; Equilibria, P.; The, I. N.; Golovina, E. A.; et al. NII-Electronic Library Service. Chem. Pharm. Bull. 2012, 14 (4), 369–375. https://doi.org/10.1248/cpb.37.3229.

(64) Crespo, M. C.; Tomé-Carneiro, J.; Pintado, C.; Dávalos, A.; Visioli, F.; Burgos-Ramos, E. Hydroxytyrosol Restores Proper Insulin Signaling in an Astrocytic Model of Alzheimer’s Disease. BioFactors 2017, 43 (4), 540–548. https://doi.org/10.1002/biof.1356.

(65) Peng, Y.; Hou, C.; Yang, Z.; Li, C.; Jia, L.; Liu, J.; Tang, Y.; Shi, L.; Li, Y.; Long, J.; et al. Hydroxytyrosol Mildly Improve Cognitive Function Independent of APP Processing in APP/PS1 Mice. Mol. Nutr. Food Res. 2016, 60 (11), 2331–2342. https://doi.org/10.1002/mnfr.201600332.

(66) Di Benedetto, R.; Varì, R.; Scazzocchio, B.; Filesi, C.; Santangelo, C.; Giovannini, C.; Matarrese, P.; D’Archivio, M.; Masella, R. Tyrosol, the Major Extra Virgin Olive Oil Compound, Restored Intracellular Antioxidant Defences in Spite of Its Weak Antioxidative Effectiveness. Nutr. Metab. Cardiovasc. Dis. 2007, 17 (7), 535–545. https://doi.org/https://doi.org/10.1016/j.numecd.2006.03.005.

(67) Damiani, E.; Belaid, C.; Carloni, P.; Greci, L. Comparison of Antioxidant Activity Between Aromatic Indolinonic Nitroxides and Natural and Synthetic Antioxidants. Free Radic. Res. 2003, 37 (7), 731–741. https://doi.org/10.1080/1071576031000102169.

(68) Vivancos, M.; Moreno, J. J. Effect of Resveratrol, Tyrosol and β-Sitosterol on Oxidised Low-Density Lipoprotein-Stimulated Oxidative Stress, Arachidonic Acid Release and Prostaglandin E2 Synthesis by RAW 264.7 Macrophages. Br. J. Nutr. 2008, 99 (6), 1199–1207. https://doi.org/10.1017/S0007114507876203.

(69) Lesage-Meessen, L.; Navarro, D.; Maunier, S.; Sigoillot, J. C.; Lorquin, J.; Delattre, M.; Simon, J. L.; Asther, M.; Labat, M. Simple Phenolic Content in Olive Oil Residues as a Function of Extraction Systems. Food Chem. 2001, 75 (4), 501–507. https://doi.org/10.1016/S0308-8146(01)00227-8.

(70) Sun-Waterhouse, D.; Zhou, J.; Miskelly, G. M.; Wibisono, R.; Wadhwa, S. S. Stability of Encapsulated Olive Oil in the Presence of Caffeic Acid. Food Chem. 2011, 126 (3), 1049–1056. https://doi.org/10.1016/j.foodchem.2010.11.124.

(71) Quiles, J. L.; Farquharson, A. J.; Simpson, D. K.; Grant, I.; Wahle, K. W. J. Olive Oil Phenolics: Effects on DNA Oxidation and Redox Enzyme MRNA in Prostate Cells. Br. J. Nutr. 2002, 88 (3), 225–234. https://doi.org/10.1079/bjn2002620.

(72) Aziz, N. H.; Farag, S. E.; Mousa, L. A.; Abo-Zaid, M. A. Comparative Antibacterial and Antifungal Effects of Some Phenolic Compounds. Microbios 1998, 93 (374), 43–54.

(73) Cardinali, A.; Pati, S.; Minervini, F.; D’Antuono, I.; Linsalata, V.; Lattanzio, V. Verbascoside, Isoverbascoside, and Their Derivatives Recovered from Olive Mill Wastewater as Possible Food Antioxidants. J. Agric. Food Chem. 2012, 60 (7), 1822–1829. https://doi.org/10.1021/jf204001p.

(74) Kostyuk, V. A.; Potapovich, A. I.; Lulli, D.; Stancato, A.; De Luca, C.; Pastore, S.; Korkina, L. Modulation of Human Keratinocyte Responses to Solar UV by Plant Polyphenols As a Basis for Chemoprevention of Non-Melanoma Skin Cancers. Curr. Med. Chem. 2013, 20 (7), 869–879. https://doi.org/10.2174/0929867311320070003.

(75) Campo, G.; Marchesini, J.; Bristot, L.; Monti, M.; Gambetti, S.; Pavasini, R.; Pollina, A.; Ferrari, R. The in Vitro Effects of Verbascoside on Human Platelet Aggregation. J. Thromb. Thrombolysis 2012, 34 (3), 318–325. https://doi.org/10.1007/s11239-012-0757-z.

(76) Kang, D. G.; Lee, Y. S.; Kim, H. J.; Lee, Y. M.; Lee, H. S. Angiotensin Converting Enzyme Inhibitory Phenylpropanoid Glycosides from Clerodendron Trichotomum. J. Ethnopharmacol. 2003, 89 (1), 151–154. https://doi.org/10.1016/S0378-8741(03)00274-5.

(77) Díaz, A. M.; Abad, M. J.; Fernández, L.; Silván, A. M.; De Santos, J.; Bermejo, P. Phenylpropanoid Glycosides from Scrophularia Scorodonia: In Vitro Anti-Inflammatory Activity. Life Sci. 2004, 74 (20), 2515–2526. https://doi.org/10.1016/j.lfs.2003.10.008.

(78) Romero, C.; Brenes, M.; García, P.; Garrido, A. Hydroxytyrosol 4-β-D- Glucoside, an Important Phenolic Compound in Olive Fruits and Derived Products. J. Agric. Food Chem. 2002, 50 (13), 3835–3839. https://doi.org/10.1021/jf011485t.

(79) Yang Kuo, L. M.; Zhang, L. J.; Huang, H. T.; Lin, Z. H.; Liaw, C. C.; Cheng, H. L.; Lee, K. H.; Morris-Natschke, S. L.; Kuo, Y. H.; Ho, H. O. Antioxidant Lignans and Chromone Glycosides from Eurya Japonica. J. Nat. Prod. 2013, 76 (4), 580–587. https://doi.org/10.1021/np3007638.

(80) Mascaraque, C.; Aranda, C.; Ocón, B.; Monte, M. J.; Suárez, M. D.; Zarzuelo, A.; Marín, J. J. G.; Martínez-Augustin, O.; de Medina, F. S. Rutin Has Intestinal Antiinflammatory Effects in the CD4+ CD62L+ T Cell Transfer Model of Colitis. Pharmacol. Res. 2014, 90, 48–57. https://doi.org/https://doi.org/10.1016/j.phrs.2014.09.005.

(81) Selloum, L.; Bouriche, H.; Tigrine, C.; Boudoukha, C. Anti-Inflammatory Effect of Rutin on Rat Paw Oedema, and on Neutrophils Chemotaxis and Degranulation. Exp. Toxicol. Pathol. 2003, 54 (4), 313–318. https://doi.org/https://doi.org/10.1078/0940-2993-00260.

