リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「微量環境汚染物質のモニタリングのための環境に配慮した革新的分析方法の開発」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

微量環境汚染物質のモニタリングのための環境に配慮した革新的分析方法の開発

アスマー, カマル, エル, ディーン, アーメド, モハメド, レズク, エルナグディ KAMALELDEEN AHMED MOHAMED REZK ELNAGDY, ASMAA 九州大学

2021.09.24

概要

The environmental problems arising from emerging contaminants (ECs) have recently grown causing adverse effects to animals and humans. However, monitoring and quantifying ECs is highly challenging for several reasons: (i) the bad impact of most of the developed analytical methods to the environment, and (ii) not all ECs are known until now.

The first challenge could be overcome by developing green and miniaturized analytical methods using novel green solvents for targeted monitoring and quantifying certain classes of ECs in water. I investigated the effectiveness of deep eutectic solvent, DES (tetrabutylammonium bromide: acetic acid) as a novel green disperser for the enrichment of steroids in water for the first time. Using DES as disperser attaining a higher recovery than the conventional ones. In addition, novel ternary DESs were synthesized by combining various fatty acids at different ratios and applied for the enrichment of different endocrine disruptors from river water. Adding a third component to classical two-component eutectic solvents allows to purposefully control density, melting point, and viscosity of the synthesized solvents. Ternary solvents provided excellent extraction efficiency (90.06–104.43%) compared with other binary ones. After that, I investigated the efficacy of different monoterpenes as relatively green bio-based solvents for the extraction of different NSAIDs from water. Results indicated that D-limonene could extract the hydrophobic compounds with higher %recovery compared with other halogenated solvents. Consequently, D-limonene was proven to be a good alternative to highly toxic solvents for hydrophobic NSAIDs extraction from water. Also, another bio-based solvent (diethyl carbonate, DEC) was tested for the microextraction of PAHs from water and beverage when combined with μ-QuEChERS procedure. DEC is considered as biodegradable (with octanol/water coefficient < 3, resulting in low potential of bioaccumulation), classified as a green solvent and considered as one of the recommended solvent alternatives. The method could enrich PAHs up to 166-folds. Finally, the greenness of all of these procedures was assessed, proving their excellent greenness with lower impact to both operator and environment. The four developed green methods would have other broader implications for detecting other contaminants from water applying the novel green solvents.

However, target analysis of ECs focuses mainly on monitoring a small number of ECs and by far do not cover the full range of ECs classes. Therefore, the second challenge, a comprehensive non-target screening is needed to identify additional ECs and assess new and emerging risks. Non-target analysis using high resolution accurate mass LC-QTOF/MS could achieve this objective. Hence, a novel UPLC/QTOF–MS-based non-targeted metabolomics, with MSn data acquired through data-independent acquisition (DIA) mode in combination with the multivariate analysis was developed to analyze the variation of contaminants between wastewater influents and effluents and thus assess the treatment efficiency. Dozens of compounds were tentatively identified and several of them were also confirmed with standard compounds. At last, a multivariate [unsupervised principal component analysis (PCA)] model was applied for discrimination analysis to assess the wastewater treatment efficiency, proving the high efficiency of water treatment for removing most of ECs.

In summary, our findings could overcome the main points of challenges in the analysis of ECs in the environment by developing both targeted and untargeted analytical methods. Target analysis provide sustainable tools for a cleaver combination of environment-friendly and cheap methodology. While applying non-target analysis provides a way for monitoring and identifying other unknown ECs with highlighting new and emerging risks of those contaminants. This, in terms, could provide valuable information for other scientists to study the occurrence, fate, transport, ecotoxicology and health impact assessment of ECs on the environment.

この論文で使われている画像

参考文献

1 T. W. Clarkson, Am. J. Clin. Nutr., 1995, 61.

2 J. Oltmanns, O. Licht, M. L. Bohlen, M. Schwarz, S. E. Escher, V. Silano, M. Macleod, H. P. J. M. Noteborn, G. E. N. Kass and C. Merten, Environ. Sci. Process. Impacts, 2020, 22, 105–120.

