リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Establishment of a novel method for visualization of calcium dynamics and evaluation of epidermal barrier function using human skin tissue」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Establishment of a novel method for visualization of calcium dynamics and evaluation of epidermal barrier function using human skin tissue

熊本 淳一 広島大学

2021.03.04

概要

1-1. Backgrounds
The skin, which is the body’s largest organ, consists of three layers, epidermis,
dermis, and fat layer, and contains a great many structures, including nerve fibers,
sebaceous glands, hair follicles, and capillaries (Figure 1-1). The epidermis, the
outermost layer of the skin, is very thin, with a thickness of about 0.2 µm, and is
composed of four layers: stratum corneum (SC), stratum granulosum (SG), stratum
spinosum (SS), and stratum basale (SB), which consist mostly of keratinocytes.
Keratinocytes are generated at the lowest layer of the epidermis and differentiate as
they move towards the skin surface. In the SG, the uppermost layer of the living
epidermis, lipid-containing granules, known as lamellar bodies, appear, and the lipids
are secreted into the intercellular region to form lamellar structures at the final stage of
differentiation. Finally, the SC is formed by secreted lipids and nucleated keratinocytes,
serving as a water-impermeable barrier (1). It is important that the function of this
water-impermeable barrier is constantly maintained in order to prevent excessive water
loss from the body and to protect the body from environmental insults, such as
physicochemical stimuli and microorganisms, including viruses.
Calcium ions in the epidermis play a key role in maintaining the barrier function. The
calcium ion concentration in the epidermis of healthy subjects shows a characteristic
gradient, being low in the SS and SB, high in the SG, and low again in the SC (2)
(Figure 1-2). Therefore, the surface of the skin has a negative electric potential with
reference to the bottom of the epidermis (3, 4). When the barrier function is destroyed
by tape stripping or acetone treatment, the secretion of lipids from the lamellar granules
is accelerated immediately after the disruption, and lipid synthesis is increased, leading
to restoration of the barrier function (1). In addition, when the barrier function is lost,
both the calcium gradient and the electric potential disappear, while both return to their
original levels when the barrier function is fully recovered. Covering the skin with a
water-impermeable membrane, such as cling film, after barrier breakdown not only
blocks the barrier recovery, but also prevents re-formation of the calcium gradient and
the negative potential of the skin (5). Thus, changes of skin surface electric potential
and calcium dynamics might represent two sides of the same coin.
Calcium pumps and channels in epidermal cells play important roles in maintaining
the calcium ion concentration and skin surface potential. ...

この論文で使われている画像

参考文献

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Elias PM. The epidermal permeability barrier: from Saran Wrap to biosensor. In:

Elias PM, Feingold KR (eds). Skin Barrier. New York, NY: Taylor & Francis;

2006: 25-32.

Denda M, Hosoi J, Asida Y. Visual imaging of ion distribution in human

epidermis. Biochemical and Biophysical Research Communications. 2000 May

27; 272 (1): 134-7.

Barker AT, Jaffe LF, Vanable JW Jr. The glabrous epidermis of cavies contains a

powerful battery. American Journal of Physiology. 1982 Mar; 242 (3): R358-66.

Denda M, Ashida Y, Inoue K, Kumazawa N. Skin surface electric potential

induced by ion-flux through epidermal cell layers. Biochemical and Biophysical

Research Communications. 2001 Jun; 284 (1): 112-7.

Kawai E, Nakanishi J, Kumazawa N, Ozawa K, Denda M. Skin surface electric

potential as an indicator of skin condition: a new, non-invasive method to

evaluate epidermal condition. Experimental Dermatology. 2008 Aug; 17 (8):

688-92.

Sakuntabhai A, Ruiz-Perez V, Carter S, Jacobsen N, Burge S, Monk S, Smith M,

Munro CS, O'Donovan M, Craddock N, Kucherlapati R, Rees JL, Owen M,

Lathrop GM, Monaco AP, Strachan T, Hovnanian A. Mutations in ATP2A2,

encoding a Ca2+ pump, cause Darier disease. Nature Genetics. 1999 Mar; 21 (3):

271-7.

Hu Z, Bonifas JM, Beech J, Bench G, Shigihara T, Ogawa H, Ikeda S, Mauro T,

Epstein EH Jr. Mutations in ATP2C1, encoding a calcium pump, cause

Hailey-Hailey disease. Nature Genetics. 2000 Jan; 24 (1): 61-5.

Denda M, Fujiwara S, Hibino T. Expression of voltage-gated calcium channel

subunit alpha1C in epidermal keratinocytes and effects of agonist and

antagonists of the channel on skin barrier homeostasis. Experimental

Dermatology. 2006 Jun; 15 (6): 455-60.