(82) Kamalakkannan, N.; Prince, P. S. M. Antihyperglycaemic and Antioxidant Effect of Rutin, a Polyphenolic Flavonoid, in Streptozotocin-Induced Diabetic Wistar Rats. Basic Clin. Pharmacol. Toxicol. 2006, 98 (1), 97–103. https://doi.org/10.1111/j.1742-7843.2006.pto_241.x.

(83) Gautam, R.; Singh, M.; Gautam, S.; Rawat, J. K.; Saraf, S. A.; Kaithwas, G. Rutin Attenuates Intestinal Toxicity Induced by Methotrexate Linked with Anti-Oxidative and Anti-Inflammatory Effects. BMC Complement. Altern. Med. 2016, 16 (1), 1–6. https://doi.org/10.1186/s12906-016-1069-1.

(84) Zang, L. Y.; Cosma, G.; Gardner, H.; Shi, X.; Castranova, V.; Vallyathan, V. Effect of Antioxidant Protection by P-Coumaric Acid on Low-Density Lipoprotein Cholesterol Oxidation. Am. J. Physiol. - Cell Physiol. 2000, 279 (4 48-4), 954–960. https://doi.org/10.1152/ajpcell.2000.279.4.c954.

(85) Abdel-Wahab, M. H.; El-Mahdy, M. A.; Abd-Ellah, M. F.; Helal, G. K.; Khalifa, F.; Hamada, F. M. A. Influence of P-Coumaric Acid on Doxorubicin-Induced Oxidative Stress in Rat’s Heart. Pharmacol. Res. 2003, 48 (5), 461–465. https://doi.org/https://doi.org/10.1016/S1043-6618(03)00214-7.

(86) Kiliç, I.; Yeşiloǧlu, Y. Spectroscopic Studies on the Antioxidant Activity of P- Coumaric Acid. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2013, 115, 719–724. https://doi.org/10.1016/j.saa.2013.06.110.

(87) Ojha, D.; Patil, K. N. P-Coumaric Acid Inhibits the Listeria Monocytogenes RecA Protein Functions and SOS Response: An Antimicrobial Target. Biochem. Biophys. Res. Commun. 2019, 517 (4), 655–661. https://doi.org/10.1016/j.bbrc.2019.07.093.

(88) Boz, H. P-Coumaric Acid in Cereals: Presence, Antioxidant and Antimicrobial Effects. Int. J. Food Sci. Technol. 2015, 50 (11), 2323–2328. https://doi.org/10.1111/ijfs.12898.

(89) Sharma, B. R.; Gautam, L. N. S.; Adhikari, D.; Karki, R. A Comprehensive Review on Chemical Profiling of Nelumbo Nucifera: Potential for Drug Development. Phyther. Res. 2017, 31 (1), 3–26. https://doi.org/10.1002/ptr.5732.

(90) Stanely Mainzen Prince, P.; Rajakumar, S.; Dhanasekar, K. Protective Effects of Vanillic Acid on Electrocardiogram, Lipid Peroxidation, Antioxidants, Proinflammatory Markers and Histopathology in Isoproterenol Induced Cardiotoxic Rats. Eur. J. Pharmacol. 2011, 668 (1–2), 233–240. https://doi.org/10.1016/j.ejphar.2011.06.053.

(91) Tai, A.; Sawano, T.; Ito, H. Antioxidative Properties of Vanillic Acid Esters in Multiple Antioxidant Assays. Biosci. Biotechnol. Biochem. 2012, 76 (2), 314–318. https://doi.org/10.1271/bbb.110700.

(92) Vinothiya, K.; Ashokkumar, N. Modulatory Effect of Vanillic Acid on Antioxidant Status in High Fat Diet-Induced Changes in Diabetic Hypertensive Rats. Biomed. Pharmacother. 2017, 87, 640–652. https://doi.org/https://doi.org/10.1016/j.biopha.2016.12.134.

(93) Rodis, P. S.; Karathanos, V. T.; Mantzavinou, A. Partitioning of Olive Oil Antioxidants between Oil and Water Phases. J. Agric. Food Chem. 2002, 50 (3), 596–601. https://doi.org/10.1021/jf010864j.

(94) Lee, O. H.; Lee, B. Y. Antioxidant and Antimicrobial Activities of Individual and Combined Phenolics in Olea Europaea Leaf Extract. Bioresour. Technol. 2010, 101 (10), 3751–3754. https://doi.org/10.1016/j.biortech.2009.12.052.

(95) Mwakalukwa, R.; Ashour, A.; Amen, Y.; Niwa, Y.; Tamrakar, S. Anti-Allergic Activity of Polyphenolic Compounds Isolated from Olive Mill Wastes. J. Funct. Foods 2019, 58 (April), 207–217. https://doi.org/10.1016/j.jff.2019.04.058.

(96) Kishikawa, A.; Amen, Y.; Shimizu, K. Anti-Allergic Triterpenes Isolated from Olive Milled Waste. Cytotechnology 2017, 69 (2), 307–315. https://doi.org/10.1007/s10616-016-0058-z.

(97) D’Amato, G.; Vitale, C.; De Martino, A.; Viegi, G.; Lanza, M.; Molino, A.; Sanduzzi, A.; Vatrella, A.; Annesi-Maesano, I.; D’Amato, M. Effects on Asthma and Respiratory Allergy of Climate Change and Air Pollution. Allergy Asthma Immunol. Rese4qrch 2016, 8 (5), 391–395. https://doi.org/10.1186/s40248-015-0036-x.

(98) D’amato, G.; Karl, B.; Cecchi, L.; Isabella, A.-M.; Sanduzzi, A.; Liccardi, G.; Vitale, C.; Stanziola, A.; D’amato, M. Climate Change and Air Pollution - Effects on Pollen Allergy and Other Allergic Respiratory Diseases. Allergo J. Internatonal 2014, 23, 17–23. https://doi.org/10.1007/s40629-014-0003-7.

(99) Gowshall, M.; Taylor-Robinson, S. D. The Increasing Prevalence of Non- Communicable Diseases in Low-Middle Income Countries: The View from Malawi. Int. J. Gen. Med. 2018, 11, 255–264. https://doi.org/10.2147/IJGM.S157987.

(100) World Health Organization. Global Report on Diabetes. Isbn 2016, 978, 88. https://doi.org/ISBN 978 92 4 156525 7.

(101) Alzheimer’s Association. 2014 Alzheimer’s Disease Facts and Figures. Alzheimers. Dement. 2014, 10 (2), e47–e92. https://doi.org/10.1016/j.jalz.2014.02.001.

(102) American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2014, 37 (SUPPL.1), 81–90. https://doi.org/10.2337/dc14-S081.

(103) Sugino, H.; Watanabe, A.; Amada, N.; Yamamoto, M.; Ohgi, Y.; Kostic, D.; Sanchez, R. Global Trends in Alzheimer Disease Clinical Development: Increasing the Probability of Success. Clin. Ther. 2015, 37 (8), 1632–1642. https://doi.org/10.1016/j.clinthera.2015.07.006.