3 S. Sauvé and M. Desrosiers, Chem. Cent. J., 2014, 8, 15.

4 A. Gogoi, P. Mazumder, V. K. Tyagi, G. G. Tushara Chaminda, A. K. An and M. Kumar, Groundw. Sustain. Dev., 2018, 6, 169–180.

5 J. Wilkinson, P. S. Hooda, J. Barker, S. Barton and J. Swinden, Environ. Pollut., 2017, 231, 954–970.

6 B. Petrie, R. Barden and B. Kasprzyk-Hordern, Water Res., 2015, 72, 3–27.

7 J. Rivera-Utrilla, M. Sánchez-Polo, M. Á. Ferro-García, G. Prados-Joya and R. Ocampo-Pérez, Chemosphere, 2013, 93, 1268–1287.

8 D. J. Lapworth, N. Baran, M. E. Stuart and R. S. Ward, Environ. Pollut., 2012, 163, 287–303.

9 A. Pal, K. Y. H. Gin, A. Y. C. Lin and M. Reinhard, Sci. Total Environ., 2010, 408, 6062–6069.

10 D. D. Snow, D. A. Cassada, S. L. Bartelt–hunt, X. Li, Y. Zhang, Y. Zhang, Q. Yuan and J. B. Sallach, Water Environ. Res., 2012, 84, 764–785.

11 M. Farré, D. Barceló and D. Barceló, TrAC Trends Anal. Chem., 2013, 43, 240–253.

12 M. D. Hernando, M. Mezcua, A. R. Fernández-Alba and D. Barceló, in Talanta, Elsevier, 2006, vol. 69, pp. 334–342.

13 P. D. Hansen, TrAC - Trends Anal. Chem., 2007, 26, 1095–1099.

14 L. C. Pereira, A. O. de Souza, M. F. F. Bernardes, M. Pazin, M. J. Tasso, P. H. Pereira and D. J. Dorta, Environ. Sci. Pollut. Res., 2015, 22, 13800– 13823.

15 R. Lauretta, A. Sansone, M. Sansone, F. Romanelli and M. Appetecchia, Front. Endocrinol. (Lausanne)., 2019, 10.

16 S. D. Kim, J. Cho, I. S. Kim, B. J. Vanderford and S. A. Snyder, Water Res., 2007, 41, 1013–1021.

17 J. G. Vos, E. Dybing, H. A. Greim, O. Ladefoged, C. Lambré, J. V. Tarazona, I. Brandt and A. D. Vethaak, Crit. Rev. Toxicol., 2000, 30, 71– 133.

18 D. Barceló, TrAC - Trends Anal. Chem., 2003, 22, xiv–xvi.

19 J. Yang, Y. Zhao, M. Li, M. Du, X. Li and Y. Li, Int. J. Mol. Sci., 2019, 20, 2874.

20 Y. Abdulrazaq, A. Abdulsalam, A. Larayetan Rotimi, A. Aliyu Abdulbasit, O. Clifford, O. Abdulazeez Abdulsalam, O. Nayo Racheal, A. Akor Joy, F. Omale Victor, Z. Mbese Johannes, M. Bilal and S. Umar M, in Emerging Contaminants [Working Title], IntechOpen, 2020.

21 L. J. Bao, Y. L. Wei, Y. Yao, Q. Q. Ruan and E. Y. Zeng, Environ. Sci. Pollut. Res., 2015, 22, 1635–1643.

22 E. Eljarrat and D. Barceló, TrAC - Trends Anal. Chem., 2003, 22, 655–665.

23 M. L. Magnuson, C. A. Kelty, E. T. Urbansky, J. H. Owens, K. C. Kelty and T. F. Speth, J. Environ. Monit., 2002, 4, 102–108.

