リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「^<13>N-ammonia positron emission tomography-derived left ventricular strain in patients after heart transplantation validated using cardiovascular magnetic resonance feature tracking as reference」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

^<13>N-ammonia positron emission tomography-derived left ventricular strain in patients after heart transplantation validated using cardiovascular magnetic resonance feature tracking as reference

Kawakubo, Masateru 河窪, 正照 カワクボ, マサテル Nagao, Michinobu 長尾, 充展 ナガオ, ミチノブ Kikuchi, Noriko 菊池, 規子 キクチ, ノリコ Yamamoto, Atsushi ヤマモト, アツシ Nakao, Risako ナカオ, リサコ Matsuo, Yuka マツオ, ユカ Kaneko, Koichiro 金子, 恒一郎 カネコ, コウイチロウ Watanabe, Eri ワタナベ, エリ Sasaki, Masayuki 佐々木, 雅之 ササキ, マサユキ Nunoda, Shinichi ヌノダ, シンイチ Sakai, Shuji 坂井, 修二 サカイ, シュウジ 九州大学

2021.10.13

概要

Objective
Heart transplant rejection leads to cardiac allograft vasculopathy (CAV). ^<13>-ammonia positron emission tomography (PET) can be useful in detecting CAV, as it can evaluate both epicardial v

この論文で使われている画像

参考文献

1. Carvajal-Juarez I, Monroy-Gonzalez A, Espinola-Zavaleta N, Meave-Gonzalez A,

Alexanderson-Rosas E. PET/CT with 13N-ammonia: characteristics and utility in

coronary artery disease. Ann Nucl Cardiol 2019;5:63-8.

2. Fiechter M, Ghadri JR, Gebhard C, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al.

Diagnostic value of 13N-ammonia myocardial perfusion PET: added value of

myocardial flow reserve. J Nucl Med 2012;53:1230-4.

3. Giubbini R, Peli A, Milan E, Sciagr R, Camoni L, Albano D, et al. Comparison

between the summed difference score and myocardial blood flow measured by 13Nammonia. J Nucl Cardiol 2018;2:1621-8.

4. Fathala A, Aboulkheir M, Shoukri MM, Alsergani H. Diagnostic accuracy of 13Nammonia myocardial perfusion imaging with PET-CT in the detection of coronary

artery disease. Cardiovasc Diagn Ther 2019;9:35-42.

5. Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Longterm prognostic value of 13N-ammonia myocardial perfusion positron emission

tomography added value of coronary flow reserve. J Am Coll Cardiol 2009;54:150-6.

6. Bravo PE, Bergmark BA, Vita T, Taqueti VR, Gupta A, Seidelmann S, et al.

Diagnostic and prognostic value of myocardial blood flow quantification as noninvasive indicator of cardiac allograft vasculopathy. Eur Heart J 2018;39:316-23. doi:

10.1093/eurheartj/ehx683.

7. Hertz MI, Taylor DO, Trulock EP, Boucek MM, Mohacsi PJ, Edwards LB, et al. The

Registry of the International Society for Heart and Lung Transplantation: nineteenth

official report-2002. J Heart Lung Transplant 2002;21:950-70. doi: 10.1016/s1053-

19

2498(02)00498-9.

8. Ramzy D, Rao V, Brahm J, Miriuka S, Delgado D, Ross HJ. Cardiac allograft

vasculopathy: a review. Can J Surg 2005;48:319-27.

9. Schmauss D, Weis M. Cardiac allograft vasculopathy: recent developments.

Circulation 2008;117:2131-41. doi: 10.1161/CIRCULATIONAHA.107.711911.

10. Aranda JM Jr, Hill J. Cardiac transplant vasculopathy. Chest 2000;118:1792-800. doi:

10.1378/chest.118.6.1792.

11. Spes CH, Angermann CE. Stress echocardiography for assessment of cardiac allograft

vasculopathy. Z Kardiol 2000;89:IX/50-IX/53. doi: 10.1007/s003920070028.