(104) Hurd, M. D.; Martorell, P.; Delavande, A.; Mullen, K. J.; Langa, K. M. Monetary Costs of Dementia in the United States. N. Engl. J. Med. 2013, 368 (14), 1326–1334. https://doi.org/10.1056/NEJMsa1204629.

(105) Grosso, G. Dietary Antioxidants and Prevention of Non-Communicable Diseases. Antioxidants 2018, 7 (7), 17–19. https://doi.org/10.3390/antiox7070094.

(106) Nediani, C.; Ruzzolini, J.; Romani, A.; Calorini, L. Oleuropein, a Bioactive Compound from Olea Europaea l., as a Potential Preventive and Therapeutic Agent in Non-Communicable Diseases. Antioxidants 2019, 8 (12). https://doi.org/10.3390/antiox8120578.

(107) Gavahian, M.; Mousavi Khaneghah, A.; Lorenzo, J. M.; Munekata, P. E. S.; Garcia-Mantrana, I.; Collado, M. C.; Meléndez-Martínez, A. J.; Barba, F. J. Health Benefits of Olive Oil and Its Components: Impacts on Gut Microbiota Antioxidant Activities, and Prevention of Noncommunicable Diseases. Trends Food Sci. Technol. 2019, 88 (February), 220–227. https://doi.org/10.1016/j.tifs.2019.03.008.

(108) Mangge, H. Antioxidants, Inflammation and Cardiovascular Disease. World J. Cardiol. 2014, 6 (6), 462. https://doi.org/10.4330/wjc.v6.i6.462.

(109) Peña-Oyarzun, D.; Bravo-Sagua, R.; Diaz-Vega, A.; Aleman, L.; Chiong, M.; Garcia, L.; Bambs, C.; Troncoso, R.; Cifuentes, M.; Morselli, E.; et al. Autophagy and Oxidative Stress in Non-Communicable Diseases: A Matter of the Inflammatory State? Free Radic. Biol. Med. 2018, 124 (May), 61–78. https://doi.org/10.1016/j.freeradbiomed.2018.05.084.

(110) Galli, S. J.; Tsai, M.; Piliponsky, A. M. The Development of Allergic Inflammation. Nature 2008, 454, 445.

(111) Jackson, K. D.; Howie, L. D.; Akinbami, L. J. Trends in Allergic Conditions Among Children : NCHC Data Br. 2013, No. 121, 1–8.

(112) Broide, D. H. Immunomodulation of Allergic Disease. Annu. Rev. Med. 2009, 60 (1), 279–291. https://doi.org/10.1146/annurev.med.60.041807.123524.

(113) Joseph, N.; Palagani, R.; Nh, S.; Jain, V.; Joseph, N. Prevalence , Severity and Risk Factors of Allergic Disorders among People in South India. Afr. Health Sci. 2016, 16 (1), 201–209.

(114) Kawai, M.; Hirano, T.; Higa, S.; Arimitsu, J.; Maruta, M.; Kuwahara, Y.; Ohkawara, T.; Hagihara, K.; Yamadori, T.; Shima, Y.; et al. Flavonoids and Related Compounds as Anti-Allergic Substances. Allergol. Int. 2007, 56 (2), 113–123. https://doi.org/10.2332/allergolint.R-06-135.

(115) Matricardi, P. M. The Allergy Epidemic, In Cezmi A. Akdis and Ioana Agache, (Eds.). Global Atlas of Allergy (Pp. 113-114). In European Academy of Allergy and Clinical Immunology; 2014. https://doi.org/10.1016/j.orgel.2007.03.001.

(116) Loh, W.; Tang, M. L. K. The Epidemiology of Food Allergy in the Global Context. Int. J. Environ. Res. Public Health 2018, 15 (2043). https://doi.org/10.3390/ijerph15092043.

(117) Harvima, I. T.; Levi-Schaffer, F.; Draber, P.; Friedman, S.; Polakovicova, I.; Gibbs, B. F.; Blank, U.; Nilsson, G.; Maurer, M. Molecular Targets on Mast Cells and Basophils for Novel Therapies. J. Allergy Clin. Immunol. 2014, 134 (3), 530–544. https://doi.org/10.1016/j.jaci.2014.03.007.

(118) Siracusa, M. C.; Kim, B. S.; Spergel, J. M.; Artis, D. Basophils and Allergic Inflammation. J. Allergy Clin. Immunol. 2013, 132 (4), 789–801. https://doi.org/10.1016/j.jaci.2013.07.046.

(119) Nishida, K.; Yamasaki, S.; Ito, Y.; Kabu, K.; Hattori, K.; Tezuka, T.; Nishizumi, H.; Kitamura, D.; Goitsuka, R.; Geha, R. S.; et al. Fc{epsilon}RI- Mediated Mast Cell Degranulation Requires Calcium-Independent Microtubule-Dependent Translocation of Granules to the Plasma Membrane. J. Cell Biol. 2005, 170 (1), 115–126. https://doi.org/10.1083/jcb.200501111.

(120) Siraganian, R. P.; Zhang, J.; Suzuki, K.; Sada, K. Protein Tyrosine Kinase Syk in Mast Cell Signaling. Mol. Immunol. 2002, 38 (16–18), 1229–1233. https://doi.org/10.1016/S0161-5890(02)00068-8.

(121) Rivera, J. Molecular Adapters in FcεRI Signaling and the Allergic Response. Curr. Opin. Immunol. 2002, 14 (6), 688–693. https://doi.org/10.1016/S0952-7915(02)00396-5.

(122) Hansen, I.; Klimek, L.; Mösges, R.; Hörmann, K. Mediators of Inflammation in the Early and the Late Phase of Allergic Rhinitis. Curr. Opin. Allergy Clin. Immunol. 2004, 4 (3), 159–163.

(123) Matsubara, Y.; Murakami, Y.; Kobayashi, M.; Morita, Y.; Tamiya, E. Application of On-Chip Cell Cultures for the Detection of Allergic Response. Biosens. Bioelectron. 2004, 19 (7), 741–747. https://doi.org/10.1016/j.bios.2003.08.001.

(124) Matsuda, H.; Nakamura, S.; Yoshikawa, M. Recent Progress in Study on the Biologically-Active Natural Products Degranulation Inhibitors from Medicinal Plants in Antigen-Stimulated Rat. Chem. Pharm. Bull. 2016, 64 (2), 96–103.

(125) Vig, M.; Kinet, J. Calcium Signaling in Immune Cells. Direct 2009, 10 (1), 21– 28. https://doi.org/10.1038/ni.f.220/activated.

(126) Parekh, A. B.; Putney, J. W. Store-Operated Calcium Channels. Physiol. Rev. 2005, 85, 757–810. https://doi.org/10.1016/B978-0-12-378630-2.00301-7.

(127) Zhang, S. L.; Yu, Y.; Roos, J.; Kozak, J. A.; Deerinck, T. J.; Ellisman, M. H.; Stauderman, K. A.; Cahalan, M. D. STIM1 Is a Ca2+ Sensor That Activates CRAC Channels and Migrates from the Ca2+ Store to the Plasma Membrane. Nature 2005, 437 (7060), 902–905. https://doi.org/10.1038/nature04147.