24 S. D. Richardson, 2009.

25 Y. Chen, Z. Guo, X. Wang and C. Qiu, J. Chromatogr. A, 2008, 1184, 191– 219.

26 M. Kostopoulou and A. Nikolaou, TrAC - Trends Anal. Chem., 2008, 27, 1023–1035.

27 R. M. Smith, J. Chromatogr. A, 2003, 1000, 3–27.

28 M. Tobiszewski, Anal. Methods, 2016, 8, 2993–2999.

29 S. Armenta, S. Garrigues and M. de la Guardia, TrAC Trends Anal. Chem., 2008, 27, 497–511.

30 S. Armenta, S. Garrigues and M. de la Guardia, TrAC - Trends Anal. Chem., 2015, 71, 2–8.

31 C. L. Arthur and J. Pawliszyn, Anal. Chem., 1990, 62, 2145–2148.

32 E. Baltussen, P. Sandra, F. David and C. Cramers, J. Microcolumn Sep., 1999, 11, 737–747.

33 A. Prieto, O. Zuloaga, A. Usobiaga, N. Etxebarria and L. A. Fernández, J. Chromatogr. A, 2007, 1174, 40–49.

34 A. Peñalver, E. Pocurull, F. Borrull and R. M. Marcé, J. Chromatogr. A, 2001, 922, 377–384.

35 H. Prosen and L. Zupančič-Kralj, TrAC Trends Anal. Chem., 1999, 18, 272–282.

36 A. R. M. Silva and J. M. F. Nogueira, Talanta, 2008, 74, 1498–1504.

37 H. L. Dasgupta and P. K., Anal. Chem., 1996, 68, 1817–1821.

38 L. Zhu, L. Zhu and H. K. Lee, J. Chromatogr. A, 2001, 924, 407–414.

39 X. L. Jiang and H. Kee, Anal. Chem., 2004, 76, 5591–5596.

40 M. Rezaee, Y. Assadi, M.-R. Milani Hosseini, E. Aghaee, F. Ahmadi and S. Berijani, J. Chromatogr. A, 2006, 1116, 1–9.

41 P. Liang, J. Xu and Q. Li, Anal. Chim. Acta, 2008, 609, 53–58.

42 S. Berijani, Y. Assadi, M. Anbia, M.-R. Milani Hosseini and E. Aghaee, J. Chromatogr. A, 2006, 1123, 1–9.

43 M. Rezaee, Y. Yamini, S. Shariati, A. Esrafili and M. Shamsipur, J. Chromatogr. A, 2009, 1216, 1511–1514.

44 M. R. Khalili Zanjani, Y. Yamini, S. Shariati and J. Å. Jönsson, Anal. Chim. Acta, 2007, 585, 286–293.

45 M.-I. Leong and S.-D. Huang, J. Chromatogr. A, 2008, 1211, 8–12.

46 H. Xu, Z. Ding, L. Lv, D. Song and Y.-Q. Feng, Anal. Chim. Acta, 2009, 636, 28–33.

47 J. H. C. and and S. J. Tavener, Org. Process Res. Dev., 2006, 11, 149–155.

48 C. Capello, U. Fischer and K. Hungerbühler, Green Chem., 2007, 9, 927–934.

49 A. Alabi, N. Caballero-Casero and S. Rubio, J. Chromatogr. A, 2014, 1336, 23–33.

50 J. Casado, R. Nescatelli, I. Rodríguez, M. Ramil, F. Marini and R. Cela, J. Chromatogr. A, 2014, 1336, 1–9.

51 F. R. Mansour and N. D. Danielson, Talanta, 2017, 170, 22–35.

52 Q. Zhang, K. De Oliveira Vigier, S. Royer and F. Jérôme, Chem. Soc. Rev., 2012, 41, 7108.

53 F. Pena-Pereira and J. Namieśnik, ChemSusChem, 2014, 7, 1784–1800.

54 E. L. Smith, A. P. Abbott and K. S. Ryder, Chem. Rev., 2014, 114, 11060– 11082.

