リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Biomonitoring method for neonicotinoid insecticides in urine of non-toilet-trained children using LC-MS/MS」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Biomonitoring method for neonicotinoid insecticides in urine of non-toilet-trained children using LC-MS/MS

Ueyama, Jun Aoi, Arisa Ueda, Yuko Oya, Naoko Sugiura, Yuka Ito, Yuki Ebara, Takeshi Kamijima, Michihiro 名古屋大学

2020

概要

There is a growing appreciation of the importance of determining chemical exposure levels in early childhood, as well as in embryonic and foetal life, which are now widely believed to be essential for gaining insight into potential health risks associated with these chemicals. To facilitate the assessment of exposure to neonicotinoid insecticides (NEOs) in non-toilet-trained children, a new method using disposable diapers (nappies) was developed for the simultaneous determination of the NEOs acetamiprid and its metabolite N-desmethylacetamiprid, clothianidin, dinotefuran, imidacloprid, thiacloprid, and thiamethoxam (NEO biomarkers). The urine absorbed in disposable diapers was extracted with acetone (diaper urine) and was cleaned using a solid-phase extraction column, before analysis with LC-MS/MS. The absolute recoveries of NEO biomarkers were 19–50%. Good results were observed for the linearity of the matrix-matched calibration curves (r^2 = 0.983–0.996; concentration range LOQ-20 µg L^−1) and the precision of intra-day (% relative standard deviation (%RSD): 3.3–12.7%) and inter-day (%RSD: 4.3–19.5%) analyses. The lowest and highest limits of detection of the developed method were 0.07 µg L^−1 for acetamiprid and 0.75 µg L^−1 for clothianidin. The developed method was applied for the evaluation of fifty diapered three-year-old children in Japan. Importantly, the study revealed relatively high detection rates for dinotefuran and N-desmethylacetamiprid; 84% and 78% respectively. The highest geometric mean of dinotefuran urinary concentration was 2.01 µg L^−1. Thus, a method for determining NEO biomarkers in urine extracted from disposable diapers was established. This is the first report on the simultaneous quantitative analysis of NEO biomarkers of diaper-absorbed urine samples.

この論文で使われている画像

参考文献

Bearer CF. 1998. Biomarkers in pediatric environmental health: A crosscutting issue.

Environ Health Perspect.106 Suppl 3:813-816.

Bouchard MF, Chevrier J, Harley KG, Kogut K, Vedar M, Calderon N, Trujillo C,

Johnson C, Bradman A, Barr DB, Eskenazi B. 2011. Prenatal exposure to

organophosphate pesticides and IQ in 7-year-old children. Environ Health Perspect.

119:1189-1195.

Bouchard

MF,

Bellinger

DC,

Attention-deficit/hyperactivity

Wright

disorder

RO,

and

Weisskopf

urinary

MG.

metabolites

2010.

of

organophosphate pesticides. Pediatrics. 125:1270-1277.

Chen M, Tao L, McLean J, Lu C. 2014. Quantitative analysis of neonicotinoid

insecticide residues in foods: implication for dietary exposures. J Agric Food Chem.

62:6082-6090.

Cimino AM, Boyles AL, Thayer KA, Perry MJ. 2017. Effects of Neonicotinoid

Pesticide Exposure on Human Health: A Systematic Review. Environ Health

Perspect. 125:155-162.

Claudio L, Kwa WC, Russell AL, Wallinga D. 2000. Testing methods for

developmental neurotoxicity of environmental chemicals. Toxicol Appl Pharmacol.

164:1-14.

Costa LG, Giordano G, Guizzetti M, Vitalone A. 2008. Neurotoxicity of pesticides: a

brief review. Front Biosci. 13:1240-1249.

Davies D. 2004. Bag urine specimens still not appropriate in diagnosing urinary tract

infections in infants. Can J Infect Dis Med Microbiol. 15:210-211.

Ford KA, Casida JE. 2006a. Chloropyridinyl neonicotinoid insecticides: diverse

- 20 -

molecular substituents contribute to facile metabolism in mice. Chem Res Toxicol.

19: 944-951.

Ford KA, Casida JE. 2006b. Unique and common metabolites of thiamethoxam,

clothianidin, and dinotefuran in mice. Chem Res Toxicol. 19: 1549-1556.