(128) Feske, S.; Gwack, Y.; Prakriya, M.; Srikanth, S.; Puppel, S. H.; Tanasa, B.; Hogan, P. G.; Lewis, R. S.; Daly, M.; Rao, A. A Mutation in Orai1 Causes Immune Deficiency by Abrogating CRAC Channel Function. Nature 2006, 441 (7090), 179–185. https://doi.org/10.1038/nature04702.

(129) Baba, Y.; Nishida, K.; Fujii, Y.; Hirano, T.; Hikida, M.; Kurosaki, T. Essential Function for the Calcium Sensor STIM1 in Mast Cell Activation and Anaphylactic Responses. Nat. Immunol. 2008, 9 (1), 81–88. https://doi.org/10.1038/ni1546.

(130) Kishikawa, A. The Effect of the Ethanol Extract of Olive Milled Waste on Allergic Reaction of Basophil and Ca2+ Signal Transduction of Keratinocyte, Kyushu University, 2017.

(131) Yun, S. S.; Kang, M. Y.; Park, J. C.; Nam, S. H. Comparison of Anti- Allergenic Activities of Various Polyphenols in Cell Assays. 2010, 53 (3), 139–140. https://doi.org/10.3839/jabc.2010.026.

(132) Pinho, B. R.; Sousa, C.; Valentao, P.; Oliveira, J. M. A.; Andrade, P. B. Modulation of Basophils’ Degranulation and Allergy- Related Enzymes by Monomeric and Dimeric Naphthoquinones. PLoS One 2014, 9 (2), 1–10. https://doi.org/10.1371/journal.pone.0090122.

(133) Han, S.; Sun, L.; He, F.; Che, H. Anti-Allergic Activity of Glycyrrhizic Acid on IgE-Mediated Allergic Reaction by Regulation of Allergy- Related Immune Cells. Sci. Rep. 2017, No. June, 1–9. https://doi.org/10.1038/s41598-017- 07833-1.

(134) Montedoro, G.; Servili, M.; Baldioli, M.; Selvaggini, R.; Miniati, E.; Macchioni, A. Simple and Hydrolyzable Compounds in Virgin Olive Oil. 3. Spectroscopic Characterizations of the Secoiridoid Derivatives. J. Agric. Food Chem. 1993, 41 (11), 2228–2234. https://doi.org/10.1021/jf00035a076.

(135) Gariboldi, P.; Jommi, G.; Verotta, L. Secoiridoids from Olea Europaea. Phytochemistry 1986, 25 (4), 865–869. https://doi.org/10.1016/0031-9422(86)80018-8.

(136) Kim, D. K.; Lim, J. P.; Kim, J. W.; Park, H. W.; Eun, J. S. Antitumor and Antiinflammatory Constituents from Celtis Sinensis. Arch. Pharm. Res. 2005, 28 (1), 39–43. https://doi.org/10.1007/BF02975133.

(137) Kovganko, N. V.; Kashkan, Z. N.; Borisov, E. V.; Batura, E. . 13C-NMR of Beta-Sitosterol Derivatives with Oxidized Rings A and B. Bioorg. Chem. 1999, 35 (6), 646–649.

(138) Kundu, A. P. 13C Nmr Spectra of Pentacyclic Triterpenoids-a and Some Salient Features. Phytochemistry 1994, 37 (6), 1517–1575. https://doi.org/10.1016/S0031-9422(00)89569-2.

(139) Thoison, O.; Sévenet, T.; Niemeyer, H. M.; Russell, G. B. Insect Antifeedant Compounds from Nothofagus Dombeyi and N. Pumilio. Phytochemistry 2004, 65 (14), 2173–2176. https://doi.org/10.1016/j.phytochem.2004.04.002.

(140) Begum, S.; Siddiqui, B. S. Triterpenoids from the Leaves of Eucalyptus Camaldulensis Var. Obtusa. J. Nat. Prod. 1997, 60, 20–23.

(141) Flamini, G.; Pardini, M.; Morelli, I. A Flavonoid Sulphate and Other Compounds from the Roots of Centaurea Bracteata. Phytochemistry 2001, 58 (8), 1229–1233. https://doi.org/10.1016/S0031-9422(01)00345-4.

(142) Brenes, M.; García, A.; García, P.; Rios, J. J.; Garrido, A. Phenolic Compounds in Spanish Olive Oils. J. Agric. Food Chem. 1999, 47 (9), 3535– 3540. https://doi.org/10.1021/jf990009o.

(143) Tsukamoto, H.; Hisada, S.; Nishibe, S. Lignans from Bark of the Olea Plants. I. Chem. Pharm. Bull. (Tokyo). 1984, 32 (7), 2730–2735. https://doi.org/10.1248/cpb.37.3229.

(144) Vivancos, M.; Moreno, J. J. β-Sitosterol Modulates Antioxidant Enzyme Response in RAW 264.7 Macrophages. Free Radic. Biol. Med. 2005, 39 (1), 91–97. https://doi.org/10.1016/j.freeradbiomed.2005.02.025.

(145) Sánchez-Quesada, C.; López-Biedma, A.; Warleta, F.; Campos, M.; Beltrán, G.; Gaforio, J. J. Bioactive Properties of the Main Triterpenes Found in Olives, Virgin Olive Oil, and Leaves of Olea Europaea. J. Agric. Food Chem. 2013, 61 (50), 12173–12182. https://doi.org/10.1021/jf403154e.

(146) Lozano-Mena, G.; Sánchez-González, M.; Juan, M. E.; Planas, J. M. Maslinic Acid, a Natural Phytoalexin-Type Triterpene from Olives - A Promising Nutraceutical? Molecules 2014, 19 (8), 11538–11559. https://doi.org/10.3390/molecules190811538.

(147) Liu, J.; Sun, H.; Duan, W.; Mu, D.; Zhang, L. Maslinic Acid Reduces Blood Glucose in KK-Ay Mice. Biol. Pharm. Bull. 2007, 30 (11), 2075–2078. https://doi.org/10.1248/bpb.30.2075.

(148) González-Correa, J. A.; Navas, M. D.; Lopez-Villodres, J. A.; Trujillo, M.; Espartero, J. L.; De La Cruz, J. P. Neuroprotective Effect of Hydroxytyrosol and Hydroxytyrosol Acetate in Rat Brain Slices Subjected to Hypoxia– Reoxygenation. Neurosci. Lett. 2008, 446 (2–3), 143–146. https://doi.org/10.1016/J.NEULET.2008.09.022.

(149) Trujillo, M.; Mateos, R.; De Teran, L. C.; Espartero, J. L.; Cert, R.; Jover, M.; Alcudia, F.; Bautista, J.; Cert, A.; Parrado, J. Lipophilic Hydroxytyrosyl Esters. Antioxidant Activity in Lipid Matrices and Biological Systems. J. Agric. Food Chem. 2006, 54 (11), 3779–3785. https://doi.org/10.1021/jf060520z.

(150) Lin, Y.; Shi, R.; Wang, X.; Shen, H. Luteolin , a Flavonoid with Potential for Cancer Prevention and Therapy. Curr. Cancer Drug Targets 2008, 8, 634– 646. https://doi.org/10.2174/156800908786241050.