55 R. Yusof, E. Abdulmalek, K. Sirat and M. B. A. Rahman, Molecules, 2014, 19, 8011.

56 A. Shishov, N. Volodina, D. Nechaeva, S. Gagarinova and A. Bulatov, RSC Adv., 2018, 8, 38146–38149.

57 P. Konieczka and J. Namieśnik, J. Chromatogr. A, 2010, 1217, 882–891.

58 A. Gałuszka, Z. M. Migaszewski, P. Konieczka and J. Namieśnik, TrAC Trends Anal. Chem., 2012, 37, 61–72.

59 J. Płotka-Wasylka, Talanta, 2018, 181, 204–209.

60 M. F. Sweeney, N. Hasan, A. M. Soto and C. Sonnenschein, Rev. Endocr. Metab. Disord., 2015, 16, 341–357.

61 M. K. Skinner, M. Manikkam and C. Guerrero-Bosagna, Reprod. Toxicol., 2011, 31, 337–343.

62 H. R. Andersen, A. M. Andersson, S. F. Arnold, H. Autrup, M. Barfoed, N. A. Beresford, P. Bjerregaard, L. B. Christiansen, B. Gissel, R. Hummel, E. B. Jørgensen, B. Korsgaard, R. Le Guevel, H. Leffers, J. McLachlan, A. Møller, J. B. Nielsen, N. Olea, A. Oles-Karasko, F. Pakdel, K. L. Pedersen, P. Perez, N. E. Skakkebœk, C. Sonnenschein, A. M. Soto, J. P. Sumpter, S. M. Thorpe and P. Grandjean, Environ. Health Perspect., 1999, 107, 89–108.

63 E. Diamanti-Kandarakis, J. P. Bourguignon, L. C. Giudice, R. Hauser, G. S. Prins, A. M. Soto, R. T. Zoeller and A. C. Gore, Endocr. Rev., 2009, 30, 293–342.

64 M. Giulivo, M. Lopez de Alda, E. Capri and D. Barceló, Environ. Res., 2016, 151, 251–264.

65 M. F. Rahman, E. K. Yanful and S. Y. Jasim, Desalination, 2009, 248, 578– 585.

66 J. Kapelewska, U. Kotowska, J. Karpińska, D. Kowalczuk, A. Arciszewska and A. Świrydo, Microchem. J., 2018, 137, 292–301.

67 R. A. Pérez, B. Albero, J. L. Tadeo and C. Sánchez-Brunete, Anal. Bioanal. Chem., 2016, 408, 8013–8023.

68 S. Karayaka, D. S. Chormey, M. Fırat and S. Bakırdere, Chemosphere, 2019, 235, 205–210.

69 E. S. Koçoğlu, O. Sözüdoğru, O. T. Komesli, A. E. Yılmaz and S. Bakırdere, Environ. Monit. Assess., 2019, 191.

70 H. Wu, G. Li, S. Liu, N. Hu, D. Geng, G. Chen, Z. Sun, X. Zhao, L. Xia and J. You, Food Chem., 2016, 192, 98–106.

71 A. K. EL-DEEN and K. SHIMIZU, Anal. Sci., 2019, 35, 1385–1391.

72 C. Florindo, L. C. Branco and I. M. Marrucho, ChemSusChem, 2019, 12, 1549–1559.

73 C. Florindo, L. Romero, I. Rintoul, L. C. Branco and I. M. Marrucho, ACS Sustain. Chem. Eng., 2018, 6, 3888–3895.

74 Idaira Pacheco-Fernández and Verónica Pino, Curr. Opin. Green Sustain. Chem., 2019, 18, 42–50.

75 C. Capello, U. Fischer and K. Hungerbühler, Green Chem., 2007, 9, 927.

76 F. P. Byrne, S. Jin, G. Paggiola, T. H. M. Petchey, J. H. Clark, T. J. Farmer, A. J. Hunt, C. Robert McElroy and J. Sherwood, Sustain. Chem. Process., 2016, 4, 7.