12. Spes CH, Mudra H, Schnaack SD, Klauss V, Reichle FM, Uberfuhr P, et al.

Dobutamine stress echocardiography for noninvasive diagnosis of cardiac allograft

vasculopathy: a comparison with angiography and intravascular ultrasound. Am J

Cardiol 1996;78:168-74. doi: 10.1016/s0002-9149(96)90391-4.

13. Kawakubo M, Nagao M, Yamamoto A, Nakao R, Matsuo Y, Fukushim K, et al. 13Nammonia positron emission tomography-derived endocardial strain for the assessment

of ischemia using feature-tracking in high-resolution cine imaging. J Nucl Cardiol

2021. doi: 10.1007/s12350-021-02677-9.

14. Nakao R, Nagao M, Yamamoto A, Fukushima K, Watanabe E, Sakai S, et al. Papillary

muscle ischemia on high-resolution cine imaging of nitrogen-13 ammonia positron

emission tomography: association with myocardial flow reserve and prognosis in

coronary artery disease. J Nucl Cardiol 2020. doi: 10.1007/s12350-020-02231-z.

15. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Dorbala S, et al.

ASNC imaging guidelines/SNMMI procedure standard for positron emission

20

tomography (PET) nuclear cardiology procedures. J Nucl Cardiol 2016;23:1187-226.

16. Germano G, Erel J, Kiat H, Kavanagh PB, Berman DS. Quantitative LVEF and

qualitative regional function from gated thallium-201 perfusion SPECT. J Nucl Med

1997;38:749-54.

17. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al.

Standardized myocardial segmentation and nomenclature for tomographic imaging of

the heart. J Cardiovasc Magn Reson 2002;4:203-10.

18. Kawakubo M, Arai H, Nagao M, Yamasaki Y, Sanui K, Nishimura H, et al. Global left

ventricular area strain using standard two-dimensional cine MR imaging with interslice interpolation. Cardiovasc Imaging Asia 2018;2:187-193.

19. Mangion K, Burke NMM, McComb C, Carrick D, Woodward R, Berry C. Featuretracking myocardial strain in healthy adults- a magnetic resonance study at 3.0 tesla.

Sci Rep 2019;9:3239.

20. Arash Salarian (2021). Intraclass Correlation Coefficient (ICC)

(https://www.mathworks.com/matlabcentral/fileexchange/22099-intraclass-correlationcoefficient-icc), MATLAB Central File Exchange. Retrieved September 14, 2021.

21. Costanzo MR, Naftel DC, Pritzker MR, Heilman JK 3rd, Boehmer JP, Brozena SC, et

al. Heart transplant coronary artery disease detected by coronary angiography: a

multiinstitutional study of preoperative donor and recipient risk factors. Cardiac

Transplant Research Database. J Heart Lung Transplant 1998;17:744-53.

22. Erley J, Genovese D, Tapaskar N, Alvi N, Rashedi N, Besser SA, et al.

Echocardiography and cardiovascular magnetic resonance based evaluation of

myocardial strain and relationship with late gadolinium enhancement. J Cardiovasc

21

Magn Reson 2019;21:46. doi: 10.1186/s12968-019-0559-y.

23. Pryds K, Larsen AH, Hansen MS, Grøndal AYK, Tougaard RS, Hansson NH, et al.

Myocardial strain assessed by feature tracking cardiac magnetic resonance in patients

with a variety of cardiovascular diseases - A comparison with echocardiography. Sci

Rep 2019;9:11296. doi: 10.1038/s41598-019-47775-4.

24. Wu VC, Takeuchi M, Otani K, Haruki N, Yoshitani H, Tamura M, et al. Effect of

through-plane and twisting motion on left ventricular strain calculation: direct

comparison between two-dimensional and three-dimensional speckle-tracking

echocardiography. J Am Soc Echocardiogr 2013;26:1274-81.e4. doi:

10.1016/j.echo.2013.07.006.

