リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Potential-modulated electrochemiluminescence of a tris(2,2′-bipyridine) ruthenium(II) / lidocaine system under 430 kHz ultrasound irradiation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Potential-modulated electrochemiluminescence of a tris(2,2′-bipyridine) ruthenium(II) / lidocaine system under 430 kHz ultrasound irradiation

Takahashi, Fumiki Shimizu, Ryo Nakazawa, Tomoyuki Jin, Jiye 信州大学 DOI:10.1016/j.ultsonch.2019.104947

2021.12.09

概要

The electrochemiluminescence (ECL) of tris(2,2′-bipyridine)ruthenium(II) (Ru(bpy) 2+) in the presence of li- docaine was investigated under ultrasound (US) irradiation. The sonoelectrochemical experiments are conducted by indirect irradiation of ultrasound with a piezoelectric transducer operating at 430 kHz. In a supporting electrolyte at pH 11, the Ru(bpy)32+/lidocaine system gave weak ECL peaks around +1.2 V and +1.45 V, respectively. The ECL signal at +1.2 V was attributed to redox reactions of the oxidative intermediates of Ru (bpy) 2+ and lidocaine, while the signal at +1.45 V was assumed to be caused by an advanced oxidation process due to the generation of hydroxyl radicals (%OH) at the electrode surface. In this study, the potential modulation approach is employed in the study of ECL process upon US irradiations because it can suppress the noise components from sonoluminescence effectly and improve the resolution of ECL-potential profiles. It is found ECL signals were greatly enhanced upon US irradiation at the output power of 30 W, however, the relative intensity of ECL signal at +1.2 V was larger than that obtained with a rotating disk electrode even though the mass transport effect is equilvalent. The experiment results suggest that the chemical effect (i.e., generation of %OH) by 430 kHz US becomes remarkable in the electrochemical process. Detailed ECL reaction routes under US are proposed in this study.

この論文で使われている画像

参考文献

[1] M.D.L. de Castro, F. Priego-Capote, Ultrasound-assisted preparation of liquid sam- ples, Talanta 72 (2007) 321–334.

[2] M.S. Firouz, A. Farahmandi, S. Hosseinpour, Recent advances in ultrasound appli- cation as a novel technique in analysis, processing and quality control of fruits, juices and dairy products industries: a review, Ultrason. Sonochem. 57 (2019) 73–88.

[3] J. Wang, Z.J. Wang, C.L.Z. Vieira, J.M. Wolfson, G.Y. Pingtian, S.D. Huang, Review on the treatment of organic pollutants in water by ultrasonic technology, Ultrason. Sonochem. 55 (2019) 273–278.

[4] F. Priego-Capote, L. de Castro, Analytical uses of ultrasound - I. Sample preparation, Trac-Trends, Anal. Chem. 23 (2004) 644–653.

[5] Bruno G. Pollet, Power Ultrasound in Electrochemistry: From Versatile Laboratory Tool to Engineering, Solution, John Wiley & Sons Ltd, 2012.

[6] B.K. Tiwari, Ultrasound: a clean, green extraction technology, Trac-Trends Anal. Chem. 71 (2015) 100–109.

[7] M.H. Isram, M.T.Y. Paul, O.S. Burheim, B.G. Pollet, Recent developments in the sonoelectrochemical synthesis of nanomaterials, Ultrason. Sonochem. 59 (2019) 104711.

[8] F. Takahashi, K. Kobayashi, J.Y. Jin, Development and application of ultrasound- assisted microextraction to analysis of fenitrothion in environmental samples, Anal. Bioanal. Chem. 408 (2016) 7473–7479.

[9] F. Takahashi, M. Kobayashi, A. Kobayashi, K. Kobayashi, H. Asamura, High-fre- quency heating extraction method for sensitive drug analysis in human nails, Molecules 23 (2018) 3231.

[10] C.E. Banks, R.G. Compton, Ultrasonically enhanced voltammetric analysis and ap- plications: an overview, Electroanalysis 15 (2003) 329–346.

[11] B.G. Pollet, Does power ultrasound affect heterogeneous electron transfer kinetics? Ultrason. Sonochem. 52 (2019) 6–12.

[12] M.E. Hyde, R.G. Compton, Theoretical and experimental aspects of electrodeposi- tion under hydrodynamic conditions, J. Electroanal. Chem. 581 (2005) 224–230.

[13] B.R. Sljukic, C.E. Banks, R.G. Compton, Sonoelectroanalysis - application to lead determination, Hemijska Industrija 63 (2009) 529–534.