77 S. Chemat, V. Tomao and F. Chemat, in Green Solvents I, Springer Netherlands, Dordrecht, 2012, pp. 175–186.

78 P. K. Mamidipally and S. X. Liu, Eur. J. Lipid Sci. Technol., 2004, 106, 122–125.

79 M. Castro-Puyana, M. Herrero, I. Urreta, J. A. Mendiola, A. Cifuentes, E. Ibáñez and S. Suárez-Alvarez, Anal. Bioanal. Chem., 2013, 405, 4607– 4616.

80 Z. Chemat-Djenni, M. A. Ferhat, V. Tomao and F. Chemat, J. Essent. Oil Bear. Plants, 2010, 13, 139–147.

81 M. Virot, V. Tomao, C. Ginies and F. Chemat, Chromatographia, 2008, 68, 311–313.

82 A. Medvedovici, S. Udrescu and V. David, Biomed. Chromatogr., 2013, 27, 48–57.

83 N. Pourreza and T. Naghdi, J. Ind. Eng. Chem., 2017, 51, 71–76.

84 G. Grimmer, G. Dettbarn, H. Brune, R. Deutsch-Wenzel and J. Misfeld, Int. Arch. Occup. Environ. Health, 1982, 50, 95–100.

85 A. Y. Watson, R. R. Bates and D. Kennedy, 1988.

86 L. H. Keith, Polycycl. Aromat. Compd., 2015, 35, 147–160.

87 J. T. Andersson and C. Achten, Polycycl. Aromat. Compd., 2015, 35, 330–354.

88 T. Furuhata, Y. Kobayashi, K. Hayashida and M. Arai, Fuel, 2012, 91, 16– 25.

89 W. Zhang, C. Wei, X. Chai, J. He, Y. Cai, M. Ren, B. Yan, P. Peng and J. Fu, Chemosphere, 2012, 88, 174–182.

90 X. A. Ning, M. Q. Lin, L. Z. Shen, J. H. Zhang, J. Y. Wang, Y. J. Wang, Z. Y. Yang and J. Y. Liu, Environ. Res., 2014, 132, 112–118.

91 A. Paris, J. Ledauphin, P. Poinot and J. L. Gaillard, Environ. Pollut., 2018, 234, 96–106.

92 A. Fromberg, A. Højgård and L. Duedahl-Olesen, Food Addit. Contam., 2007, 24, 758–767.

93 E. O. Nwaichi and S. A. Ntorgbo, Toxicol. Reports, 2016, 3, 167–172.

94 S. Y. Chung, R. R. Yettella, J. S. Kim, K. Kwon, M. C. Kim and D. B. Min, Food Chem., 2011, 129, 1420–1426.

95 A. Stołyhwo and Z. E. Sikorski, Food Chem., 2005, 91, 303–311.

96 S. A. V. Tfouni, C. S. Serrate, F. M. Leme, M. C. R. Camargo, C. R. A. Teles, K. M. V. A. B. Cipolli and R. P. Z. Furlani, LWT - Food Sci. Technol., 2013, 50, 526–530.

97 I. A. Bertinetti, C. D. Ferreira, J. L. F. Monks, P. J. Sanches-Filho and M. C. Elias, J. Food Compos. Anal., 2018, 66, 109–115.

98 J. K. Houessou, C. Delteil and V. Camel, J. Agric. Food Chem., 2006, 54, 7413–7421.

99 A. Jimenez, A. Adisa, C. Woodham and M. Saleh, J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes, 2014, 49, 828–835.

100 A. Mojiri, J. L. Zhou, A. Ohashi, N. Ozaki and T. Kindaichi, Sci. Total Environ., 2019, 696, 133971.

101 H. Rubin, Synergistic mechanisms in carcinogenesis by polycyclic aromatic hydrocarbons and by tobacco smoke: a bio-historical perspective with updates, 1903, vol. 22.

