リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Ultra-high dynamic range quantum measurement retaining its sensitivity」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Ultra-high dynamic range quantum measurement retaining its sensitivity

Herbschleb, E. D. Kato, H. Makino, T. Yamasaki, S. Mizuochi, N. 京都大学 DOI:10.1038/s41467-020-20561-x

2021.01.12

概要

Quantum sensors are highly sensitive since they capitalise on fragile quantum properties such as coherence, while enabling ultra-high spatial resolution. For sensing, the crux is to minimise the measurement uncertainty in a chosen range within a given time. However, basic quantum sensing protocols cannot simultaneously achieve both a high sensitivity and a large range. Here, we demonstrate a non-adaptive algorithm for increasing this range, in principle without limit, for alternating-current field sensing, while being able to get arbitrarily close to the best possible sensitivity. Therefore, it outperforms the standard measurement concept in both sensitivity and range. Also, we explore this algorithm thoroughly by simulation, and discuss the T−2 scaling that this algorithm approaches in the coherent regime, as opposed to the T−1/2 of the standard measurement. The same algorithm can be applied to any modulo-limited sensor.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys.

89, 035002 (2017).

Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond.

Rep. Prog. Phys. 77, 056503 (2014).

Herbschleb, E. D. et al. Ultra-long coherence times amongst roomtemperature solid-state spins. Nat. Commun. 10, 3766 (2019).

Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D. & Walsworth, R. L. Solidstate electronic spin coherence time approaching one second. Nat. Commun.

4, 1743 (2013).

Rittweger, E., Han, K. Y., Irvine, S. E., Eggeling, C. & Hell, S. W. STED

microscopy reveals crystal colour centres with nanometric resolution. Nat.

Photonics 3, 144–147 (2009).

Maurer, P. C. et al. Far-field optical imaging and manipulation of individual

spins with nanoscale resolution. Nat. Phys. 6, 912–918 (2010).

Jaskula, J.-C. et al. Superresolution optical magnetic imaging and spectroscopy

using individual electronic spins in diamond. Opt. Express 25, 11048–11064

(2017).

Jin, D. et al. Nanoparticles for super-resolution microscopy and singlemolecule tracking. Nat. Methods 15, 415–423 (2018).

Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale

resolution. Nat. Phys. 4, 810–816 (2008).

Wolf, T. et al. Subpicotesla diamond magnetometry. Phys. Rev. X 5, 041001

(2015).

Lazariev, A., Arroyo-Camejo, S., Rahane, G., Kavatamane, V. K. &

Balasubramanian, G. Dynamical sensitivity control of a single-spin quantum

sensor. Sci. Rep. 7, 6586 (2017).

Knowles, H. S., Kara, D. M. & Atatüre, M. Observing bulk diamond spin

coherence in high-purity nanodiamonds. Nat. Mater. 13, 21–25

(2013).

Grinolds, M. S. et al. Nanoscale magnetic imaging of a single electron spin

under ambient conditions. Nat. Phys. 9, 215–219 (2013).

Shi, F. et al. Single-protein spin resonance spectroscopy under ambient

conditions. Science 347, 1135–1138 (2015).

Shi, F. et al. Single-DNA electron spin resonance spectroscopy in aqueous

solutions. Nat. Methods 15, 697–699 (2018).

Aslam, N. et al. Nanoscale nuclear magnetic resonance with chemical

resolution. Science 357, 67–71 (2017).

Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogenvacancy spin sensor. Science 339, 557–560 (2013).

Glenn, D. R. et al. High-resolution magnetic resonance spectroscopy using a

solid-state spin sensor. Nature 555, 351–354 (2018).

Boss, J. M., Cujia, K. S., Zopes, J. & Degen, C. L. Quantum sensing with

arbitrary frequency resolution. Science 356, 837–840 (2017).

Schmitt, S. et al. Submillihertz magnetic spectroscopy performed with a

nanoscale quantum sensor. Science 356, 832–837 (2017).

Rugar, D. et al. Proton magnetic resonance imaging using a nitrogen-vacancy

spin sensor. Nat. Nanotechnol. 10, 120–124 (2014).