González-Alzaga B, Lacasaña M, Aguilar-Garduño C, Rodríguez-Barranco M,

Ballester F, Rebagliato M, Hernández AF. 2014. A systematic review of

neurodevelopmental effects of prenatal and postnatal organophosphate pesticide

exposure. Toxicol Lett. 230:104-121.

Harada KH, Tanaka K, Sakamoto H, Imanaka M, Niisoe T, Hitomi T, Kobayashi H,

Okuda H, Inoue S, Kusakawa K, Oshima M, Watanabe K, Yasojima M, Takasuga T,

Koizumi A. 2016. Biological Monitoring of Human Exposure to Neonicotinoids

Using Urine Samples, and Neonicotinoid Excretion Kinetics. PLoS One.

11:e0146335.

Koureas M, Tsakalof A, Tsatsakis A, Hadjichristodoulou C. 2012. Systematic review of

biomonitoring studies to determine the association between exposure to

organophosphorus and pyrethroid insecticides and human health outcomes. Toxicol

Lett. 210:155–168.

Li P, Ann J, Akk G. 2011. Activation and modulation of human α4β2 nicotinic

acetylcholine receptors by the neonicotinoids clothianidin and imidacloprid. J

Neurosci Res. 89:1295-1301.

Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M, Sattelle DB. 2001.

Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors.

Trends Pharmacol Sci. 22:573-580.

National Institute for Environmental Studies, WebKis-Plus database [accessed 2019

- 21 -

Jun 26] http://w-chemdb.nies.go.jp

Osaka A, Ueyama J, Kondo T, Nomura H, Sugiura Y, Saito I, Nakane K, Takaishi A,

Ogi H, Wakusawa S, Ito Y, Kamijima M. 2016. Exposure characterization of three

major insecticide lines in urine of young children in Japan-neonicotinoids,

organophosphates, and pyrethroids. Environ Res. 147:89-96.

Oya N, Ito Y, Hioki K, Asai Y, Aoi A, Sugiura Y, Ueyama J, Oguri T, Kato S, Ebara T,

Kamijima M. 2017. Quantitative analysis of organophosphate insecticide

metabolites in urine extracted from disposable diapers of toddlers in Japan. Int J

Hyg Environ Health. 220:209-216.

Richardson JR, Fitsanakis V, Westerink RHS, Kanthasamy AG. 2019. Neurotoxicity of

pesticides. Acta Neuropathol. 138:343-362.

Saito S, Ueyama J, Kondo T, Saito I, Shibata E, Gotoh M, Nomura H, Wakusawa S,

Nakai K, Kamijima M. 2014. A non-invasive biomonitoring method for assessing

levels of urinary pyrethroid metabolites in diapered children by gas

chromatography-mass spectrometry. J Expo Sci Environ Epidemiol. 24:200-207.

Stewart SD, Lorenz GM, Catchot AL, Gore J, Cook D, Skinner J, Mueller TC, Johnson

DR, Zawislak J, Barber J. 2014. Potential exposure of pollinators to neonicotinoid

insecticides from the use of insecticide seed treatments in the Mid-Southern United

States. Environ Sci Technol. 48:9762-9769.

Stone WW, Gilliom RJ, Ryberg KR. 2014. Pesticides in U.S. streams and rivers:

Occurrence and trends during 1992−2011. Environ Sci Technol. 48:11025-11030.

Tilson HA. 1998. Developmental neurotoxicology of endocrine disrupters and

pesticides: Identification of information gaps and research needs. Environ Health

Perspect.106 Suppl 3:807-811.

- 22 -

Tomizawa M, Casida JE. 2000. Imidacloprid, thiacloprid, and their imine derivatives

up-regulate the alpha 4 beta 2 nicotinic acetylcholine receptor in M10 cells. Toxicol

Appl Pharmacol. 169:114-120.

Tomizawa M, Casida JE. 2003. Selective toxicity of neonicotinoids attributable to

specificity of insect and mammalian nicotinic receptors. Ann Rev Entomol.

48:339-364.

Ueyama J, Nomura H, Kondo T, Saito I, Ito Y, Osaka A, Kamijima M. 2014. Biological

monitoring method for urinary neonicotinoid insecticides using LC-MS/MS and its

application to Japanese adults. J Occup Health. 56:461-468.