102 A. O. Adeniji, O. O. Okoh and A. I. Okoh, Arch. Environ. Contam. Toxicol., 2019, 76, 657–669.

103 L. Drabova, J. Pulkrabova, K. Kalachova, M. Tomaniova, V. Kocourek and J. Hajslova, Talanta, 2012, 100, 207–216.

104 A. Sadowska-Rociek, M. Surma and E. Cieślik, Environ. Sci. Pollut. Res., 2014, 21, 1326–1338.

105 T. Slámová, A. Sadowska-Rociek, A. Fraňková, M. Surma and J. Banout, J. Food Compos. Anal., 2020, 87.

106 M. Surma, A. Sadowska-Rociek and E. Cieślik, Eur. Food Res. Technol., 2014, 238, 1029–1036.

107 J. Pincemaille, C. Schummer, E. Heinen and G. Moris, Food Chem., 2014, 145, 807–813.

108 L. L. A. Veiga, H. Amorim, J. Moraes, M. C. Silva, R. S. L. Raices and S. L. Quiterio, Food Chem., 2014, 152, 612–618.

109 N. Akvan, G. Azimi and H. Parastar, Microchem. J., 2019, 150, 104056.

110 B. A. P. Agus, N. Hussain and J. Selamat, Food Chem., 2020, 303, 125398.

111 J. Soares da Silva Burato, D. A. Vargas Medina, A. L. Toffoli, E. Vasconcelos Soares Maciel and F. Mauro Lanças, J. Sep. Sci., 2020, 43, 202–225.

112 A. Gałuszka, Z. Migaszewski and J. Namieśnik, TrAC - Trends Anal. Chem., 2013, 50, 78–84.

113 X. Ye, H. Shao, T. Zhou, J. Xu, X. Cao and W. Mo, Food Anal. Methods, 2020, 13, 823–832.

114 Y. Tang, L. Mu, J. Cheng, Z. Du and Y. Yang, Food Anal. Methods, 2020, 13, 1381–1390.

115 M. H. Petrarca and H. T. Godoy, Food Chem., 2018, 257, 44–52.

116 Y. Gu and F. Jérôme, Chem. Soc. Rev., 2013, 42, 9550–9570.

117 F. G. Calvo-Flores, M. J. Monteagudo-Arrebola, J. A. Dobado and J. Isac-García, Top. Curr. Chem., 2018, 376, 1–40.

118 K. Shukla and V. C. Srivastava, 2016.

119 A.-A. G. Shaikh and S. Sivaram, Organic Carbonates †, 1996.

120 D. J. Miller and P. McWilliams, Tenside, Surfactants, Deterg., 2010, 47, 28–33.

121 C. M. Alder, J. D. Hayler, R. K. Henderson, A. M. Redman, L. Shukla, L. E. Shuster and H. F. Sneddon, Green Chem., 2016, 18, 3879–3890.

122 N. Casado, R. Perestrelo, C. L. Silva, I. Sierra and J. S. Câmara, Microchem. J., 2018, 139, 110–118.

123 F. Pena-Pereira, W. Wojnowski and M. Tobiszewski, Anal. Chem., 2020, 92, 10076–10082.

124 H. B. Moon, S. P. Yoon, R. H. Jung and M. Choi, Chemosphere, 2008, 73, 880–889.

125 T. Letzel, A. Bayer, W. Schulz, A. Heermann, T. Lucke, G. Greco, S. Grosse, W. Schüssler, M. Sengl and M. Letzel, Chemosphere, 2015, 137, 198–206.

126 M. J. Gómez, M. M. Gómez-Ramos, O. Malato, M. Mezcua and A. R. Férnandez-Alba, J. Chromatogr. A, 2010, 1217, 7038–7054.

127 A. K. El-Deen and K. Shimizu, Microchem. J., 2019, 149, 103988.

128 A. K. El-Deen and K. Shimizu, J. Chromatogr. A, 2020, 1629, 461498.

129 P. Gago-Ferrero, E. L. Schymanski, A. A. Bletsou, R. Aalizadeh, J. Hollender and N. S. Thomaidis, Environ. Sci. Technol., 2015, 49, 12333– 12341.

