リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Branched-chain amino acids and L-carnitine attenuate lipotoxic hepatocellular damage in rat cirrhotic liver」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Branched-chain amino acids and L-carnitine attenuate lipotoxic hepatocellular damage in rat cirrhotic liver

Tamai Yasuyuki 三重大学

2021.11.16

概要

Branched-chain amino acids (BCAA) reverse malnutrition and L-carnitine leads to the reduction of hyperammonemia and muscle cramps in cirrhotic patients. BCAA and L-carnitine are involved in glucose and fatty acid metabolism, however their mechanistic activity in cirrhotic liver is not fully understood. We aim to define the molecular mechanism(s) and combined effects of BCAA and L-carnitine using a cirrhotic rat model. Rats were administered carbon tetrachloride for 10 weeks to induce cirrhosis. During the last 6 weeks of administration, cirrhotic rats received BCAA, L-carnitine or a combination of BCAA and L-carnitine daily via gavage. We found that BCAA and L-carnitine treatments significantly improved hepatocellular function associated with reduced triglyceride level, lipid deposition and adipophilin expression, in cirrhotic liver. Lipidomic analysis revealed dynamic changes in hepatic lipid composition by BCAA and L-carnitine administrations. BCAA and L-carnitine globally increased molecular species of phosphatidylcholine. Liver triacylglycerol and phosphatidylcholine hydroperoxides were significantly decreased by BCAA and L-carnitine. Furthermore, serum and liver ATP levels were significantly increased in all treatments, which were attributed to the elevation of mature cardiolipins and mitochondrial component gene expressions. Finally, BCAA and L-carnitine dramatically reduced hepatocellular death. In conclusion, BCAA and L-carnitine treatments attenuate hepatocellular damage through the reduction of lipid peroxides and the overall maintenance of mitochondrial integrity within the cirrhotic liver. These effectiveness of BCAA and L-carnitine support the therapeutic strategies in human chronic liver diseases.

参考文献

[1] S.K. Natarajan, S. Thomas, P. Ramamoorthy, J. Basivireddy, A.B. Pulimood,

A. Ramachandran, K.A. Balasubramanian, Oxidative stress in the development of

liver cirrhosis: a comparison of two different experimental models,

J. Gastroenterol. Hepatol. 21 (6) (2006) 947–957.

[2] X. Pan, F.N. Hussain, J. Iqbal, M.H. Feuerman, M.M. Hussain, Inhibiting

proteasomal degradation of microsomal triglyceride transfer protein prevents

CCl4-induced steatosis, J. Biol. Chem. 282 (23) (2007) 17078–17089.

[3] S. Kawasaki, H. Imamura, Y. Bandai, K. Sanjo, Y. Idezuki, Direct evidence for the

intact hepatocyte theory in patients with liver cirrhosis, Gastroenterology 102 (4 Pt

1) (1992) 1351–1355.

[4] J.N. van der Veen, J.P. Kennelly, S. Wan, J.E. Vance, D.E. Vance, R.L. Jacobs, The

critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in

health and disease, Biochim. Biophys. Acta Biomembr. 1859 (9 Pt B) (2017)

1558–1572.

[5] H. Ono, H. Shimano, H. Katagiri, N. Yahagi, H. Sakoda, Y. Onishi, M. Anai,

T. Ogihara, M. Fujishiro, A.Y. Viana, Y. Fukushima, M. Abe, N. Shojima,

M. Kikuchi, N. Yamada, Y. Oka, T. Asano, Hepatic Akt activation induces marked

hypoglycemia, hepatomegaly, and hypertriglyceridemia with sterol regulatory

element binding protein involvement, Diabetes 52 (12) (2003) 2905–2913.

10

Y. Tamai et al.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Biomedicine & Pharmacotherapy 135 (2021) 111181

[40] T.H. Tseng, W.L. Lin, C.K. Chang, K.C. Lee, S.Y. Tung, H.C. Kuo, Protective effects

of Morus root extract (MRE) against lipopolysaccharide-activated RAW264.7 cells

and CCl4-induced mouse hepatic damage, Cell. Physiol. Biochem. 51 (3) (2018)

1376–1388.

[41] R. Lomonaco, C. Ortiz-Lopez, B. Orsak, A. Webb, J. Hardies, C. Darland, J. Finch,

A. Gastaldelli, S. Harrison, F. Tio, K. Cusi, Effect of adipose tissue insulin resistance

on metabolic parameters and liver histology in obese patients with nonalcoholic

fatty liver disease, Hepatology 55 (5) (2012) 1389–1397.