(151) López-lázaro, M. Distribution and Biological Activities of the Flavonoid Luteolin. Mini Rev. Med. Chem. 2009, 9, 31–59. https://doi.org/10.2174/138955709787001712.

(152) Maria, E. S.; Krystyna, D. Luteolin as an Anti-Inflammatory and Neuroprotective Agent: A Brief Review. Brain Res. Bull. 2015, 119, 1–11. https://doi.org/10.1016/j.brainresbull.2015.09.002.

(153) Nagao, A.; Seki, M.; Kobayashi, H. Inhibition of Xanthine Oxidase by Flavonoids. Biosci. Biotechnol. Biochem. 1999, 63 (10), 1787–1790. https://doi.org/10.1271/bbb.63.1787.

(154) Rubio-Senent, F.; Rodríguez-Gutiérrez, G.; Lama-Muñoz, A.; Fernández- Bolaños, J. Pectin Extracted from Thermally Treated Olive Oil By-Products: Characterization, Physico-Chemical Properties, Invitro Bile Acid Andglucose Binding. Food Hydrocoll. 2015, 43, 311–321. https://doi.org/10.1016/j.foodhyd.2014.06.001.

(155) Choi, Y.; Kim, M. S.; Hwang, J. K. Inhibitory Effects of Panduratin A on Allergy-Related Mediator Production in Rat Basophilic Leukemia Mast Cells. Inflammation 2012, 35 (6), 1904–1915. https://doi.org/10.1007/s10753-012- 9513-y.

(156) Sato, A.; Shinozaki, N.; Tamura, H. Secoiridoid Type of Antiallergic Substances in Olive Waste Materials of Three Japanese Varieties of Olea Europaea. J. Agric. Food Chem. 2014, 62 (31), 7787–7795. https://doi.org/10.1021/jf502151b.

(157) Sato, A.; Tamura, H. High Antiallergic Activity of 5,6,4′-Trihydroxy-7,8,3′- Trimethoxyflavone and 5,6-Dihydroxy-7,8,3′,4′-Tetramethoxyflavone from Eau de Cologne Mint (Mentha × Piperita Citrata). Fitoterapia 2015, 102, 74– 83. https://doi.org/10.1016/j.fitote.2015.02.003.

(158) Matsubara, M.; Masaki, S.; Ohmori, K.; Karasawa, A.; Hasegawa, K. Differential Regulation of IL-4 Expression and Degranulation by Anti-Allergic Olopatadine in Rat Basophilic Leukemia (RBL-2H3) Cells. Biochem. Pharmacol. 2004, 67 (7), 1315–1326. https://doi.org/10.1016/J.BCP.2003.12.008.

(159) Putney, J. W.; Tomita, T. Phospholipase C Signaling and Calcium Influx. Adv. Biol. Regul. 2013, 52 (1), 152–164. https://doi.org/10.1016/j.advenzreg.2011.09.005.

(160) Persia, F. A.; Mariani, M. L.; Fogal, T. H.; Penissi, A. B. Hydroxytyrosol and Oleuropein of Olive Oil Inhibit Mast Cell Degranulation Induced by Immune and Non-Immune Pathways. Phytomedicine 2014, 21 (11), 1400–1405. https://doi.org/10.1016/j.phymed.2014.05.010.

(161) Sarkhel, S.; Desiraju, G. R. N H…O, O H…O, and C H…O Hydrogen Bonds in Protein-Ligand Complexes: Strong and Weak Interactions in Molecular Recognition. Proteins Struct. Funct. Bioinforma. 2003, 54 (2), 247–259. https://doi.org/10.1002/prot.10567.

(162) Sun, N.; Wang, J.; Zhou, C.; Wang, C.; Wang, S.; Che, H. Cell-Based Immunological Assay: Complementary Applications in Evaluating the Allergenicity of Foods with FAO/WHO Guidelines. Food Res. Int. 2014, 62, 735–745. https://doi.org/10.1016/j.foodres.2014.04.033.

(163) International Diabetes Federation. IDF Diabetes Atlas 5th Edition; 2011. https://doi.org/10.1007/978-90-481-3271-3.

(164) Gin, H.; Rigalleau, V. Post-Prandial Hyperglycemia. Post-Prandial Hyperglycemia and Diabetes. Diabetes Metab. 2000, 26 (4), 265—272.

(165) Eringa, E. C.; Serne, E. H.; Meijer, R. I.; Schalkwijk, C. G.; Houben, A. J. H. M.; Stehouwer, C. D. A.; Smulders, Y. M.; Van Hinsbergh, V. W. M. Endothelial Dysfunction in (Pre)Diabetes: Characteristics, Causative Mechanisms and Pathogenic Role in Type 2 Diabetes. Rev. Endocr. Metab. Disord. 2004, 14 (1), 39–48. https://doi.org/10.1007/s11154-013-9239-7.

(166) Ceriello, A.; Hanefeld, M.; Leiter, L.; Monnier, L.; Moses, A.; Owens, D.; Tajima, N.; Tuomilehto, J. Postprandial Glucose Regulation and Diabetic Complications. Arch. Intern. Med. 2004, 164 (19), 2090–2095.

(167) Henry, W. L. Perspectives in Diabetes. J. Natl. Med. Assoc. 2005, 54 (1), 476–478. https://doi.org/10.2337/diabetes.52.1.1.

(168) Watanabe, J.; Kawabata, J.; Kurihara, H.; Niki, R. Isolation and Identification of α -Glucosidase Inhibitors from Tochu-Cha ( Eucommia Ulmoides ). Biosci. Biotechnol. Biochem. 1997, 61 (1), 177–178. https://doi.org/10.1271/bbb.61.177.

(169) Taslimi, P.; Aslan, H. E.; Demir, Y.; Oztaskin, N.; Maraş, A.; Gulçin, İ.; Beydemir, S.; Goksu, S. Diarylmethanon, Bromophenol and Diarylmethane Compounds: Discovery of Potent Aldose Reductase, α-Amylase and α- Glycosidase Inhibitors as New Therapeutic Approach in Diabetes and Functional Hyperglycemia. Int. J. Biol. Macromol. 2018, 119, 857–863. https://doi.org/10.1016/j.ijbiomac.2018.08.004.

(170) Phung, O. J.; Scholle, J. M. Effect of Noninsulin Antidiabetic Drugs Added to Metformin Therapy on Glycemic Control , Weight Gain , and Hypoglycemia in Type 2 Diabetes. J. Am. Med. Assoc. 2010, 303 (14), 1410–1418.

(171) Derosa, G.; Maffioli, P. α-Glucosidase Inhibitors and Their Use in Clinical Practice. Arch. Med. Sci. 2012, 8 (5), 899–906. https://doi.org/10.5114/aoms.2012.31621.

(172) Mohiuddin, M.; Arbain, D.; Islam, A. K. M. S.; Ahmad, M. S.; Ahmad, M. N. Alpha-Glucosidase Enzyme Biosensor for the Electrochemical Measurement of Antidiabetic Potential of Medicinal Plants. Nanoscale Res. Lett. 2016, 11 (1), 1–12. https://doi.org/10.1186/s11671-016-1292-1.

(173) Tringali, C. Bioactive Compounds from Natural Sources; Isolation, Characterisation and Biological Properties, First Edit.; Tringali, C., Ed.; Taylor & Francis: Ney York, 2001.