DeVience, S. J. et al. Nanoscale NMR spectroscopy and imaging of multiple

nuclear species. Nat. Nanotechnol. 10, 129–134 (2015).

Perunicic, V. S., Hill, C. D., Hall, L. T. & Hollenberg, L. C. L. A quantum spinprobe molecular microscope. Nat. Commun. 7, 12667 (2016).

Rong, X. et al. Searching for an exotic spin-dependent interaction with a single

electron-spin quantum sensor. Nat. Commun. 9, 739 (2018).

Budker, D., Graham, P. W., Ledbetter, M., Rajendran, S. & Sushkov, A. O.

Proposal for a cosmic axion spin precession experiment (CASPEr). Phys. Rev.

X 4, 021030 (2014).

Said, R. S., Berry, D. W. & Twamley, J. Nanoscale magnetometry using a

single-spin system in diamond. Phys. Rev. B 83, 125410 (2011).

Higgins, B. L., Berry, D. W., Bartlett, S. D., Wiseman, H. M. & Pryde, G. J.

Entanglement-free Heisenberg-limited phase estimation. Nature 450, 393–396

(2007).

Berry, D. W. et al. How to perform the most accurate possible phase

measurements. Phys. Rev. A 80, 052114 (2009).

NATURE COMMUNICATIONS | (2021)12:306 | https://doi.org/10.1038/s41467-020-20561-x | www.nature.com/naturecommunications

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20561-x

29. Higgins, B. L. et al. Demonstrating Heisenberg-limited unambiguous phase

estimation without adaptive measurements. N. J. Phys. 11, 073023 (2009).

30. Nusran, N. M., Momeen, M. U. & Dutt, M. V. G. High-dynamic-range

magnetometry with a single electronic spin in diamond. Nat. Nanotechnol. 7,

109–113 (2011).

31. Waldherr, G. et al. High-dynamic-range magnetometry with a single nuclear

spin in diamond. Nat. Nanotechnol. 7, 105–108 (2011).

32. Bonato, C. et al. Optimized quantum sensing with a single electron spin using

real-time adaptive measurements. Nat. Nanotechnol. 11, 247–252 (2015).

33. Nusran, N. M. & Dutt, M. V. G. Dual-channel lock-in magnetometer with a

single spin in diamond. Phys. Rev. B 88, 220410 (2013).

34. Leibfried, D. et al. Toward Heisenberg-limited spectroscopy with multiparticle

entangled states. Science 304, 1476–1478 (2004).

35. Nagata, T., Okamoto, R., O’Brien, J. L., Sasaki, K. & Takeuchi, S. Beating the

standard quantum limit with four-entangled photons. Science 316, 726–729

(2007).

36. Jones, J. A. et al. Magnetic field sensing beyond the standard quantum limit

using 10-spin NOON states. Science 324, 1166–1168 (2009).

37. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology.

Nat. Photonics 5, 222–229 (2011).

38. Nusran, N. M. & Dutt, M. V. G. Optimizing phase-estimation algorithms for

diamond spin magnetometry. Phys. Rev. B 90, 024422 (2014).

39. Kato, H., Ogura, M., Makino, T., Takeuchi, D. & Yamasaki, S. N-type control

of single-crystal diamond films by ultra-lightly phosphorus doping. Appl.

Phys. Lett. 109, 142102 (2016).

Acknowledgements

The authors acknowledge the financial support from MEXT Q-LEAP (No.

JPMXS0118067395), KAKENHI (No. 15H05868, 16H06326) and the Collaborative

Research Program of ICR, Kyoto University (2019-103). They also thank Prof H. Kosaka

for helpful discussions.

Author contributions

E.D.H. designed the algorithm, performed the experiments/simulations/analyses and

conceived the supplementary; H.K. grew the phosphorus-doped diamond, assisted by

T.M. and S.Y.; N.M. supervised the work; E.D.H. and N.M. wrote the manuscript, and all

authors discussed it.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467020-20561-x.

Correspondence and requests for materials should be addressed to E.D.H. or N.M.

Peer review information Nature Communications thanks the anonymous reviewer(s) for

their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | (2021)12:306 | https://doi.org/10.1038/s41467-020-20561-x | www.nature.com/naturecommunications

...

参考文献をもっと見る