リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Toxoplasma Gondii Effectors TgIST and TgGRA15 Differentially Target Host IDO1 to Antagonize the IFN-γ-induced Anti-T. Gondii Response in Human Cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Toxoplasma Gondii Effectors TgIST and TgGRA15 Differentially Target Host IDO1 to Antagonize the IFN-γ-induced Anti-T. Gondii Response in Human Cells

BANDO Hironori FUKUDA Yasuhiro YAMAMOTO Masahiro KATO Kentaro 東北大学

2020.03

概要

Toxoplasma is an important intracellular pathogen that causes lethal toxoplasmosis in humans and animals. Interferon-γ (IFN-γ) is critical for anti-T. gondii responses in both humans and mice. Recent extensive studies using the mouse as a model organism have revealed that IFN-γ-inducible GTPases play critical roles and have revealed that virulent T. gondii can inhibit IFN-γ-mediated host immune responses. Thus, the relationship between host immunity and T. gondii virulence is well established in mice. In contrast, IFN-γ-induced anti-T. gondii responses in humans are not completely clear because the IFN-γ-inducible GTPase-mediated anti-T. gondii responses may not be notable in humans. Therefore, the T. gondii virulence strategy to resist IFN-γ-induced anti-T. gondii responses in humans also remains largely unclear. Here, we generated human cells lacking the IFN-γ-inducible gene, and showed that IDO1 is required for the IFN-γ-induced response in human cells. Then, we focused on T. gondii virulence mechanisms in human cells. Specifically, we focused on the distinct T. gondii virulence mechanisms involving TgIST and TgGRA15 to suppress IFN-γ-dependent immunity in human cells. We generated TgIST- or TgGRA15- deficient T. gondii by using the CRISPR/Cas9 system, and showed that IDO1 mRNA induction is inhibited in a TgIST-dependent manner in IFN-γ-stimulated human cells. We also found that the IDO1-dependent anti-T. gondii response is inhibited in a TgGRA15-dependent manner in secondarily infected cells. Taken together, our data show that T. gondii possesses at least two differential virulence mechanisms in which IDO1 is targeted by TgIST and TgGRA15 to antagonize IFN-γ-induced anti-T. gondii responses in human cells.

参考文献

Bando, H., A. Yoshimura, M. Koketsu, A. Soga, Y. Taniguchi, M. Ozaki, M. Suzuki, H. Kanuka and S. Fukumoto (2015) Serological Survey of Toxoplasma gondii in Wild Sika Deer in Eastern Hokkaido, Japan. The Journal of Protozoology Research, 25: 1-2.

Bando, H., N. Sakaguchi, Y. Lee, A. Pradipta, J. S. Ma, S. Tanaka, D. H. Lai, J. Liu, Z. R. Lun, Y. Nishikawa, M. Sasai and M. Yamamoto (2018b) Toxoplasma Effector TgIST Targets Host IDO1 to Antagonize the IFN-gamma-Induced Anti-parasitic Response in Human Cells. Frontiers in Immunology, 9: 2073.

Bando, H., Y. Lee, N. Sakaguchi, A. Pradipta, J. S. Ma, S. Tanaka, Y. Cai, J. Liu, J. Shen, Y. Nishikawa, M. Sasai and M. Yamamoto (2018a) Inducible Nitric Oxide Synthase Is a Key Host Factor for Toxoplasma GRA15-Dependent Disruption of the Gamma Interferon-Induced Antiparasitic Human Response. MBio, 9: e01738-18.

Bando, H., Y. Lee, N. Sakaguchi, A. Pradipta, R. Sakamoto, S. Tanaka, J. S. Ma, M. Sasai and M. Yamamoto (2019) Toxoplasma Effector GRA15-Dependent Suppression of IFN-gamma-Induced Antiparasitic Response in Human Neurons. Frontiers in Cellular and Infection Microbiology, 9: 140.

Batz, M. B., S. Hoffmann and J. G. J. Morris (2012) Ranking the disease burden of 14 pathogens in food sources in the United States using attribution data from outbreak investigations and expert elicitation. Journal of Food Protection, 75: 1278-1291.

Behnke, M. S., A. Khan, J. C. Wootton, J. P. Dubey, K. Tang and L. D. Sibley (2011) Virulence differences in Toxoplasma mediated by amplification of a family of polymorphic pseudokinases. Proceedings of the National Academy of Sciences of the United States of America, 108: 9631-9636.