(174) Demir, Y.; Durmaz, L.; Taslimi, P.; Gulçin, İ. Antidiabetic Properties of Dietary Phenolic Compounds: Inhibition Effects on α-Amylase, Aldose Reductase, and α-Glycosidase. Biotechnol. Appl. Biochem. 2019, 66 (5), 781–786. https://doi.org/10.1002/bab.1781.

(175) Madigan, C.; Ryan, M.; Owens, D.; Collins, P.; Tomkin, G. H. Dietary Unsaturated Fatty Acids in Type 2 Diabetes; Higher Levels of Postprandial Lipoprotein on a Linoleic Acid–Rich Sunflower Oil Diet Compared with an Oleic Acid–Rich Olive Oil Diet. Diabetes Care 2000, 23 (10), 1472–1477.

(176) Nyomba. G., Berard.L., M. L. Facilitating Access to Glucometer Reagent Increases Blood Glucose Self Monitoring Freuqency and Improves Glycaemic Control: A Prospective Study in Inuslin-Treated Diabetic Patients. Diabet. Med. 2004, 21 (2), 103–113. https://doi.org/10.1046/j.1464.

(177) Pérez-martínez, P.; García-ríos, A.; Delgado-lista, J.; Pérez-jiménez, F.; López-, J. Mediterranean Diet Rich in Olive Oil and Obesity , Metabolic Syndrome and Diabetes Mellitus. Curr. Pharm. Des. 2011, 17 (8), 769–777.

(178) Goula, A. M.; Lazarides, H. N. Integrated Processes Can Turn Industrial Food Waste into Valuable Food By-Products and / or Ingredients : The Cases of Olive Mill and Pomegranate Wastes. J. Food Eng. 2015, 167, 45– 50. https://doi.org/10.1016/j.jfoodeng.2015.01.003.

(179) Alfano, G.; Lustrato, G.; Lima, G.; Vitullo, D.; Ranalli, G. Characterization of Composted Olive Mill Wastes to Predict Potential Plant Disease Suppressiveness. Biol. Control 2011, 58 (3), 199–207. https://doi.org/10.1016/j.biocontrol.2011.05.001.

(180) Fatmawati, S.; Shimizu, K.; Kondo, R. Ganoderol B: A Potent α-Glucosidase Inhibitor Isolated from the Fruiting Body of Ganoderma Lucidum. Phytomedicine 2011, 18 (12), 1053–1055. https://doi.org/10.1016/j.phymed.2011.03.011.

(181) Xiao, Z.; Storms, R.; Tsang, A. A Quantitative Starch-Iodine Method for Measuring Alpha-Amylase and Glucoamylase Activities. Anal. Biochem. 2006, 351 (1), 146–148. https://doi.org/10.1016/j.ab.2006.01.036.

(182) Nelson, D. L.; Cox, M. M. Enzyme Kinetics as an Approach to Understanding Mechanism. Lehninger Principles of Biochemistry.; WH Freeman & Co.: New York, 2014; pp 200–212.

(183) Agrawal, P. K.; Bansal, M. C.; Porter, L. J.; Foo, L. Y. Carbon-13 NMR of Flavonoids; Agrawal, P. K., Ed.; Elsevier Science Publishers B.V: Amsterdam, 1989; Vol. 39. https://doi.org/10.1016/B978-0-444-87449- 8.50014-6.

(184) Peralbo-Molina, Á.; Priego-Capote, F.; Luque De Castro, M. D. Tentative Identification of Phenolic Compounds in Olive Pomace Extracts Using Liquid Chromatography-Tandem Mass Spectrometry with a Quadrupole- Quadrupole-Time-of-Flight Mass Detector. J. Agric. Food Chem. 2012, 60 (46), 11542–11550. https://doi.org/10.1021/jf302896m.

(185) Caesar, L. K.; Cech, N. B. Synergy and Antagonism in Natural Product Extracts: When 1 + 1 Does Not Equal 2. Nat. Prod. Rep. 2019, 36 (6), 869– 888. https://doi.org/10.1039/c9np00011a.

(186) Britton, E. R.; Kellogg, J. J.; Kvalheim, O. M.; Cech, N. B. Biochemometrics to Identify Synergists and Additives from Botanical Medicines: A Case Study with Hydrastis Canadensis (Goldenseal). J. Nat. Prod. 2018, 81 (3), 484– 493. https://doi.org/10.1021/acs.jnatprod.7b00654.

(187) Lineweaver, H.; Burk, D. The Determination of Enzyme Dissociation Constants. J. Am. Chem. Soc. 1934, 56 (3), 658–666. https://doi.org/10.1021/ja01318a036.

(188) Whiteley, C. G. Enzyme Kinetics: Partial and Complete Non-Competitive Inhibition. Biochem. Educ. 1999, 27, 15–18.

(189) Segel, I. H. Enzyme Kinetics, Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems, 1st Editio.; John Wiley & Sons, Ltd.: New York, 1975.

(190) Ha, C.-E.; Bhagavan, N. V. Essentials of Medical Biochemistry: With Clinical Cases, Second Edi.; Elsevier: London, 2015.

(191) Elsbaey, M.; Mwakalukwa, R.; Shimizu, K.; Miyamoto, T. Pentacylic Triterpenes from Lavandula Coronopifolia: Structure Related Inhibitory Activity on α-Glucosidase. Nat. Prod. Res. 2019, 0 (0), 1–9. https://doi.org/10.1080/14786419.2019.1655017.

(192) Yan, J.; Zhang, G.; Pan, J.; Wang, Y. α-Glucosidase Inhibition by Luteolin: Kinetics, Interaction and Molecular Docking; Elsevier B.V., 2014; Vol. 64. https://doi.org/10.1016/j.ijbiomac.2013.12.007.

(193) Berg, J. M.; Tymoczko, J. L.; Stryer, L.; Gatto, G. J. Biochemistry, Seventh Ed.; W. H. Freeman and Company: New York, 2012.

(194) Hou, W.; Li, Y.; Zhang, Q.; Wei, X.; Peng, A.; Chen, L.; Wei, Y. Triterpene Acids Isolated from Lagerstroemia Speciosa Leaves as α-Glucosidase Inhibitors. Phyther. Res. 2009, 23, 614–618. https://doi.org/10.1002/ptr.2661.

(195) Ye, X. P.; Song, C. Q.; Yuan, P.; Mao, R. G. α-Glucosidase and α-Amylase Inhibitory Activity of Common Constituents from Traditional Chinese Medicine Used for Diabetes Mellitus. Chin. J. Nat. Med. 2010, 8 (5), 349–352. https://doi.org/10.1016/S1875-5364(10)60041-6.

(196) Bogani, P.; Galli, C.; Villa, M.; Visioli, F. Postprandial Anti-Inflammatory and Antioxidant Effects of Extra Virgin Olive Oil. Atherosclerosis 2007, 190 (1), 181–186. https://doi.org/10.1016/j.atherosclerosis.2006.01.011.

(197) Schaffer, S. W.; Azuma, J.; Mozaffari, M. Role of Antioxidant Activity of Taurine in Diabetes. Can. J. Physiol. Pharmacol. 2009, 87, 91–99. https://doi.org/10.1139/Y08-110.