Grando SA. Biological functions of keratinocyte cholinergic receptors. Journal

of Investigative Dermatology Symposium Proceedings. 1997 Aug; 2 (1): 41-8.

Denda M, Inoue K, Fuziwara S, Denda S. P2X purinergic receptor antagonist

accelerates skin barrier repair and prevents epidermal hyperplasia induced by

skin barrier disruption. Journal of Investigative Dermatology. 2002 Nov; 119

(5): 1034-40.

81

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

Denda M, Inoue K, Inomata S, Denda S. gamma-Aminobutyric acid (A) receptor

agonists accelerate cutaneous barrier recovery and prevent epidermal

hyperplasia induced by barrier disruption. Journal of Investigative Dermatology.

2002 Nov; 119 (5): 1041-7.

Denda M, Fuziwara S, Inoue K. Influx of calcium and chloride ions into

epidermal keratinocytes regulates exocytosis of epidermal lamellar bodies and

skin permeability barrier homeostasis. Journal of Investigative Dermatology.

2003 Aug; 121 (2): 362-7.

Denda M, Fuziwara S, Inoue K. Beta2-adrenergic receptor antagonist accelerates

skin barrier recovery and reduces epidermal hyperplasia induced by barrier

disruption. Journal of Investigative Dermatology. 2003 Jul; 121 (1): 142-8.

Fuziwara S, Inoue K, Denda M. NMDA-type glutamate receptor is associated

with cutaneous barrier homeostasis. Journal of Investigative Dermatology. 2003

Jun; 120 (6): 1023-9.

Fuziwara S, Suzuki A, Inoue K, Denda M. Dopamine D2-like receptor agonists

accelerate barrier repair and inhibit the epidermal hyperplasia induced by barrier

disruption. Journal of Investigative Dermatology. 2005 Oct; 125 (4): 783-9.

Sheikh A, Singh Panesar S, Salvilla S, Dhami S. Hay fever in adolescents and

adults. BMJ Clinical Evidence. 2009 Nov; 2009: 0509.

Barrera GJ, Tortolero GS. Trefoil factor 3 (TFF3) from human breast milk

activates PAR-2 receptors, of the intestinal epithelial cells HT-29, regulating

cytokines and defensins. Bratislavske Lekarske Listy. 2016; 117 (6): 332-9.

D'Andrea MR, Derian CK, Leturcq D, Baker SM, Brunmark A, Ling P, Darrow

AL, Santulli RJ, Brass LF, Andrade-Gordon P. Characterization of

protease-activated receptor-2 immunoreactivity in normal human tissues.

Journal of Histochemistry and Cytochemistry. 1998 Feb; 46 (2): 157-64.

Santulli RJ, Derian CK, Darrow AL, Tomko KA, Eckardt AJ, Seiberg M,

Scarborough RM, Andrade-Gordon P. Evidence for the presence of a

protease-activated receptor distinct from the thrombin receptor in human

keratinocytes. Proceedings of the National Academy of Sciences of the United

States of America. 1995 Sep 26; 92 (20): 9151-5.

Bando H, Sugiura H, Ohkusa Y, Akahane M, Sano T, Jojima N, Okabe N,

Imamura T. Association between first airborne cedar pollen level peak and

pollinosis symptom onset: a web-based survey. International Journal of

Environmental Research and Public Health. 2015; 25 (1): 104-13.

Shinmoto H, Takase M, Naganawa Y, Takano-Ishikawa Y. Production of IgE

82

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

antibody to Japanese cedar pollen allergen Cry j1 by short term culture of human

peripheral blood lymphocytes. Human Antibodies. 2009; 18 (1-2): 41-3.

Sone T, Komiyama N, Shimizu K, Kusakabe T, Morikubo K, Kino K. Cloning

and sequencing of cDNA coding for Cry j I, a major allergen of Japanese cedar

pollen. Biochemical and Biophysical Research Communications. 1994 Mar 15;

199 (2): 619-25.

Demerjian M, Hachem JP, Tschachler E, Denecker G, Declercq W, Vandenabeele

P, Mauro T, Hupe M, Crumrine D, Roelandt T, Houben E, Elias PM, Feingold

KR. Acute modulations in permeability barrier function regulate epidermal

cornification: role of caspase-14 and the protease-activated receptor type 2. The

American Journal of Pathology. 2008 Jan; 172 (1): 86-97.

Jeong SK, Kim HJ, Youm JK, Ahn SK, Choi EH, Sohn MH, Kim KE, Hong JH,

Shin DM, Lee SH. Mite and cockroach allergens activate protease-activated

receptor 2 and delay epidermal permeability barrier recovery. Journal of

Investigative Dermatology. 2008 Aug; 128 (8): 1930-9.

