リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Histochemical structure and tensile properties of birch cork cell walls」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Histochemical structure and tensile properties of birch cork cell walls

Kiyoto, Shingo Sugiyama, Junji 京都大学 DOI:10.1007/s10570-021-04036-w

2022.03

概要

Tensile tests of birch cork were performed in the tangential direction. Birch cork in the wet state showed significantly higher extensibility than those in the dried state. The histochemical structure of birch cork was investigated by microscopic observation and spectroscopic analysis. Birch cork cell walls showed a two-layered structure and the inner material bordering cell wall. In transmission electron micrographs, osmium tetroxide stained the outer layer and inner material, whereas potassium permanganate stained the inner layer and inner material. After removal of suberin and lignin, only inner layer remained and Fourier-transformed infrared spectra showed the cellulose I pattern. Polarizing light micrographs indicated that molecular chains in the outer layer and inner material were oriented perpendicular to suberin lamination, whereas those in the inner layer showed longitudinal orientation. These results suggested that the outer layer and inner material mainly consist of suberin, whereas the inner layer and compound middle lamella consist of lignin, cellulose, and other polysaccharides. We hypothesized a hierarchical model of the birch cork cell wall. The lignified cell wall with helical arrangement of cellulose microfibrils is sandwiched between suberized outer layer and inner material. Cellulose microfibrils in the inner layer bear tensile loads. In the wet state, water and cellulose transfer tensile stress. In the dried state, this stress-transferal system functions poorly and fewer cells bear stress. Suberin in the outer layer and inner material may prevent absolute drying to maintain mechanical properties of the bark and to bear tensile stress caused by trunk diameter growth.

この論文で使われている画像

参考文献

insulating material, whereas late cork plays a role of

Anjos O, Pereira H, Rosa ME (2008) Relation

mechanical strength of cork.

between mechanical properties of cork from Quercus

Suber. II LATIN AMERICAN IUFRO CONGRESS.

Conclusions

La Serena, Chile - Octubre 23-27.

This research investigated the histochemical structure

Anjos O, Pereira H, Rosa ME (2010) Tensile

and tensile properties in the tangential direction of

properties of cork in the tangential direction:

birch cork. The birch cork cell wall has a two-layered

variation with quality, porosity, density and radial

structure and inner material bordering cell wall. The

position in the cork plank. Materials and Design

thick outer layer and the amorphous like inner

31:2085-2090

material predominantly consist of suberin. The inner

Bhat KM. 1982. Anatomy, basic density and

layer mainly consists of lignin, cellulose, and other

shrinkage of birch bark. IAWA Bull. n.s. 3:207-213

polysaccharides. Tensile tests indicated that birch

Ekman R, Eckerman C (1985) Aliphatic carboxylic

cork in the wet and air-dried states show higher

acids from suberin in birch outer bark by hydrolysis,

extensibility and toughness than that in the oven-

methanolysis and alkali fusion. Paperi ja Puu. 67:255-

dried state. These results indicate that cellulose in the

273.

inner layer bears tensile loads and that water in the

Gandini A, Neto CP, Silvestre AJD (2006) Suberin:

inner layer and compound middle lamella plays an

important role in the stress-transferal mechanism.

macromolecular materials. Prog. Polym. Sci. 31:878-

The suberized outer layer and inner material may act

892

as hydrophobic barriers and prevent complete water

Gibson LJ, Easterling KE, Ash MF (1981) The

loss to maintain the tensile properties of cork.

structure and mechanics of cork. Proc. R. Soc. Lond.

promising

renewable

resource

for

novel

377:99-117

Kobayashi K, Ura Y, Kimura S, Sugiyama J (2018)

Acknowledgements

Outstanding toughness of cherry bark achieved by

This research was financially supported by Grants-inAid for Scientific Research on Innovative Areas

(18H05485). The TEM observation was performed in

collaboration with the Analysis and Development

System for Advanced Materials (ADAM) at the

Research Institute for Sustainable Humanosphere,

Kyoto University. We thank Robert McKenzie, PhD,

from

the

Edanz

Group

(https://en-author-

services.edanz.com/ac) for editing a draft of this

manuscript.

helical spring structure of rigid cellulose fiber

combined with flexible layers of lipid polymers. Adv.

Mater. 30:1705315

Pereira H (2015) The rationale behind cork

properties: A review of structure and chemistry.

Bioresources 10:6207-6229

Reedy MK (1965) Section staining for electron

microscopy.

Incompatibility

of

methyl

nadic

anhydride with permanganates. J. Cell Biol. 26:30911

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Ryser U, Holloway PJ (1985) Ultrastructure and

chemistry of soluble and polymeric lipids in cell walls

from seed coats and fibres of Gossypium species.

Planta 163:151-163

Schmutz A, Jenny T, Amrhein N, Ryser U (1993)

Caffeic acid and glycerol are constituents of the

suberin layers in green cotton fibres. Planta 189:453460

Schmutz A, Buchala AJ, Ryser U (1996) Changing

the dimensions of suberin lamellae of green cotton

fibers with a specific inhibitor of the endoplasmic

reticulum-associated fatty acid elongases. Plant

Physiol. 11:403-411

Schönherr J, Ziegler H. 1980. Water permeability of

Betula periderm. Planta 147: 345-354

Serra O, Soler M, Hohn C, Sauveplane V, Pinot F,

Franke R, Schreiber L, Prat S, Molinas M, Figueras

M (2009) CYP86A33-targeted gene silencing in

potato tuber alters suberin composition, distorts

suberin lamellae, and impairs the periderm’s water

barrier function. Plant Physiol. 149:1050–1060

Shibui H, Sano Y (2018) Structure and formation of

phellem of Betula maximowicziana IAWA J. 39:1836

Sitte P (1962) Zum Feinbau der Suberinschichten im

Flaschenkork. Protoplasma. 54:555-559

Teixeira RT, Pereira H (2010) Suberized cell walls of

cork from cork oak differ from other species.

Microsc. Microanal. 16, 569–575,

Xu X, Schneider E, Chien AT, Wudl F (1997)

Nature’s high-strength semitransparent film: The

remarkable mechanical properties of Prunus Serrula

bark. Chem. Mater. 9:1906-1908

Yang YP, Zhang Y, Lang YX, Yu MH (2017)

Structural ATR-IR analysis of cellulose fibers

prepared from a NaOH complex aqueous solution.

IOP Conf. Series: Materials Science and Engineering

213:012039

Zhang X, Chen S, Ling Z, Zhou X, Ding DY, Kim

YS, Xu F (2016) Method for removing spectral

contaminants to improve analysis of raman imaging

data. Scientific Reports 7:39891

10

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る