[42] P. Angulo, Nonalcoholic fatty liver disease, N. Engl. J. Med. 346 (16) (2002)

1221–1231.

[43] Y. Fu, S. Silverstein, J.N. McCutcheon, M. Dyba, R.G. Nath, M. Aggarwal, H. Coia,

A. Bai, J. Pan, J. Jiang, B. Kallakury, H. Wang, Y.W. Zhang, G. Giaccone, A.R. He, F.

L. Chung, An endogenous DNA adduct as a prognostic biomarker for

hepatocarcinogenesis and its prevention by Theaphenon E in mice, Hepatology 67

(1) (2018) 159–170.

[44] B.P. Mihalas, G.N. De Iuliis, K.A. Redgrove, E.A. McLaughlin, B. Nixon, The lipid

peroxidation product 4-hydroxynonenal contributes to oxidative stress-mediated

deterioration of the ageing oocyte, Sci. Rep. 7 (1) (2017) 6247.

[45] V.N. Bochkov, O.V. Oskolkova, K.G. Birukov, A.L. Levonen, C.J. Binder, J. Stockl,

Generation and biological activities of oxidized phospholipids, Antioxid. Redox

Signal. 12 (8) (2010) 1009–1059.

[46] J. Adachi, S. Matsushita, N. Yoshioka, R. Funae, T. Fujita, S. Higuchi, Y. Ueno,

Plasma phosphatidylcholine hydroperoxide as a new marker of oxidative stress in

alcoholic patients, J. Lipid Res. 45 (5) (2004) 967–971.

[47] J. Adachi, N. Yoshioka, R. Funae, Y. Nagasaki, T. Naiot, Y. Uwno,

Phosphatidylcholine hydroperoxide levels in human plasma are lower than

previously reported, Lipids 39 (2004) 891–896.

[48] L.D. Renner, D.B. Weibel, Cardiolipin microdomains localize to negatively curved

regions of Escherichia coli membranes, Proc. Natl. Acad. Sci. U. S. A. 108 (15)

(2011) 6264–6269.

[49] S.M. Claypool, Y. Oktay, P. Boontheung, J.A. Loo, C.M. Koehler, Cardiolipin

defines the interactome of the major ADP/ATP carrier protein of the mitochondrial

inner membrane, J. Cell Biol. 182 (5) (2008) 937–950.

[50] K. Kashfi, R.L. Mynatt, E.A. Park, G.A. Cook, Membrane microenvironment

regulation of carnitine palmitoyltranferases I and II, Biochem. Soc. Trans. 39 (3)

(2011) 833–837.

[51] U. Schlattner, M. Tokarska-Schlattner, S. Ramirez, A. Bruckner, L. Kay, C. Polge, R.

F. Epand, R.M. Lee, M.L. Lacombe, R.M. Epand, Mitochondrial kinases and their

molecular interaction with cardiolipin, Biochim. Biophys. Acta 1788 (10) (2009)

2032–2047.

[52] K. Salic, E. Gart, F. Seidel, L. Verschuren, M. Caspers, W. van Duyvenvoorde, K.

E. Wong, J. Keijer, I. Bobeldijk-Pastorova, P.Y. Wielinga, R. Kleemann, Combined

treatment with L-carnitine and nicotinamide riboside improves hepatic metabolism

and attenuates obesity and liver steatosis, Int. J. Mol. Sci. 20 (18) (2019).

[53] L.G. Boros, D.P. D’Agostino, H.E. Katz, J.P. Roth, E.J. Meuillet, G. Somlyai,

Submolecular regulation of cell transformation by deuterium depleting water

exchange reactions in the tricarboxylic acid substrate cycle, Med. Hypotheses 87

(2016) 69–74.

[54] L.G. Boros, T.Q. Collins, G. Somlyai, What to eat or what not to eat-that is still the

question, Neuro Oncol. 19 (4) (2017) 595–596.

[55] A. Eguchi, E. Kostallari, A.E. Feldstein, V.H. Shah, Extracellular vesicles, the liquid

biopsy of the future, J. Hepatol. 70 (6) (2019) 1292–1294.

recommendation from the working group for creation of sarcopenia assessment

criteria, Hepatol. Res. 46 (10) (2016) 951–963.