Wang L, Hilliges M, Jernberg T, Wiegleb-Edström D, Johansson O. Protein gene

product 9.5-immunoreactive nerve fibres and cells in human skin. Cell and

Tissue Research. 1990 Jul; 261 (1): 25-33.

Shephered GM. The somatic senses. In: Shephered GM (eds) Neurobiology.

Oxford University Press, Oxford, 1994 pp 265-293.

Nordin M. Low-threshold mechanoreceptive and nociceptive units with

unmyelinated (C) fibres in the human supraorbital nerve. The Journal of

Physiology. 1990 Jul; 426: 229-40.

Johansson RS, Trulsson M, Olsson KA, Westberg KG. Mechanoreceptor activity

from the human face and oral mucosa. Experimental Brain Research. 1988; 72

(1): 204-8.

Vallbo A, Olausson H, Wessberg J, Norrsell U. A system of unmyelinated

afferents for innocuous mechanoreception in the human skin. Brain Research.

1993 Nov 19; 628 (1-2): 301-4.

Vallbo AB, Olausson H, Wessberg J. Unmyelinated afferents constitute a second

system coding tactile stimuli of the human hairy skin. Journal of

Neurophysiology. 1999 Jun; 81 (6): 2753-63.

Loomis JM, Collins CC. Sensitivity to shifts of a point stimulus: an instance of

tactile hyperacuity. Perception & psychophysics. 1978 Dec; 24 (6): 487-92.

Nakata S. Epidermis of the skin as a self-organizing electrochemical sensor. In:

Nakata S (eds). Chemical Analysis Based on Nonlinearity. NOVA, New York,

83

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

NY, pp 2003: 132-138.

Dhaka A, Viswanath V, Patapoutian A. Trp ion channels and temperature

sensation. Annual Review of Neuroscience. 2006; 29: 135-61.

Denda M, Tsutsumi M. Roles of transient receptor potential proteins (TRPs) in

epidermal keratinocytes Transient Receptor Potential Channels. Advances in

Experimental Medicine and Biology. 2011; 704: 847-860.

Inoue K, Koizumi S, Fuziwara S, Denda S, Inoue K, Denda M. Functional

vanilloid receptors in cultured normal human epidermal keratinocytes.

Biochemical and Biophysical Research Communications. 2002 Feb 15; 291 (1):

124-9.

Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ. TRPV3 and TRPV4

mediate warmth-evoked currents in primary mouse keratinocytes. Journal of

Biological Chemistry. 2004 May 14; 279 (20): 21569-75.

Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D.

The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature.

1997 Oct 23; 389 (6653): 816-24.

Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KS,

Andahazy M, Story GM, Patapoutian A. Impaired thermosensation in mice

lacking TRPV3, a heat and camphor sensor in the skin. Science. 2005 Mar 4;

307 (5714): 1468-72.

Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ. 2-aminoethoxydiphenyl

borate activates and sensitizes the heat-gated ion channel TRPV3. Journal of

Neuroscience. 2004 Jun 2; 24 (22): 5177-82.

Denda M, Sokabe T, Fukumi-Tominaga T, Tominaga M. Effects of skin surface

temperature on epidermal permeability barrier homeostasis. Journal of

Investigative Dermatology. 2007 Mar; 127 (3): 654-9.

Burnstock G, Williams M. P2 purinergic receptors: modulation of cell function

and therapeutic potential. Journal of Pharmacology and Experimental

Therapeutics. 2000 Dec; 295 (3): 862-9.

Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S,

Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG,

Burnstock G, McMahon SB, Ford AP. Urinary bladder hyporeflexia and reduced

pain-related behaviour in P2X3-deficient mice. Nature. 2000 Oct 26; 407

(6807): 1011-5.

Inoue K, Denda M, Tozaki H, Fujishita K, Koizumi S, Inoue K. Characterization

of multiple P2X receptors in cultured normal human epidermal keratinocytes.

84

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

Journal of Investigative Dermatology. 2005 Apr; 124 (4): 756-63.

Koizumi S, Fujishita K, Inoue K, Shigemoto-Mogami Y, Tsuda M, Inoue K.

Ca2+ waves in keratinocytes are transmitted to sensory neurons: the

involvement of extracellular ATP and P2Y2 receptor activation. Biochemical

Journal. 2004 Jun 1; 380 (Pt 2): 329-38.

Denda M, Denda S. Air-exposed keratinocytes exhibited intracellular calcium

oscillation. Skin Research and Technology. 2007 May;13(2):195-201.

Slominski A. Neuroendocrine system of the skin. Dermatology. 2005; 211 (3):

199-208.

Slominski A, Wortsman J, Luger T, Paus R, Solomon S. Corticotropin releasing

hormone and proopiomelanocortin involvement in the cutaneous response to

stress. Physiological Reviews. 2000 Jul; 80 (3): 979-1020.