U.S. Food and Drug Administration. 2018. Guidance for Industry, Bioanalytical

Method Validation. [accessed, 2019 Jul 21] http://w-chemdb.nies.go.jp

Wagner-Schuman M, Richardson JR, Auinger P, Braun JM, Lanphear BP, Epstein JN,

Yolton K, Froehlich TE. 2015. Association of pyrethroid pesticide exposure with

attention-deficit/hyperactivity disorder in a nationally representative sample of U.S.

children. Environ Health. 14:44.

Watanabe M, Ueyama J, Ueno E, Ueda Y, Oda M, Umemura Y, Tanahashi T, Ikai Y,

Saito I. 2018. Effects of processing and cooking on the reduction of dinotefuran

concentration in Japanese rice samples. Food Addit Contam Part A Chem Anal

Control Expo Risk Assess. 23:1-8.

Weiss B. 2000. Vulnerability of children and the developing brain to neurotoxic

hazards. Environ Health Perspect. 108 Suppl 3:375-381.

Yusa V, Millet M, Coscolla C, Roca M. 2015. Analytical methods for human

biomonitoring of pesticides. A review. Anal Chim Acta. 891:15-31.

- 23 -

Figure legends

Figure 1. Chemical structures of the six NEOs and the acetamiprid metabolite

measured in this study.

Figure 2. Method for extraction of urine from a disposable diaper.

Figure 3. Analytical procedure for analysis of NEOs from diaper urine.

Figure 4. MRM chromatograms of NEOs extracted from urine absorbent, which

contained pooled human urine samples spiked with spiked with NEO standards: blank,

0.8 and 1.5 µg L-1 for acetamiprid and N-desmethylacetamiprid; blank, 1.5 and 3 µg

L-1 for thiacloprid; and blank, 0.6 and 1.3 µg L-1 for dinotefuran, clothianidin,

imidacloprid, and thiamethoxam. Y- and X-axis represent counts per second (cps) of

ions and retention time (min), respectively.

- 24 -

Table 1. Supplementary explanation of figure 1 (SPE column procedure at-a-glance).

SPE column procedure 1

(for dinoteturan)

SPE column procedure 2

(for the other neonicotinoids)

1. Condition Bond Elut PCX

-0.5 mL methanol and acetonitrile (1:1, v/v)

containing 5% NH 3

-0.5 mL H 2 O

2. Apply sample

3. Collect pass through liquid into a new glass

tube

3. Wash Bond Elute PCX cartridge with 0.5 ml

formic acid solution (2%)

4. Transfer liquid from 3. into ISOLUTE SLE+

4. Elute into a new glass tube with 0.5 ml

methanol

5. Wait 30 min

5. Dry with N 2 gas at 40oC

6. Elute with 20 ml ethyl acetate

6. Add 30 µl acetonitrile and 60 µl H 2 O

7. Dry with N 2 gas at 40oC

7. Mix well and sonicate 10 min

8. Add 30 µl acetonitrile and 60 µl H2O

9. Mix well and sonicate 10 min

Combine extracts from both procedures

Analyze by LC-MS/MS

Table 2. Compound-specific mass spectrometer settings.

compounds

fragmentor

(V)

collision energy

(eV)

precursor ion

(m/z)

product ion

(m/z)

retention time

(min)

acetamiprid

120

18

223

8.3

clothianidin

80

16

250

dinotefuran

90

203

imidacloprid

140

10

256

thiacloprid

160

22

253

thiamethoxam

70

292

N-desmethylacetamiprid

110

20

209

acetamiprid-d 6

100

24

229

126 (Q)

56 (C)

169 (Q)

131 (C)

129 (Q)

157 (C)

209 (Q)

175 (C)

126 (Q)

99 (C)

211 (Q)

132 (C)

126 (Q)

90 (C)

126 (Q)

62 (C)

Abbreviations: C, confirmation ion. Q, quantification ion. IS, internal standard.

