リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Role of retained austenite in low alloy steel at low temperature monitored by neutron diffraction」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Role of retained austenite in low alloy steel at low temperature monitored by neutron diffraction

Yamashita Takayuki 20829080 Morooka Satoshi 10534422 Harjo Stefanus 40391263 Kawasaki Takuro 20626361 Koga Norimitsu Umezawa Osamu 20343171 横浜国立大学

2020.03.01

概要

In-situ neutron diffraction measurements during tensile tests at low temperatures of a low alloy steel containing retained austenite (γ) have been performed. Evolutions of phase fractions and phase stresses were analyzed and discussed with the progress of deformation. The role of γ in the steel during deformation at low temperatures was observed not to directly in the contribution to the strengths but in the improvement of the elongation by transformation of γ to martensite -and in the increasing of the work-hardening rate by an increase in the phase fraction of martensite and the work hardening of martensite.

参考文献

[1] Tamura, Metal Sci. 16 (1982) 245-253.

[2] H. K. D. H. Bhadeshia, ISIJ Int. 42 (2002) 1059-1060.

[3] P. J. Jacques, Curr. Opin. Solid State Mater. Sci. 8 (2004) 259-265.

[4] B. C. De Cooman, Curr. Opin. Solid State Mater. Sci. 8(2004) 285-303.

[5] K. Sugimoto, M. Kobayashi, S. Hashimoto, Metall. Mater. Trans. A, 23A (1992) 3085-3091.

[6] O. Muránsky, P. Šittner, J. Zrník, E. C. Oliver, Acta Mater. 56 (2008) 3367-3379.

[7] A. Itami, M. Takahashi, K. Ushioda, ISIJ Int. 35 (1995) 1121-1127.

[8] K. Sugimoto, M. Misu, M. Kobayashi, H. Shirasawa, ISIJ Int. 33 (1993) 775-782.

[9] M. Mukherjee, O. N. Mohanty, S. Hashimoto, T. Hojo, K. Sugimoto, ISIJ Int. 46 (2006)

316-324.

[10] G.K. Tirumalasetty, M.A. van Huis, C. Kwakernaak, J. Sietsma, W.G. Sloof, H.W. Zandbergen,

Acta Mater. 60 (2012) 1311-1321.

[11] H. Matsuda, H. Noro, Y. Nagataki, Hosoya, Mater. Sci. Forum 638-642 (2010) 3374-3379.

[12] T. Yamashita, N. Koga, O. Umezawa, ISIJ Int. 58 (2018) 1155-1161.

[13] K. Asoo, Y. Tomota, S. Harjo, Y. Okitsu, ISIJ Int. 51 (2011) 145-150.

[14] O. Muránsky, P. Horňak, P. Lukáš, J. Zrník, P. Šittner, J. Achiev. Mater. Manuf. Eng. 14 (2006)

26-30.

[15] S. Harjo, N. Tsuchida, J. Abe, W. Gong, Sci. rep. 7 (2017) 15149.

[16] P. J. Jacques, Q. Furnemont, S. Godet, T. Pardoen, K. T. Conlon, F. Delannay, Philos. Mag. 86

(2006) 2371-2392.

[17] R. Blondé, E. Jimenez-Melero, L. Zhao, J.P. Wright, E. Brück, S. van der Zwaag, N.H. van Dijk,

Acta Mater. 60 (2012) 565-577.

[18] S. Harjo, T. Ito, K. Aizawa, H. Arima, J. Abe, A. Moriai, T. Iwahashi, T. Kamiyama, Mater. Sci.

Forum, 681 (2011), 443-448.

[19] S. Harjo, K. Aizawa, T. Kawasaki, T. Iwahashi, T. Nakamoto, T. Henmi, Proceedings of the 21st

Meeting of the International Collaboration on Advanced Neutron Sources, ed. by T. Oku, M.

Nakamura, K. Sakai, M. Teshigawara, H. Hatsumoto, M. Yonemura, J. Suzuki, M. Arai, Ibaraki,

Japan, 2016, 441-447.

[20] Y. Nakada, A. S. Keh, Acta Metall. 18 (1970), 437-443.

[21] M. Koyama, T. Sawaguchi, K. Tsuzaki, ISIJ Int. 58 (2018), 1383-1395.