Slominski A, Wortsman J. Neuroendocrinology of the skin. Endocrine Reviews.

2000 Oct; 21 (5): 457-87.

Slominski A, Wortsman J, Pisarchik A, Zbytek B, Linton EA, Mazurkiewicz JE,

Wei ET. Cutaneous expression of corticotropin-releasing hormone (CRH),

urocortin, and CRH receptors. FASEB Journal. 2001 Aug; 15 (10): 1678-93.

S. Nakaoka, K. Aihara. Stochastic simulation of structured skin cell population

dynamics. Journal of Mathematical Biology. 2013 Mar; 66 (4-5): 807-835

G. Schaller, M. Meyer-HermannA modelling approach towards epidermal

homoeostasis control. Journal of Theoretical Biology. 2007 Aug; 247 (3):

554-573.

D. Stekel, J. Rashbass, E. Williams. A computer graphic simulation of squamous

epithelium. Journal of Theoretical Biology. 1995 Aug; 175 (3): 283-293.

J. Rashbass, D. Stekel, E. Williams. The use of a computer model to simulate

epithelial pathologies. The Journal of Pathology. 1996; 179 (3): 333-339.

S. Maheswaran, P.M. Speight, P. Hammond. Modeling epithelial cell behavior

and organization. IEEE Transactions on NanoBioscience. 2007 Mar; 6 (1):

77-85.

L.H. Cornelissen, C.W.J. Oomens, J.M. Huyghe, F.P.T. Baaijenset. Mechanisms

that play a role in the maintenance of the calcium gradient in the epidermis. Skin

Research and Technology. 2007 Mar; 13 (4): 369-376.

M.P. Adams, D.G. Mallet, G.J. Pettet. Active regulation of the epidermal

calcium profile. Journal of Theoretical Biology. 2012 May; 301 (21): 112-121.

85

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

N. Grabe, K. Neuber. A multicellular systems biology model predicts epidermal

morphology, kinetics and Ca2+ flow. Bioinformatics. 2005 Jul; 21 (17):

3541-3547.

Kobayashi, Y., Sawabu, Y., Kitahata, H., Denda, M. Nagayama, M.

Mathematical model for calcium-assisted epidermal homeostasis. Journal of

Theoretical Biology. 2016 May; 397 (21): 52-60.

Denda M., Denda S., Tsutsumi M., Goto M., Kumamoto J., Nakatani M., Takei

K., Kitahata H., Nakata S., Sawabu Y., Kobayashi Y., Nagayama M. Frontiers in

epidermal barrier homeostasis - an approach to mathematical modeling of

epidermal calcium dynamics. Experimental Dermatology. 2014 Feb; 23 (2):

79-82.

Kobayashi, Y. & Nagayama, M. Mathematical model of epidermal structure. R.

S. Anderssen et al. (eds), Applications + Practical Conceptualization +

Mathematics = fruitful Innovation, Mathematics for Industry 11, Springer Japan.,

2016 Sep: 121-126.

Werner Y, Lindberg M. Transepidermal water loss in dry and clinically normal

skin in patients with atopic dermatitis. Acta Dermato-Venerelogica. 1985; 65

(2):102-5.

Tagami H, Yoshikuni K. Interrelationship between water-barrier and reservoir

functions of pathologic stratum corneum. ARCHIVES OF DERMATOLOGY.

1985 May; 121 (5): 642-5.

Elias PM, Menon GK. Structural and lipid biochemical correlates of the

epidermal permeability barrier. Advances in Lipid Research. 1991; 24: 1-26.

Lee SH, Elias PM, Proksch E, Menon GK, Mao-Quiang M, Feingold KR.

Calcium and potassium are important regulators of barrier homeostasis in

murine epidermis. Journal of Clinical Investigation. 1992 Feb; 89 (2): 530-8.

Mauro T, Bench G, Sidderas-Haddad E, Feingold K, Elias P, Cullander C. Acute

barrier perturbation abolishes the Ca2+ and K+ gradients in murine epidermis:

quantitative measurement using PIXE. Journal of Investigative Dermatology.

1998 Dec; 111 (6): 1198-201.

Denda M, Katagiri C, Hirao T, Maruyama N, Takahashi M. Some magnesium

salts and a mixture of magnesium and calcium salts accelerate skin barrier

recovery. Archives of Dermatological Research. 1999 Oct; 291 (10): 560-3.

Edelberg R. Relation of electrical properties of skin to structure and physiologic

state. Journal of Investigative Dermatology. 1977 Sep; 69 (3): 324-7.

Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic

86

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

phosphorylation. Biological reviews of the Cambridge Philosophical Society.