8.0

6.3

8.1

8.8

7.4

7.9

8.3

40

35

33

43

3.0

42

48

25

41

36

35

37

0.6

60

65

36

51

51

51

71

1.3

51

58

45

49

47

49

73

2.5

64

62

47

53

51

53

60

1.3

88

96

72

76

83

86

113

5.0

94

66

66

83

80

92

101

0.8

5.5

11.2

8.2

10.1

7.6

8.7

6.9

1.5

6.4

10.9

12.4

7.2

6.7

12.7

3.3

3.0

3.9

12.1

10.7

5.3

5.8

8.4

5.3

0.8

5.1

11.4

17.8

11.6

11.3

13.8

7.1

1.5

5.3

15.4

14.8

14.1

11

14.8

6.8

3.0

5.5

13.5

17.1

13.9

11.9

19.5

4.7

5.7

5.6

9.8

18.1

16.7

4.3

14.9

6.2

0.6

0.1

13.6

-a

-a

7.9

0.9

15.8

1.3

13.4

0.7

4.4

0.7

0.9

10.0

6.9

3.0

4.0

13.8

9.2

7.6

2.9

12.1

4.5

10.0

12.1

15.0

16.4

3.3

7.8

14.5

2.4

slope

51.1

717.3

203.4

1015.8

76.7

168.0

83.6

intercept

0.01

0.05

0.43

0.39

0.24

0.07

0.13

r2

0.994

0.988

0.983

0.985

0.996

0.990

0.993

0.07

0.75

0.34

0.40

0.08

0.21

0.08

0.62

0.23

N-desmethyl

acetamiprid

19

thiacloprid

50

imidacloprid

40

dinotefuran

clothianidin

0.8

acetamiprid

concentration

(µg L-1 urine)

thiamethoxam

Table 3. Precision, recovery rate, linearity, LOD, and LOQ data of the analytical procedure.

absolute recovery rate (%)

all of the protocol

extraction rate of

neonicotinoids from diaper

by acetone

IS-corrected recovery rate (%)

all of the protocol

within-run

precision (%RSD)

between-run

precision (%RSD)

relative error (%)

calibration curve

(for environmental PYR exposure)

LOD (µg L-1) (S/N = 3)

0.22

2.25

1.02

1.21

0.23

LOQ (µg L-1) (S/N = 10)

Abbreviations: n, number of observations. RSD, relative standard deviation. LOD, limit of detection.

LOQ, limit of quantitation. Note: amore than 20%.

storage

time

acetamiprid

clothianidin

dinotefuran

imidacloprid

thiacloprid

thiamethoxam

0.8

6h

101

103

103

89

100

101

102

0.8

12 h

99

96

101

105

97

99

107

0.8

24 h

102

96

99

81

98

95

97

6h

103

106

100

101

101

93

103

12 h

106

103

109

120

102

97

104

24 h

105

99

103

101

98

94

99

0.8

109

102

92

109

106

88

103

100

104

94

105

102

93

107

0.8

2 weeks

101

106

97

102

94

96

97

0.8

1 month

101

94

102

93

101

103

92

2 weeks

103

98

95

94

98

103

99

1 month

101

97

104

97

93

100

91

N-desmethyl

acetamiprid

concentration

(µg L-1 urine)

Table 4. NEO stabilities in diaper and diaper urine.

stability in diapers at 37oC (%)

stability in extracted urine from diaper

three freeze-thaw cycles (%)

stability at -80 °C (%)

Abbreviation: n, number of observations.

Table 5. Detection rates, geometric means, and percentiles of urinary NEOs concentrations (µg L-1).

>LOD (%)a

Selected percentiles

GM

Max.

5th

25th

50th

75th

95th

acetamiprid

10

NCb

<LOD

<LOD

<LOD

<LOD

0.13

0.70

clothianidin

18

NCb

<LOD

<LOD

<LOD

<LOD

1.21

1.99

dinotefuran

84

2.01

<LOD

0.82

1.99

4.44

24.30

77.79

<LOD

<LOD

<LOD

<LOD

<LOD

<LOD

imidacloprid

NC

thiacloprid

NC

<LOD

<LOD

<LOD

<LOD

<LOD

0.08

thiamethoxam

24

NCb

<LOD

<LOD

<LOD

<LOD

0.62

1.10

N-desmethylacetamiprid

78

0.34

<LOD

0.08

0.26

1.53

3.09

14.56

Abbreviations: LOD, limit of detection. GM, geometric mean. NC, not calculated. <LOD, Lower than level of

limit of detection.

Notes: aPercent of detection frequency. bGM was not calculated due to low detection rate (less than 60% of

the samples).

Figure 1

-1-

Figure 2

-2-

Figure 3

-3-

Figure 4

-4-

...

参考文献をもっと見る