H. Hidaka, T. Nakazawa, S. Kutsukake, Y. Yamazaki, I. Aoki, S. Nakano, N. Asaba,

T. Minamino, J. Takada, Y. Tanaka, Y. Okuwaki, M. Watanabe, A. Shibuya,

W. Koizumi, The efficacy of nocturnal administration of branched-chain amino

acid granules to improve quality of life in patients with cirrhosis, J. Gastroenterol.

48 (2) (2013) 269–276.

M. Iwasa, Y. Kobayashi, R. Mifuji-Moroka, N. Hara, H. Miyachi, R. Sugimoto,

H. Tanaka, N. Fujita, E.C. Gabazza, Y. Takei, Branched-chain amino acid

supplementation reduces oxidative stress and prolongs survival in rats with

advanced liver cirrhosis, PLoS One 8 (7) (2013), e70309.

V. Tanphaichitr, P. Leelahagul, Carnitine metabolism and human carnitine

deficiency, Nutrition 9 (3) (1993) 246–254.

S. Krahenbuhl, Carnitine metabolism in chronic liver disease, Life Sci. 59 (19)

(1996) 1579–1599.

Q. Jiang, G. Jiang, K.Q. Shi, H. Cai, Y.X. Wang, M.H. Zheng, Oral acetyl-L-carnitine

treatment in hepatic encephalopathy: view of evidence-based medicine, Ann.

Hepatol. 12 (5) (2013) 803–809.

H. Vidot, S. Carey, M. Allman-Farinelli, N. Shackel, Systematic review: the

treatment of muscle cramps in patients with cirrhosis, Aliment. Pharmacol. Ther.

40 (3) (2014) 221–232.

M. Iwasa, R. Sugimoto, T. Ishihara, N. Sekoguchi-Fujikawa, K. Yoshikawa,

R. Mifuji-Moroka, H. Tanaka, Y. Kobayashi, H. Hasegawa, Y. Takei, Usefulness of

Levocarnitine and/or Branched-Chain Amino Acids during Invasive Treatment for

Hepatocellular Carcinoma, J. Nutr. Sci. Vitaminol. (Tokyo) 61 (6) (2015) 433–440.

E.G. Bligh, W.J. Dyer, A rapid method of total lipid extraction and purufication,

Can. J. Biochem. Physiol. 37 (1959) 911–917.

S.P. Hui, H. Chiba, S. Jin, H. Nagasaka, T. Kurosawa, Analyses for

phosphatidylcholine hydroperoxides by LC/MS, J. Chromatogr. B Analyt. Technol.

Biomed. Life Sci. 878 (20) (2010) 1677–1682.

Z. Chen, Y. Wu, Y.S. Ma, Y. Kobayashi, Y.Y. Zhao, Y. Miura, H. Chiba, S.P. Hui,

Profiling of cardiolipins and their hydroperoxides in HepG2 cells by LC/MS, Anal.

Bioanal. Chem. 409 (24) (2017) 5735–5745.

T. Kind, K.H. Liu, D.Y. Lee, B. DeFelice, J.K. Meissen, O. Fiehn, LipidBlast in silico

tandem mass spectrometry database for lipid identification, Nat. Methods 10

(2014) 755–758.

Z. Chen, Q. Liang, Y. Wu, Z. Gao, S. Kobayashi, J. Patel, C. Li, F. Cai, Y. Zhang,

C. Liang, H. Chiba, S.P. Hui, Comprehensive lipidomic profiling in serum and

multiple tissues from a mouse model of diabetes, Metabolomics 16 (11) (2020)

115.

S. Babicki, D. Arndt, A. Marcu, Y. Liang, J.R. Grant, A. Maciejewski, D.S. Wishart,

Heatmapper: web-enabled heat mapping for all, Nucleic Acids Res. 44 (W1) (2016)

W147–53.

H. Shimano, R. Sato, SREBP-regulated lipid metabolism: convergent physiology divergent pathophysiology, Nat. Rev. Endocrinol. 13 (12) (2017) 710–730.

T.A. Shaw, R. Singaravelu, M.H. Powdrill, J. Nhan, N. Ahmed, D. Ozcelik, J.

P. Pezacki, MicroRNA-124 regulates fatty acid and triglyceride homeostasis,

iScience 10 (2018) 149–157.

E. Smirnova, D.L. Shurland, S.N. Ryazantsev, A.M. van der Bliek, A human

dynamin-related protein controls the distribution of mitochondria, J. Cell Biol. 143

(2) (1998) 351–358.

11

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る