1966 Aug; 41 (3): 445-502.

Denda M, Kumazawa N. Negative electric potential induces alteration of ion

gradient and lamellar body secretion in the epidermis, and accelerates skin

barrier recovery after barrier disruption. Journal of Investigative Dermatology.

2002 Jan; 118 (1): 65-72.

Träuble H, Eibl H. Electrostatic effects on lipid phase transitions: membrane

structure and ionic environment. Proceedings of the National Academy of

Sciences of the United States of America. 1974 Jan; 71 (1): 214-9.

Lee SH, Choi EH, Feingold KR, Jiang S, Ahn SK. Iontophoresis itself on

hairless mouse skin induces the loss of the epidermal calcium gradient without

skin barrier impairment. Journal of Investigative Dermatology. 1998 Jul; 111

(1): 39-43.

Frick M, Bertocchi C, Jennings P, Haller T, Mair N, Singer W, Pfaller W,

Ritsch-Marte M, Dietl P. Ca2+ entry is essential for cell strain-induced lamellar

body fusion in isolated rat type II pneumocytes. American Journal of Physiology

- Lung Cellular and Molecular Physiology. 2004 Jan; 286 (1): L210-20.

Miklavc P, Frick M, Wittekindt OH, Haller T, Dietl P. Fusion-activated Ca(2+)

entry: an "active zone" of elevated Ca(2+) during the postfusion stage of

lamellar body exocytosis in rat type II pneumocytes. PLOS ONE. 2010 Jun 8; 5

(6): e10982.

Chattopadhyay S, Sun P, Wang P, Abonyo B, Cross NL, Liu L. Fusion of

lamellar body with plasma membrane is driven by the dual action of annexin II

tetramer and arachidonic acid. Journal of Biological Chemistry. 2003 Oct 10;

278 (41): 39675-83.

Ma AS, Ozers LJ. Annexins I and II show differences in subcellular localization

and differentiation-related changes in human epidermal keratinocytes. Archives

of Dermatological Research. 1996 Sep; 288 (10): 596-603.

Denda M, Nakatani M, Ikeyama K, Tsutsumi M, Denda S. Epidermal

keratinocytes as the forefront of the sensory system. Experimental Dermatology.

2007 Mar; 16 (3): 157-61.

Denda M, Tsutsumi M, Denda S. Topical application of TRPM8 agonists

accelerates skin permeability barrier recovery and reduces epidermal

proliferation induced by barrier insult: role of cold-sensitive TRP receptors in

epidermal permeability barrier homoeostasis. Experimental Dermatology. 2010

Sep; 19 (9): 791-5.

87

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

Denda M, Tsutsumi M, Goto M, Ikeyama K, Denda S. Topical application of

TRPA1 agonists and brief cold exposure accelerate skin permeability barrier

recovery. Journal of Investigative Dermatology. 2010 Jul; 130 (7): 1942-5.

Reiss K, Meyer-Hoffert U, Fischer J, Sperrhacke M, Wu Z, Dimitrieva O,

Krenek P, Suchanova S, Buryova H, Brauer R, Sedlacek R. Expression and

regulation of murine SPINK12, a potential orthologue of human LEKTI2.

Experimental Dermatology. 2011 Nov; 20 (11): 905-10.

Denda M, Kitamura K, Elias PM, Feingold KR. trans-4-(Aminomethyl)

cyclohexane carboxylic acid (T-AMCHA), an anti-fibrinolytic agent, accelerates

barrier recovery and prevents the epidermal hyperplasia induced by epidermal

injury in hairless mice and humans. Journal of Investigative Dermatology. 1997

Jul; 109 (1): 84-90.

Elias PM, Ahn SK, Denda M, Brown BE, Crumrine D, Kimutai LK, Kömüves L,

Lee SH, Feingold KR. Modulations in epidermal calcium regulate the expression

of differentiation-specific markers. Journal of Investigative Dermatology. 2002

Nov; 119 (5): 1128-36.

Menon GK, Price LF, Bommannan B, Elias PM, Feingold KR. Selective

obliteration of the epidermal calcium gradient leads to enhanced lamellar body

secretion. Journal of Investigative Dermatology. 1994 May; 102 (5): 789-95.

Behne MJ, Barry NP, Hanson KM, Aronchik I, Clegg RW, Gratton E, Feingold

K, Holleran WM, Elias PM, Mauro TM. Neonatal development of the stratum

corneum pH gradient: localization and mechanisms leading to emergence of

optimal barrier function. Journal of Investigative Dermatology. 2003 Jun; 120

(6): 998-1006.

Tarutani M, Nakajima K, Uchida Y, Takaishi M, Goto-Inoue N, Ikawa M, Setou

M, Kinoshita T, Elias PM, Sano S, Maeda Y. GPHR-dependent functions of the

Golgi apparatus are essential for the formation of lamellar granules and the skin

barrier. Journal of Investigative Dermatology. 2012 Aug; 132 (8): 2019-25.