130 D. Rodriguez, P. Van Buynder, R. Lugg, P. Blair, B. Devine, A. Cook and P. Weinstein, Int. J. Environ. Res. Public Health, 2009, 6, 1174–1209.

131 J. Wu, L. Zhang and Z. Yang, Crit. Rev. Anal. Chem., 2010, 40, 234–245.

132 J. R. Sobus, J. F. Wambaugh, K. K. Isaacs, A. J. Williams, A. D. McEachran, A. M. Richard, C. M. Grulke, E. M. Ulrich, J. E. Rager, M. J. Strynar and S. R. Newton, J. Expo. Sci. Environ. Epidemiol., 2018, 28, 411–426.

133 L. Tian, J. Verreault, M. Houde and S. Bayen, Environ. Pollut., 2019, 255, 113223.

134 A. Ccanccapa-Cartagena, Y. Pico, X. Ortiz and E. J. Reiner, Sci. Total Environ., 2019, 687, 355–368.

135 X. Wang, N. Yu, J. Yang, L. Jin, H. Guo, W. Shi, X. Zhang, L. Yang, H. Yu and S. Wei, Environ. Int., 2020, 137, 105599.

136 S. Stephan, J. Hippler, T. Köhler, A. A. Deeb, T. C. Schmidt and O. J. Schmitz, Anal. Bioanal. Chem., 2016, 408, 6545–6555.

137 T. Köppe, K. S. Jewell, C. Dietrich, A. Wick and T. A. Ternes, Water Res., 2020, 178, 115703.

138 B. Schulze, Y. Jeon, S. Kaserzon, A. L. Heffernan, P. Dewapriya, J. O’Brien, M. J. Gomez Ramos, S. Ghorbani Gorji, J. F. Mueller, K. V. Thomas and S. Samanipour, TrAC - Trends Anal. Chem., 2020, 133, 116063.

139 M. M. Plassmann, E. Tengstrand, K. M. Åberg and J. P. Benskin, Anal. Bioanal. Chem., 2016, 408, 4203–4208.

140 A. Lai, R. R. Singh, L. Kovalova, O. Jaeggi, T. Kondić and E. L. Schymanski, Environ. Sci. Eur. 2021 331, 2021, 33, 1–21.

141 B. González-Gaya, N. Lopez-Herguedas, D. Bilbao, L. Mijangos, A. M. Iker, N. Etxebarria, M. Irazola, A. Prieto, M. Olivares and O. Zuloaga, Anal. Methods, 2021, 13, 1876–1904.

142 J. Guo and T. Huan, Anal. Chem., 2020, 92, 8072–8080.

143 M. Picardo, O. Núñez and M. Farré, MethodsX, 2021, 8, 101286.

144 F. M. Hansen, M. C. Tanzer, F. Brüning, I. Bludau, C. Stafford, B. A. Schulman, M. S. Robles, O. Karayel and M. Mann, Nat. Commun., 2021, 12, 1–13.

145 H. L. Röst, G. Rosenberger, P. Navarro, L. Gillet, S. M. Miladinoviä, O. T. Schubert, W. Wolski, B. C. Collins, J. Malmström, L. Malmström and R. Aebersold, Nat. Biotechnol., 2014, 32, 219–223.

146 A. Bilbao, E. Varesio, J. Luban, C. Strambio-De-Castillia, G. Hopfgartner, M. Müller and F. Lisacek, Proteomics, 2015, 15, 964–980.

147

148 T. Manickum and W. John, Sci. Total Environ., 2014, 468–469, 584–597.

149 Q. Cao, Q. Yu and D. W. Connell, Sci. Total Environ., 2010, 408, 6243– 6250.

150 F. T. Lange, M. Scheurer and H. J. Brauch, Anal. Bioanal. Chem., 2012, 403, 2503–2518.

151 S. Castronovo, A. Wick, M. Scheurer, K. Nödler, M. Schulz and T. A. Ternes, Water Res., 2017, 110, 342–353.

152 L.-G. Lindfors, E. Brorström-Lundén, A. Svenson, T. Viktor, A. Woldegiorgis and M. Remberger, REPORT Measurements of Sucralose in the Swedish Screening Program 2007-PART I; Sucralose in surface waters and STP samples, 2008.