(198) Montonen, J.; Knekt, P.; Järvinen, R.; Reunanen, A. Dietary Antioxidant Intake and Risk of Type 2 Diabetes. Diabetes Care 2004, 27 (2), 362–366. https://doi.org/10.2337/diacare.27.2.362.

(199) Teng, H.; Chen, L. α-Glucosidase and α-Amylase Inhibitors from Seed Oil: A Review of Liposoluble Substance to Treat Diabetes. Crit. Rev. Food Sci. Nutr. 2017, 57 (16), 3438–3448. https://doi.org/10.1080/10408398.2015.1129309.

(200) Antónia Nunes, M.; Costa, A. S. G.; Bessada, S.; Santos, J.; Puga, H.; Alves, R. C.; Freitas, V.; Oliveira, M. B. P. P. Olive Pomace as a Valuable Source of Bioactive Compounds: A Study Regarding Its Lipid- and Water-Soluble Components. Sci. Total Environ. 2018, 644, 229–236. https://doi.org/10.1016/j.scitotenv.2018.06.350.

(201) Teng, H.; Yuan, B.; Gothai, S.; Arulselvan, P.; Song, X.; Chen, L. Dietary Triterpenes in the Treatment of Type 2 Diabetes: To Date. Trends Food Sci. Technol. 2018, 72 (June 2017), 34–44. https://doi.org/10.1016/j.tifs.2017.11.012.

(202) Gao, D.; Li, Q.; Li, Y.; Liu, Z.; Fan, Y.; Liu, Z.; Zhao, H.; Li, J.; Han, Z. Antidiabetic and Antioxidant Effects of Oleanolic Acid from Ligustrum Lucidum Ait in Alloxan-Induced Diabetic Rats. Phyther. Res. 2009, 23 (1), 1257–1262. https://doi.org/10.1002/ptr.2603.

(203) Ngubane, P. S.; Masola, B.; Musabayane, C. T. The Effects of Syzygium Aromaticum-Derived Oleanolic Acid on Glycogenic Enzymes in Streptozotocin-Induced Diabetic Rats. Ren. Fail. 2011, 33 (4), 434–439. https://doi.org/10.3109/0886022X.2011.568147.

(204) Guan, T.; Qian, Y.; Tang, X.; Huang, M.; Huang, L.; Li, Y.; Sun, H. Maslinic Acid, a Natural Inhibitor of Glycogen Phosphorylase, Reduces Cerebral Ischemic Injury in Hyperglycemic Rats by GLT-1 up-Regulation. J. Neurosci. Res. 2011, 89 (11), 1829–1839. https://doi.org/10.1002/jnr.22671.

(205) Fukushima, M.; Matsuyama, F.; Ueda, N.; Egawa, K.; Takemoto, J.; Kajimoto, Y.; Yonaha, N.; Miura, T.; Kaneko, T.; Nishi, Y.; et al. Effect of Corosolic Acid on Postchallenge Plasma Glucose Levels. Diabetes Res. Clin. Pract. 2006, 73 (2), 174–177. https://doi.org/10.1016/j.diabres.2006.01.010.

(206) Supasuteekul, C.; Nonthitipong, W.; Tadtong, S.; Likhitwitayawuid, K.; Tengamnuay, P.; Sritularak, B. Antioxidant, DNA Damage Protective, Neuroprotective, and α-Glucosidase Inhibitory Activities of a Flavonoid Glycoside from Leaves of Garcinia Gracilis. Brazilian J. Pharmacogn. 2016, 26 (3), 312–320. https://doi.org/10.1016/j.bjp.2016.01.007.

(207) Lin, Y. S.; Lee, S. S. Flavonol Glycosides with α-Glucosidase Inhibitory Activities and New Flavone C-Diosides from the Leaves of Machilus Konishii. Helv. Chim. Acta 2014, 97 (12), 1672–1682. https://doi.org/10.1002/hlca.201400081.

(208) Kim, J.-S.; Kwon, C.-S.; Son, K. H. Inhibition of Alpha-Glucosidase and Amylase by Luteolin, a Flavonoid. Biosci. Biotechnol. Biochem. 2000, 63 (11), 2458–2461. https://doi.org/10.1271/bbb.64.2458.

(209) Loizzo, M. R.; Lecce, G. Di; Boselli, E.; Menichini, F.; Frega, N. G. Inhibitory Activity of Phenolic Compounds from Extra Virgin Olive Oils on the Enzymes Involved in Diabetes, Obesity and Hypertension. J. Food Biochem. 2011, 35 (2), 381–399. https://doi.org/10.1111/j.1745-4514.2010.00390.x.

(210) Alzheimer’s Disease International. The Global Impact of Dementia 2013 – 2050; Alzheimer’s Disease International: London, 2013.

(211) Scarpini, E.; Scheltens, P.; Feldman, H. Treatment of Alzheimer’s Disease: Current Status and New Perspectives. Lancet Neurol. 2003, 2 (9), 539–547. https://doi.org/10.1016/S1474-4422(03)00502-7.

(212) Parihar, M. S.; Hemnani, T. Alzheimer’s Disease Pathogenesis and Therapeutic Interventions. J. Clin. Neurosci. 2004, 11 (5), 456–467. https://doi.org/10.1016/j.jocn.2003.12.007.

(213) Craig, L. A.; Hong, N. S.; McDonald, R. J. Revisiting the Cholinergic Hypothesis in the Development of Alzheimer’s Disease. Neurosci. Biobehav. Rev. 2011, 35 (6), 1397–1409. https://doi.org/10.1016/j.neubiorev.2011.03.001.

(214) Fargo, K.; Aisen, P.; Albert, M.; Au, R.; Corrada, M.; DeKosky, S.; Drachman, D.; Fillit, H.; Gitlin, L.; Haas, M.; et al. Alzheimer’s Association National Plan Milestone Workgroup. 2014 Report on the Milestones for the US National Plan to Address Alzheimer’s Disease. 2014;10:S430-452. In Alzheimers Dement. J.; Alzheimers Assoc., 2014; Vol. 10, pp S430-452. https://doi.org/10.3390/molecules22101663.

(215) E Mintzer, J.; F Mirski, D.; S Hoernig, K. Behavioral and Psychological Signs and Symptoms of Dementia: A Practicing Psychiatrist’s Viewpoint. Dialogues Clin. Neurosci. 2000, 2 (2), 139–155.

(216) Francis, P. T.; Palmer, A. M.; Snape, M.; Wilcock, G. K. The Cholinergic Hypothesis of Alzheimer’s Disease: A Review of Progress. J. Neurol. Neurosurg. Psychiatry 1999, 66 (2), 137–147. https://doi.org/10.1136/jnnp.66.2.137.

(217) Nugroho, A.; Choi, J. S.; Hong, J. P.; Park, H. J. Anti-Acetylcholinesterase Activity of the Aglycones of Phenolic Glycosides Isolated from Leonurus Japonicus. Asian Pac. J. Trop. Biomed. 2017, 7 (10), 849–854. https://doi.org/10.1016/j.apjtb.2017.08.013.