Yokozeki H, Satoh T, Katayama I, Nishioka K. Airborne contact dermatitis due

to Japanese cedar pollen. Contact Dermatitis. 2007 Apr; 56 (4): 224-8.

Tanaka M, Okada M, Zhen YX, Inamura N, Kitano T, Shirai S, Sakamoto K,

Inamura T, Tagami H. Decreased hydration state of the stratum corneum and

reduced amino acid content of the skin surface in patients with seasonal allergic

rhinitis. British Journal of Dermatology. 1998 Oct; 139 (4): 618-21.

Ibrahim AR, Kawamoto S, Aki T, Shimada Y, Rikimaru S, Onishi N, Babiker EE,

Oiso I, Hashimoto K, Hayashi T, Ono K. Molecular cloning and

88

(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)

immunochemical characterization of a novel major Japanese cedar pollen

allergen belonging to the aspartic protease family. International Archives of

Allergy and Immunology. 2010; 152 (3): 207-18.

Vinhas R, Cortes L, Cardoso I, Mendes VM, Manadas B, Todo-Bom A, Pires E,

Veríssimo P. Pollen proteases compromise the airway epithelial barrier through

degradation of transmembrane adhesion proteins and lung bioactive peptides.

Allergy. 2011 Aug; 66 (8): 1088-98.

Shimada SG, Shimada KA, Collins JG. Scratching behavior in mice induced by

the proteinase-activated receptor-2 agonist, SLIGRL-NH2. European Journal of

Pharmacology. 2006 Jan 20; 530 (3): 281-3.

Hanley K, Rassner U, Elias PM, Williams ML, Feingold KR. Epidermal barrier

ontogenesis: maturation in serum-free media and acceleration by glucocorticoids

and thyroid hormone but not selected growth factors. Journal of Investigative

Dermatology. 1996 Mar; 106 (3): 404-11.

Denda M, Sato J, Masuda Y, Tsuchiya T, Koyama J, Kuramoto M, Elias PM,

Feingold KR. Exposure to a dry environment enhances epidermal permeability

barrier function. Journal of Investigative Dermatology. 1998 Nov; 111 (5):

858-63.

Mägert HJ, Drögemüller K, Raghunath M. Serine proteinase inhibitors in the

skin: role in homeostasis and disease. Current Protein and Peptide Science. 2005

Jun; 6 (3): 241-54.

Chen Y, Yang C, Wang ZJ. Proteinase-activated receptor 2 sensitizes transient

receptor potential vanilloid 1, transient receptor potential vanilloid 4, and

transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain.

Neuroscience. 2011 Oct 13; 193: 440-51.

Patel KN, Liu Q, Meeker S, Undem BJ, Dong X. Pirt, a TRPV1 modulator, is

required for histamine-dependent and -independent itch. PLOS ONE. 2011; 6

(5): e20559.

Wilson SR, Gerhold KA, Bifolck-Fisher A, Liu Q, Patel KN, Dong X, Bautista

DM. TRPA1 is required for histamine-independent, Mas-related G

protein-coupled receptor-mediated itch. Nature Neuroscience. 2011 May; 14 (5):

595-602.

Elias PM, Nau P, Hanley K, Cullander C, Crumrine D, Bench G,

Sideras-Haddad E, Mauro T, Williams ML, Feingold KR. Formation of the

epidermal calcium gradient coincides with key milestones of barrier ontogenesis

in the rodent. Journal of Investigative Dermatology. 1998 Apr; 110 (4): 399-404.

89

(97)

(98)

(99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)

Bikle DD, Ratnam A, Mauro T, Harris J, Pillai S. Changes in calcium

responsiveness and handling during keratinocyte differentiation. Potential role of

the calcium receptor. Journal of Clinical Investigation. 1996 Feb 15; 97 (4):

1085-93.

Darbellay B, Barnes L, Boehncke WH, Saurat JH, Kaya G. Reversal of murine

epidermal atrophy by topical modulation of calcium signaling. Journal of

Investigative Dermatology. 2014 Jun; 134 (6): 1599-608.

Tsutsumi M, Inoue K, Denda S, Ikeyama K, Goto M, Denda M.

Mechanical-stimulation-evoked calcium waves in proliferating and differentiated

human keratinocytes. Cell and Tissue Research. 2009 Oct; 338 (1): 99-106.

Pang Z, Sakamoto T, Tiwari V, Kim YS, Yang F, Dong X, Güler AD, Guan Y,

Caterina MJ. Selective keratinocyte stimulation is sufficient to evoke

nociception in mice. Pain. 2015 Apr; 156 (4): 656-65.