Bekpen, C., J. P. Hunn, C. Rohde, I. Parvanova, L. Guethlein, D. M. Dunn, E. Glowalla, M. Leptin and J. C. Howard (2005) The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage. Genome biology, 6: R92.

Boothroyd, J. C. (2009) Toxoplasma gondii: 25 years and 25 major advances for the field. International journal for parasitology, 39: 935-946.

Courret, N., S. Darche, P. Sonigo, G. Milon, D. Buzoni-Gatel and I. Tardieux (2006) CD11c- and CD11b-expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain. Blood, 107: 309-316.

Dubey, J. P. (2010) Toxoplasmosis of Animals and Humans. CRC Press.

Etheridge, R. D., A. Alaganan, K. Tang, H. J. Lou, B. E. Turk and L. D. Sibley (2014) The Toxoplasma pseudokinase ROP5 forms complexes with ROP18 and ROP17 kinases that synergize to control acute virulence in mice. Cell Host and Microbe, 15: 537- 550.

Fentress, S. J., M. S. Behnke, I. R. Dunay, M. Mashayekhi, L. M. Rommereim, B. A. Fox, D. J. Bzik, G. A. Taylor, B. E. Turk, C. F. Lichti, R. R. Townsend, W. Qiu, R. Hui, W. L. Beatty and L. D. Sibley (2010) Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence. Cell Host and Microbe, 8: 484-495.

Fisch, D., H. Bando, B. Clough, V. Hornung, M. Yamamoto, A. R. Shenoy and E. M. Frickel (2019) Human GBP1 is a microbe- specific gatekeeper of macrophage apoptosis and pyroptosis. The EMBO Journal, 38: e100926.

Frenkel, J. K. and J. S. Remington (1980) Hepatitis in toxoplasmosis. The New England journal of medicine, 302: 178-179.

Gay, G., L. Braun, M. P. Brenier-Pinchart, J. Vollaire, V. Josserand, R. L. Bertini, A. Varesano, B. Touquet, P. J. De Bock, Y. Coute, I. Tardieux, A. Bougdour and M. A. Hakimi (2016) Toxoplasma gondii TgIST co-opts host chromatin repressors dampening STAT1-dependent gene regulation and IFN-gamma-mediated host defenses. Journal of Experimental Medicine, 213: 1779-1798.

Gov, L., A. Karimzadeh, N. Ueno and M. B. Lodoen (2013) Human innate immunity to Toxoplasma gondii is mediated by host caspase-1 and ASC and parasite GRA15. MBio, 4: e00255-13.

Hakimi, M. A., P. Olias and L. D. Sibley (2017) Toxoplasma Effectors Targeting Host Signaling and Transcription. Clinical microbiology reviews, 30: 615-645.

Hunter, C. A. and L. D. Sibley (2012) Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nature Reviews Microbiology, 10: 766-778.

Jensen, K. D., K. Hu, R. J. Whitmarsh, M. A. Hassan, L. Julien, D. Lu, L. Chen, C. A. Hunter and J. P. Saeij (2013) Toxoplasma gondii rhoptry 16 kinase promotes host resistance to oral infection and intestinal inflammation only in the context of the dense granule protein GRA15. Infection and Immunity, 81: 2156-2167.

Jensen, K. D., Y. Wang, E. D. Wojno, A. J. Shastri, K. Hu, L. Cornel, E. Boedec, Y. C. Ong, Y. H. Chien, C. A. Hunter, J. C. Boothroyd and J. P. Saeij (2011) Toxoplasma polymorphic effectors determine macrophage polarization and intestinal inflammation. Cell Host and Microbe, 9: 472-483.

Lee, Y., M. Sasai, J. S. Ma, N. Sakaguchi, J. Ohshima, H. Bando, T. Saitoh, S. Akira and M. Yamamoto (2015) p62 Plays a Specific Role in Interferon-gamma-Induced Presentation of a Toxoplasma Vacuolar Antigen. Cell reports, 13: 223-233.

Ma, J. S., M. Sasai, J. Ohshima, Y. Lee, H. Bando, K. Takeda and M. Yamamoto (2014) Selective and strain-specific NFAT4 activation by the Toxoplasma gondii polymorphic dense granule protein GRA6. The Journal of experimental medicine, 211: 2013-2032.

MacMicking, J. D. (2012) Interferon-inducible effector mechanisms in cell-autonomous immunity. Nature reviews Immunology, 12: 367- 382.