(218) Liu, P.-P.; Xie, Y.; Meng, X.-Y.; Kang, J.-S. History and Progress of Hypotheses and Clinical Trials for Alzheimer’s Disease. Signal Transduct. Target. Ther. 2019, 4 (1). https://doi.org/10.1038/s41392-019-0063-8.

(219) Hampel, H.; Mesulam, M. M.; Cuello, A. C.; Farlow, M. R.; Giacobini, E.; Grossberg, G. T.; Khachaturian, A. S.; Vergallo, A.; Cavedo, E.; Snyder, P. J.; et al. The Cholinergic System in the Pathophysiology and Treatment of Alzheimer’s Disease. Brain 2018, 141 (7), 1917–1933. https://doi.org/10.1093/brain/awy132.

(220) St-Laurent-Thibault, C.; Arseneault, M.; Longpre, F.; Ramassamy, C. Tyrosol and Hydroxytyrosol Two Main Components of Olive Oil, Protect N2a Cells Against Amyloid-&#946;-Induced Toxicity. Involvement of the NF-&#954;B Signaling. Curr. Alzheimer Res. 2011, 8 (5), 543–551. https://doi.org/10.2174/156720511796391845.

(221) Dunn, W. B.; Overy, S.; Quick, W. P. Evaluation of Automated Electrospray- TOF Mass Spectrometry for Metabolic Fingerprinting of the Plant Metabolome. Metabolomics 2005, 1 (2), 137–148. https://doi.org/10.1007/s11306-005-4433-6.

(222) Luthria, D. L.; Lin, L. Z.; Robbins, R. J.; Finley, J. W.; Banuelos, G. S.; Harnly, J. M. Discriminating between Cultivars and Treatments of Broccoli Using Mass Spectral Fingerprinting and Analysis of Variance-Principal Component Analysis. J. Agric. Food Chem. 2008, 56 (21), 9819–9827. https://doi.org/10.1021/jf801606x.

(223) Dudzik, D.; Barbas-Bernardos, C.; García, A.; Barbas, C. Quality Assurance Procedures for Mass Spectrometry Untargeted Metabolomics. a Review. J. Pharm. Biomed. Anal. 2018, 147, 149–173. https://doi.org/10.1016/j.jpba.2017.07.044.

(224) Frédérich, M.; Pirotte, B.; Fillet, M.; De Tullio, P. Metabolomics as a Challenging Approach for Medicinal Chemistry and Personalized Medicine. J. Med. Chem. 2016, 59 (19), 8649–8666. https://doi.org/10.1021/acs.jmedchem.5b01335.

(225) Dudzik, D.; Revello, R.; Barbas, C.; Bartha, J. L. LC - MS-Based Metabolomics Identification of Novel Biomarkers of Chorioamnionitis and Its Associated Perinatal Neurological Damage. J. Proteome Res. 2015, 14 (3), 1432–1444. https://doi.org/10.1021/pr501087x.

(226) Wasai, M.; Fujimura, Y.; Nonaka, H.; Kitamura, R.; Murata, M.; Tachibana, H. Postprandial Glycaemia-Lowering Effect of a Green Tea Cultivar Sunrouge and Cultivar-Specific Metabolic Profiling for Determining Bioactivity-Related Ingredients. Sci. Rep. 2018, 8 (1), 1–9. https://doi.org/10.1038/s41598-018-34316-8.

(227) Bujak, R.; Daghir-Wojtkowiak, E.; Kaliszan, R.; Markuszewski, M. J. PLS- Based and Regularization-Based Methods for the Selection of Relevant Variables in Non-Targeted Metabolomics Data. Front. Mol. Biosci. 2016, 3 (JUL), 1–10. https://doi.org/10.3389/fmolb.2016.00035.

(228) Goodacre, R.; York, E. V.; Heald, J. K.; Scott, I. M. Chemometric Discrimination of Unfractionated Plant Extracts Analyzed by Electrospray Mass Spectrometry. Phytochemistry 2003, 62 (6), 859–863. https://doi.org/10.1016/S0031-9422(02)00718-5.

(229) Mukherjee, P. K.; Kumar, V.; Houghton, P. J. Screening of Indian Medicinal Plants for Acetylcholinesterase Inhibitory Activity. Phyther. Res. 2008, 22 (4), 544–549. https://doi.org/10.1002/ptr.

(230) Ellman, G. L.; Courtney, K. D.; Andres, V.; Featherstone, R. M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7 (2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9.

(231) Wang, H. P.; Liu, Y.; Chen, C.; Xiao, H. Bin. Screening Specific Biomarkers of Herbs Using a Metabolomics Approach: A Case Study of Panax Ginseng. Sci. Rep. 2017, 7 (1), 1–9. https://doi.org/10.1038/s41598-017-04712-7.

(232) Dias, D. A.; Jones, O. A. H.; Beale, D. J.; Boughton, B. A.; Benheim, D.; Kouremenos, K. A.; Wolfender, J. L.; Wishart, D. S. Current and Future Perspectives on the Structural Identification of Small Molecules in Biological Systems. Metabolites 2016, 6 (4). https://doi.org/10.3390/metabo6040046.

(233) Allard, P. M.; Genta-Jouve, G.; Wolfender, J. L. Deep Metabolome Annotation in Natural Products Research: Towards a Virtuous Cycle in Metabolite Identification. Curr. Opin. Chem. Biol. 2017, 36, 40–49. https://doi.org/10.1016/j.cbpa.2016.12.022.

(234) Viant, M. R.; Kurland, I. J.; Jones, M. R.; Dunn, W. B. How Close Are We to Complete Annotation of Metabolomes? Curr. Opin. Chem. Biol. 2017, 36, 64–69. https://doi.org/10.1016/j.cbpa.2017.01.001.

(235) Naz, S.; Gallart-Ayala, H.; Reinke, S. N.; Mathon, C.; Blankley, R.; Chaleckis, R.; Wheelock, C. E. Development of a Liquid Chromatography-High Resolution Mass Spectrometry Metabolomics Method with High Specificity for Metabolite Identification Using All Ion Fragmentation Acquisition. Anal. Chem. 2017, 89 (15), 7933–7942. https://doi.org/10.1021/acs.analchem.7b00925.

(236) Berrueta, L. A.; Alonso-Salces, R. M.; Héberger, K. Supervised Pattern Recognition in Food Analysis. J. Chromatogr. A 2007, 1158 (1–2), 196–214. https://doi.org/10.1016/j.chroma.2007.05.024.

(237) Vaclavik, L.; Lacina, O.; Hajslova, J.; Zweigenbaum, J. The Use of High Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry Coupled to Advanced Data Mining and Chemometric Tools for Discrimination and Classification of Red Wines According to Their Variety. Anal. Chim. Acta 2011, 685 (1), 45–51. https://doi.org/10.1016/j.aca.2010.11.018.

(238) Satria, D.; Tamrakar, S.; Suhara, H.; Kaneko, S.; Shimizu, K. Mass Spectrometry-Based Untargeted Metabolomics and α-Glucosidase Inhibitory Activity of Lingzhi (Ganoderma Lingzhi) during the Developmental Stages. Molecules 2019, 24 (11), 1–14. https://doi.org/10.3390/molecules24112044.

参考文献をもっと見る