Greig AV, Linge C, Cambrey A, Burnstock G. Purinergic receptors are part of a

signaling system for keratinocyte proliferation, differentiation, and apoptosis in

human fetal epidermis. Journal of Investigative Dermatology. 2003 Nov; 121

(5): 1145-9.

Meşe G, Richard G, White TW. Gap junctions: basic structure and function.

Journal of Investigative Dermatology. 2007 Nov; 127 (11): 2516-24.

Barr TP, Albrecht PJ, Hou Q, Mongin AA, Strichartz GR, Rice FL.

Air-stimulated ATP release from keratinocytes occurs through connexin

hemichannels. PLOS ONE. 2013; 8 (2): e56744.

Celli A, Mackenzie DS, Crumrine DS, Tu CL, Hupe M, Bikle DD, Elias PM,

Mauro TM. Endoplasmic reticulum Ca2+ depletion activates XBP1 and controls

terminal differentiation in keratinocytes and epidermis. British Journal of

Dermatology. 2011 Jan;164(1):16-25.

Menon GK, Elias PM. Ultrastructural localization of calcium in psoriatic and

normal human epidermis. ARCHIVES OF DERMATOLOGY. 1991 Jan; 127 (1):

57-63.

Bosen F, Celli A, Crumrine D, vom Dorp K, Ebel P, Jastrow H, Dörmann P,

Winterhager E, Mauro T, Willecke K. Altered epidermal lipid processing and

calcium distribution in the KID syndrome mouse model Cx26S17F. FEBS

Letters. 2015 Jul 8; 589 (15): 1904-10.

Celli A, Sanchez S, Behne M, Hazlett T, Gratton E, Mauro T. The epidermal

Ca2+ gradient: Measurement using the phasor representation of fluorescent

lifetime imaging. Biophysical Journal. 2010 Mar 3; 98 (5): 911-21.

90

(108) Proksch E, Feingold KR, Man MQ, Elias PM. Barrier function regulates

epidermal DNA synthesis. Journal of Clinical Investigation. 1991 May; 87 (5):

1668-73.

(109) Denda M, Sato J, Tsuchiya T, Elias PM, Feingold KR. Low humidity stimulates

epidermal DNA synthesis and amplifies the hyperproliferative response to

barrier disruption: implication for seasonal exacerbations of inflammatory

dermatoses. Journal of Investigative Dermatology. 1998 Nov; 111 (5): 873-8.

(110) Tsutsumi M, Denda S, Inoue K, Ikeyama K, Denda M. Calcium ion gradients

and dynamics in cultured skin slices of rat hindpaw in response to stimulation

with ATP. Journal of Investigative Dermatology. 2009 Mar; 129 (3): 584-9.

(111) Bikle DD, Mauro TM. Calcium, Orai1, and epidermal proliferation. Journal of

Investigative Dermatology. 2014 Jun; 134 (6): 1506-8.

(112) Tang EH, Vanhoutte PM. Gap junction inhibitors reduce endothelium-dependent

contractions in the aorta of spontaneously hypertensive rats. Journal of

Pharmacology and Experimental Therapeutics. 2008 Oct; 327 (1): 148-53.

(113) Barbe MT, Monyer H, Bruzzone R. Cell-cell communication beyond connexins:

the pannexin channels. Physiology (Bethesda). 2006 Apr; 21: 103-114.

(114) Penuela S, Kelly JJ, Churko JM, Barr KJ, Berger AC, Laird DW. Panx1

regulates cellular properties of keratinocytes and dermal fibroblasts in skin

development and wound healing. Journal of Investigative Dermatology. 2014

Jul; 134 (7): 2026-35.

(115) Locovei S, Wang J, Dahl G. Activation of pannexin 1 channels by ATP through

P2Y receptors and by cytoplasmic calcium. FEBS Letters. 2006 Jan 9; 580 (1):

239-44.

(116) Suadicani SO, Brosnan CF, Scemes E. P2X7 receptors mediate ATP release and

amplification of astrocytic intercellular Ca2+ signaling. Journal of Neuroscience.

(117)

(118)

(119)

(120)

2006 Feb 1; 26 (5): 1378-85.

Zylka MJ, Rice FL, Anderson DJ. Topographically distinct epidermal

nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron. 2005

Jan 6; 45 (1): 17-25.

Schäfer-Korting M, Schreiber S. Use of skin equivalents for dermal absorption

and toxicity. Roberts, M. S. and Walters, K. A. (eds) Dermal Absorption and

Toxicity Assessment, Informa, USA. 2008 141-159.

Elias PM. Defensive functions of the stratum corneum: Integrative aspects. Elias

PM. and Feingold KR. (eds) Skin Barrier, Taylor Francis, USA. 2006 5-14.