[14] T.K. Sari, J.Y. Jin, R. Zein, E. Munaf, Anodic stripping voltammetry for the de- termination of trace Cr(VI) with graphite/styrene-acrylonitrile copolymer compo- site electrodes, Anal. Sci. 33 (2017) 801–806.

[15] L.X. Zuo, L.P. Jiang, E.S. Abdel-Halim, J.J. Zhu, Sonochemical preparation of stable porous MnO2 and its application as an efficient electrocatalyst for oxygen reduction reaction, Ultrason. Sonochem. 35 (2017) 219–225.

[16] H.P. Huang, Y.F. Yue, Z.Z. Chen, Y.N. Chen, S.Z. Wu, J.S. Liao, S.J. Liu, H.R. Wen, Electrochemical sensor based on a nanocomposite prepared from TmPO4 and gra- phene oxide for simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid, Microchim. Acta 186 (2019) 189.

[17] A.J. Bard, Electrogenerated Chemiluminescence, Dekker, New York, US, 2004.

[18] A.W. Knight, A review of recent trends in analytical applications of electro- generated chemiluminescence, Trac-Trends Anal. Chem. 18 (1999) 47–62.

[19] X.B. Yin, S.J. Dong, E. Wang, Analytical applications of the electro- chemiluminescence of tris (2.2 '-bipyridyl) ruthenium and its derivatives, Trac- Trends Anal. Chem. 23 (2004) 432–441.

[20] F. Takahashi, J. Jin, Electrochemiluminescence of tris(2,2'-bipyridine)ruthenium with various co-reactants under ultrasound irradiation, Electroanalysis 20 (2008) 1581–1586.

[21] J. Jin, H. Kumeta, F. Takahashi, Y. Asakura, Sensitive detection of hydroxyl radical production in ultrasonic field with an electrochemiluminescence optical sensor, Chem. Lett. 38 (2009) 292–293.

[22] K.S. Suslick, Sonochemistry, Science 247 (1990) 1439–1445.

[23] J. Park, J. Church, Y. Son, K.T. Kim, W.H. Lee, Recent advances in ultrasonic treatment: challenges and field applications for controlling harmful algal blooms (HABs), Ultrason. Sonochem. 38 (2017) 326–334.

[24] M. Matsuoka, F. Takahashi, Y. Asakura, J. Jin, Sonochemiluminescence of luci- genin: evidence of superoxide radical anion formation by ultrasonic irradiation, Jpn. J. Appl. Phys. 55 (2016) 07KB01-5.

[25] B. Avvaru, N. Venkateswaran, P. Uppara, S.B. Iyengar, S.S. Katti, Current knowl- edge and potential applications of cavitation technologies for the petroleum in- dustry, Ultrason. Sonochem. 42 (2018) 493–507.

[26] H. Sies, Strategies of antioxidant defense, Eur. J. Biochem. 215 (1993) 213–219.

[27] W.D. Cao, J.F. Liu, H.B. Qiu, X.R. Yang, E.K. Wang, Simultaneous determination of tramadol and lidocaine in urine by end-column capillary electrophoresis with electrochemiluminescence detection, Electroanalysis 14 (2002) 1571–1576.

[28] S.-N. Ding, J.-J. Xu, W.-J. Zhang, H.-Y. Chen, Tris(2,2 '-bipyridyl)ruthenium(II)- zirconia-nafion composite modified electrode applied as solid-state electro- chemiluminescence detector on electrophoretic microchip for detection of phar- maceuticals of tramadol, lidocaine and ofloxacin, Talanta 70 (2006) 572–577.

[29] H.Y. Jia, L.L. Kerr, Kinetics of drug release from drug carrier of polymer/TiO2 nanotubes composite-ph dependent study, J. Appl. Polym. Sci. 132 (2015) 41570.

[30] A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, Wiley, U.S., 2001.

[31] Y. Asakura, T. Nishida, T. Matsuoka, S. Koda, Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors, Ultrason. Sonochem. 15 (2008) 244–250.

[32] R. Singla, F. Grieser, M. Ashokkumar, Sonochemical degradation of martius yellow dye in aqueous solution, Ultrason. Sonochem. 16 (2009) 28–34.

[33] P.K. Choi, K. Takumori, H.B. Lee, Na emission and bubble instability in single- bubble sonoluminescence, Ultrason. Sonochem. 38 (2017) 154–160.

[34] H.B. Lee, P.K. Choi, Water-molecular emission from cavitation bubbles affected by electric fields, Ultrason. Sonochem. 42 (2018) 551–555.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る