Montoya, J. G. and J. S. Remington (2008) Management of Toxoplasma gondii infection during pregnancy. Clinical Infectious Diseases, 47: 554-566.

Ohshima, J., M. Sasai, J. Liu, K. Yamashita, J. S. Ma, Y. Lee, H. Bando, J. C. Howard, S. Ebisu, M. Hayashi, K. Takeda, D. M. Standley, E. M. Frickel and M. Yamamoto (2015) RabGDIalpha is a negative regulator of interferon-gamma-inducible GTPase-dependent cell-autonomous immunity to Toxoplasma gondii. Proceedings of the National Academy of Sciences of the United States of America, 112: E4581-4590.

Ohshima, J., Y. Lee, M. Sasai, T. Saitoh, J. Su Ma, N. Kamiyama, Y. Matsuura, S. Pann-Ghill, M. Hayashi, S. Ebisu, K. Takeda, S. Akira and M. Yamamoto (2014) Role of mouse and human autophagy proteins in IFN-gamma-induced cell-autonomous responses against Toxoplasma gondii. Journal of Immunology, 192: 3328-3335.

Olias, P., R. D. Etheridge, Y. Zhang, M. J. Holtzman and L. D. Sibley (2016) Toxoplasma Effector Recruits the Mi-2/NuRD Complex to Repress STAT1 Transcription and Block IFN-gamma-Dependent Gene Expression. Cell Host and Microbe, 20: 72-82.

Reese, M. L., G. M. Zeiner, J. P. Saeij, J. C. Boothroyd and J. P. Boyle (2011) Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence. Proceedings of the National Academy of Sciences of the United States of America, 108: 9625-9630.

Rosowski, E. E., D. Lu, L. Julien, L. Rodda, R. A. Gaiser, K. D. Jensen and J. P. Saeij (2011) Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein. Journal of Experimental Medicine, 208: 195-212.

Rosowski, E. E., Q. P. Nguyen, A. Camejo, E. Spooner and J. P. Saeij (2014) Toxoplasma gondii Inhibits gamma interferon (IFN-gamma)- and IFN-beta-induced host cell STAT1 transcriptional activity by increasing the association of STAT1 with DNA. Infection and Immunity, 82: 706-719.

Rosowski, E. E. and J. P. Saeij (2012) Toxoplasma gondii clonal strains all inhibit STAT1 transcriptional activity but polymorphic effectors differentially modulate IFNgamma induced gene expression and STAT1 phosphorylation. PLoS One, 7: e51448.

Selleck E. M., R. C. Orchard, K. G. Lassen, W. L. Beatty, R. J. Xavier, B. Levine, H. W. Virgin and L. D. Sibley (2015) A Noncanonical Autophagy Pathway Restricts Toxoplasma gondii Growth in a Strain-Specific Manner in IFN-gamma-Activated Human Cells. MBio, 6: e01157-01115.

Sotero-Esteva, W. D., D. Wolfe, M. Ferris and M. W. Taylor (2000) An indoleamine 2,3-dioxygenase-negative mutant is defective in stat1 DNA binding: differential response to IFN-gamma and IFN-alpha. Journal of Interferon and Cytokine Research, 20: 623-632.

Steinfeldt, T., S. Konen-Waisman, L. Tong, N. Pawlowski, T. Lamkemeyer, L. D. Sibley, J. P. Hunn and J. C. Howard (2010) Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent Toxoplasma gondii. PLoS biology, 8: e1000576.

Suzuki, Y., M. A. Orellana, R. D. Schreiber and J. S. Remington (1988) Interferon-gamma: the major mediator of resistance against Toxoplasma gondii. Science, 240: 516-518.

Taylor, G. A., C. G. Feng and A. Sher (2007) Control of IFN-gamma- mediated host resistance to intracellular pathogens by immunity- related GTPases (p47 GTPases). Microbes and Infection, 9: 1644- 1651.

Yamamoto, M., M. Okuyama, J. Ma, T. Kimura, N. Kamiyama, H. Saiga, J. Ohshima, M. Sasai, H. Kayama, T. Okamoto, D. C. S. Huang, D. Soldati-Favre, K. Horie, J. Takeda and K. Takeda (2012) A cluster of interferon-γ-inducible p65 GTPases plays a critical role in host defense against Toxoplasma gondii. Immunity, 37: 302- 313.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る