Sun R, Anna C, Debra C, Melanie H, Adame LC, Pennypacker SD, Park K,

91

(121)

(122)

(123)

(124)

(125)

(126)

(127)

(128)

(129)

(130)

(131)

Uchida Y, Feingold KR, Elias PM, Ilic D, and Mauro TM. Lowered humidity

produces human epidermal equivalents with enhanced barrier properties. Tissue

Engineering Part C: Methods. 2015 Jan; 21 (1): 15-22.

Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in

the skin. Nat Rev Mol Cell Biol. 2005 Apr; 6 (4): 328-40.

Brandner JM, Zorn-Kruppa M, Yoshida T, Moll I, Beck LA, and Benedetto AD.

Epidermal tight junctions in health and disease. Tissue Barriers. 2015

January-June; 3(1-2): e974451.

Torkamani N, Rufaut NW, Jones L, Sinclair R. Epidermal cells expressing

putative cell markers in nonglabrous skin existing in direct proximity with the

distal end of the arrector pili muscle. Stem Cells International. 2016 May; 2016:

1286315.

Seirin LS. Lateral inhibition-induced pattern formation controlled by the size

and geometry of the cell. Journal of Theoretical Biology. 2016 Sep; 404: 51-65.

Hagiwara M. An in vitro-in silico interface platform for spatiotemporal analysis

of pattern formation in collective epithelial cells. Integrative Biology. 2016 Aug;

8 (8): 861-8.

Giangreco A, Goldie SJ, Failla V, Saintigny G. Watt FM. Human skin aging is

associated with reduced expression of the stem cell markers beta1 integrin and

MCSP. Journal of Investigative Dermatology. 2010 Feb; 130 (2): 604-8.

Ghadially R, Brown BE, Sequeira-Martin SM, Feingold KR. Elias PM. The aged

epidermal permeability barrier. Structural, functional, and lipid biochemical

abnormalities in humans and a senescent murine model. Journal of Clinical

Investigation. 1995 May; 95 (5): 2281-2290.

Halder G, Dupont S. Piccolo S. Transduction of mechanical and cytoskeletal

cues by YAP and TAZ. Nature Reviews Molecular Cell Biology. 2012 Sep; 13

(9): 591-600.

Porazinski S, Wang H, Asaoka Y, Behrndt M, Miyamoto T, Morita H, Hata S,

Sasaki T, Krens SFG, Osada Y, Asaka S, Momoi A, Linton S, Miesfeld JB, Link

BA, Senga T, Shimizu N, Nagase H, Matsuura S, Bagby S, Kondoh H, Nishina

H, Heisenberg CP, Furutani-Seiki M. YAP is essential for tissue tension to ensure

vertebrate 3D body shape. Nature. 2015 May; 521 (7551): 217-221.

Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F,

Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S. Role of YAP/TAZ

in mechanotransduction. Nature. 2011 Jun; 474 (7350): 179-83.

Beverdam A, Claxton C, Zhang X, James G, Harvey KF, Key B. Yap controls

92

(132)

(133)

(134)

(135)

(136)

(137)

(138)

stem/progenitor cell proliferation in the mouse postnatal epidermis. Journal of

Investigative Dermatology. 2013 Jun; 133 (6): 1497-505.

Zhou K, Muroyama A, Underwood J, Leylek R, Ray S, Soderling SH, Lechler T.

Actin-related protein2/3 complex regulates tight junctions and terminal

differentiation to promote epidermal barrier formation. Proceedings of the

National Academy of Sciences of the United States of America. 2013 Oct; 110

(40): e3820-9.

Lee MJ, Byun MR, Furutani-Seiki M, Hong JH, Jung HS. YAP and TAZ

regulate skin wound healing. Journal of Investigative Dermatology, 2014 Feb;

134 (2): 518-525.

Randall MJ, Jüngel A, Rimann M, Wuertz-Kozak K. Advances in the

Biofabrication of 3D Skin in vitro: Healthy and Pathological Models. Frontiers

in Bioengineering and Biotechnology. 2018 Oct; 31 (6) :154.

Guttman-Yassky E, Nograles KE, Krueger JG. Contrasting pathogenesis of

atopic dermatitis and psoriasis--part I: clinical and pathologic concepts. The

Journal of Allergy and Clinical Immunology. 2011 May; 127 (5): 1110-8.

Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, Goudie

DR, Sandilands A, Campbell LE, Smith FJ, O'Regan GM, Watson RM, Cecil JE,

Bale SJ, Compton JG, DiGiovanna JJ, Fleckman P, Lewis-Jones S, Arseculeratne

G, Sergeant A, Munro CS, El Houate B, McElreavey K, Halkjaer LB, Bisgaard

H, Mukhopadhyay S, McLean WH. Common ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る