[22] R. Oishi, M. Yonemura, Y. Nishimaki, S. Torii, A. Hoshikawa, T. Ishigaki, T. Morishima, K.

Mori, T. Kamiyama, Nucl. Instr. Methods Phys. Res. A 600 (2009), 94-96.

[23] L. Cheng, A. Bottger, Th.H. de Keijse, E.J. Mittemeijer, Scr. Metall. Mater. 24 (1990) 509-514.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Caption list

Figure 1 (a) initial microstructure of the test steel before deformation, (b) shape of the tensile test

specimen in this study and (c) schematic experimental setup of TAKUMI instrument. The white

arrows in (a) indicate retained austenite as an example.

Figure 2 (a) Nominal stress – nominal strain curves, (b) true stress and work-hardening rate vs. true

strain and (c) phase fraction of retained austenite as a function of true strain at various test

temperatures. The black arrows in (a) indicate stress fluctuations.

Figure 3 Phase stresses of bainitic ferrite, austenite and martensite at (a) 293 K, (b) 233 K, (c) 193 K

and (d) 134 K with respect to applied true stress. The phase stresses of ferrite + bainite (α matrix),

austenite and martensite are colored with red, green and blue, respectively. The solid black line in

figures indicates applied true stress at various test temperatures.

Figure 4 The changes of fraction weighted phase stresses of each consisting phases during tensile at

(a) 293 K, (b) 233 K, (c) 193 K and (d) 134 K. The applied true stress-strain curves are

superimposed. Those for bainitic ferrite (α matrix), austenite and martensite are colored with red,

green and blue, respectively.

Figure(s)

(a)

(b)

(c)

Figure 1 (a) initial microstructure of the test steel before deformation, (b) shape of the tensile

test specimen in this study and (c) schematic experimental setup of TAKUMI instrument. The

white arrows in (a) indicate retained austenite as an example.

(a)

(b)

(c)

Figure 2 (a) Nominal stress – nominal strain curves, (b) true stress and work-hardening rate vs.

true strain and (c) phase fraction of retained austenite as a function of true strain at various

test temperatures. The black arrows in (a) indicate stress fluctuations.

α matrix

Austenite

Martensite

(d)

134 K

α matrix

Austenite

Martensite

Stress, σ /MPa

α matrix

Austenite

Martensite

Stress, σ /MPa

193 K

α matrix

Austenite

Martensite

Applied true stress, σT /MPa

Applied true stress, σT /MPa

(c)

233 K

Stress, σ /MPa

(b)

293 K

Stress, σ /MPa

(a)

Applied true stress, σT /MPa

Applied true stress, σT /MPa

Figure 3 Phase stresses of bainitic ferrite, austenite and martensite at (a) 293 K, (b) 233 K, (c)

193 K and (d) 134 K with respect to applied true stress. The phase stresses of ferrite + bainite

(α matrix), austenite and martensite are colored with red, green and blue, respectively. The

solid black line in figures indicates applied true stress at various test temperatures.

α matrix

Austenite

Martensite

293 K

(c)

(b)

α matrix

Austenite

Martensite

233 K

Stress, σ /MPa

Stress, σ /MPa

(a)

Applied true strain, εT /-

(d)

134 K

Stress, σ /MPa

Stress, σ /MPa

193 K

Applied true strain, εT /-

α matrix

Austenite

Martensite

Applied true strain, εT /-

α matrix

Austenite

Martensite

Applied true strain, εT /-

Figure 4 The changes of fraction weighted phase stresses of each consisting phases during

tensile at (a) 293 K, (b) 233 K, (c) 193 K and (d) 134 K. The applied true stress-strain curves

are superimposed. Those for bainitic ferrite (α matrix), austenite and martensite are colored

with red, green and blue, respectively.

Graphical Abstract

134 K

193 K

233 K

293 K

134 K

Martensite

α matrix

Austenite

Nominal strain, εN /-

Applied true stress, σT /MPa

Stress, σ /MPa

134 K

Contribution to the strength

of constituent phases

Phase stresses

Stress, σ /MPa

Nominal stress, σN /MPa

Nominal S-S curves

at low temperatures

α matrix

Austenite

Martensite

Applied true strain, εT /-

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る