153 J. Lu, H. Li, Y. Tu and Z. Yang, Ecotoxicol. Environ. Saf., 2018, 156, 48–55.

154 O. Segev, A. Kushmaro and A. Brenner, Int. J. Environ. Res. Public Health, 2009, 6, 478–491.

155 X. Zhang, J. Chen and J. Li, Chemosphere, 2020, 251, 126360.

156 Y. Zhang, S. U. Geißen and C. Gal, Chemosphere, 2008, 73, 1151–1161.

157 M. Clara, B. Strenn and N. Kreuzinger, Water Res., 2004, 38, 947–954.

158 I. J. Buerge, T. Poiger, M. D. Müller and H. R. Buser, Environ. Sci. Technol., 2006, 40, 4096–4102.

159 M. Sörengård, H. Campos-Pereira, M. Ullberg, F. Y. Lai, O. Golovko and L. Ahrens, Chemosphere, 2019, 234, 931–941.

160 M. S. F. Santos, H. Franquet-Griell, S. Lacorte, L. M. Madeira and A. Alves, Chemosphere, 2017, 184, 1250–1260.

161 B. Nas, T. Dolu and S. Koyuncu, Water. Air. Soil Pollut., 2021, 232, 1–15.

162 H. Chang, J. Y. Hu, L. Z. Wang and B. Shao, Chinese Sci. Bull., 2008, 53, 514–520.

163 N. Paxéus, Water Sci. Technol., 2004, 50, 253–260.

164 P. Westerhoff, Y. Yoon, S. Snyder and E. Wert, Environ. Sci. Technol., 2005, 39, 6649–6663.

165 S. Schittko, A. Putschew and M. Jekel, Water Sci. Technol., 2004, 50, 261– 268.

166 A. Putschew, S. Wischnack and M. Jekel, Sci. Total Environ., 2000, 255, 129–134.

167 L. F. Angeles, R. A. Mullen, I. J. Huang, C. Wilson, W. Khunjar, H. I. Sirotkin, A. E. McElroy and D. S. Aga, Environ. Sci. Water Res. Technol., 2020, 6, 62–77.

168 Y. Li, X. Niu, C. Yao, W. Yang and G. Lu, Int. J. Environ. Res. Public Health, 2019, 16.

169 K. D. Burch, B. Han, J. Pichtel and T. Zubkov, Environ. Sci. Pollut. Res., 2019, 26, 6301–6310.

170 R. L. Donnachie, A. C. Johnson and J. P. Sumpter, Environ. Toxicol. Chem., 2016, 35, 1021–1027.

171 J. P. Besse and J. Garric, Toxicol. Lett., 2008, 176, 104–123.

172 P. C. von der Ohe, V. Dulio, J. Slobodnik, E. De Deckere, R. Kühne, R. U. Ebert, A. Ginebreda, W. De Cooman, G. Schüürmann and W. Brack, Sci. Total Environ., 2011, 409, 2064–2077.

173 M. Al Aukidy, P. Verlicchi, A. Jelic, M. Petrovic and D. Barcelò, Sci. Total Environ., 2012, 438, 15–25.

174 H. Q. Liu, J. C. W. Lam, W. W. Li, H. Q. Yu and P. K. S. Lam, Sci. Total Environ., 2017, 586, 1162–1169.

175 C. Afonso-Olivares, Z. Sosa-Ferrera and J. J. Santana-Rodríguez, Sci. Total Environ., 2017, 599–600, 934–943.

176 L. Mijangos, H. Ziarrusta, O. Ros, L. Kortazar, L. A. Fernández, M. Olivares, O. Zuloaga, A. Prieto and N. Etxebarria, Water Res., 2018, 147, 152–163.

参考文献をもっと見る