25. Khorsand A, Graf S, Eidherr H, Wadsak W, Kletter K, Sochor H, et al. Gated cardiac

13N-NH3 PET for assessment of left ventricular volumes, mass, and ejection fraction:

comparison with electrocardiography-gated 18F-FDG PET. J Nucl Med 2005;46:200913.

26. Syeda B, Höfer P, Pichler P, Vertesich M, Bergler-Klein J, Roedler S, et al. Twodimensional speckle-tracking strain echocardiography in long-term heart transplant

patients: a study comparing deformation parameters and ejection fraction derived from

echocardiography and multislice computed tomography. Eur J Echocardiogr

2011;12:490-6. doi: 10.1093/ejechocard/jer064.

27. Nakamura M, Kido T, Kido T, Tanabe Y, Matsuda T, Nishiyama Y, et al. Quantitative

circumferential strain analysis using adenosine triphosphate-stress/rest 3-T tagged

magnetic resonance to evaluate regional contractile dysfunction in ischemic heart

disease. Eur J Radiol 2015;84:1493-1501. doi: 10.1016/j.ejrad.2015.04.025.

22

Figure legends

Fig. 1 Semi-automatic strain analysis with feature tracking. The upper images of a to c are

short-axis slices, and the lower images are horizontal long-axis slices. The left column of a

to c shows cardiovascular magnetic resonance images, and the right column shows positron

emission tomography images. (a) The endocardial borders defined manually at the end of

the diastole frame (magenta and green lines). The template images are automatically set,

centered by the points on the borders (yellow squares). (b) Automatic tracking of the points

during the cardiac cycle using a local template-matching technique. (c) The endocardial

borders are automatically contoured as lines with spline interpolation of the tracked points.

(d) Calculation of the systolic strain from the strain curves as the minimum values of the

normalized regional lengths

Fig. 2 Scatter plots and Bland Altman plots between PET-derived strains and CMRderived strains. Graphs of the left column of a to d are shown as black dotted plots of the

strain values. The dashed lines represent approximate lines. Graphs of the right column are

shown as Bland Altman plots. Blue solid lines show bias, and dashed red lines show limits

of agreement. Plots of a to d show the basal, middle, apical, and LS regions, respectively.

PET positron emission tomography, CMR cardiovascular magnetic resonance, CS

circumferential strain, LS longitudinal strain

Fig. 3 Circumferential strains between left ventricular regions. Box whisker plots of the

circumferential strains are shown. PET-derived strains (a) and CMR-derived strains (b) are

23

indicated. Regional circumferential strains are anterior, inferior, septum, and lateral, from

left to right. **p < 0.01, *p < 0.05. PET positron emission tomography, CMR

cardiovascular magnetic resonance

Fig. 4 Colored circumferential strain maps according to left ventricular 16-segments model.

PET-derived strain maps at resting and stress states (a and b) and a CMR-derived strain

map (c

red. PET positron emission tomography, CMR cardiovascular magnetic resonance

Fig. 5 Longitudinal strains between left ventricular regions. Box whisker plots of the

longitudinal strains are shown. PET-derived strains (a) and CMR-derived strains (b) are

indicated. The regional longitudinal strains are the free wall and septum (left and right,

respectively). **p < 0.01, *p < 0.05. PET positron emission tomography, CMR

cardiovascular magnetic resonance

b. Search and Matching for a cardiac cycle

c. Auto contouring of endocardium

d. Strain calculation

Strain (normalized wall length) [%]

a. Manual contouring at end-diastole

-20

Circumferential strain

-40

Longitudinal strain

R-R duration [%]

Fig. 1 Semi-automatic strain analysis with feature-tracking

The upper images of a to c are short-axis slices, and the lower images are

horizontal long-axis slices. The left column of a to c shows cardiovascular

magnetic resonance images, and the right column shows positron emission

tomography images.

(a) The endocardial borders defined manually at the end of the diastole frame

(magenta and green lines). The template images are automatically set, centered

by the points on the borders (yellow squares). (b) Automatic tracking of the

points during the cardiac cycle using a local template-matching technique. (c)

The endocardial borders are automatically contoured as lines with spline

interpolation of the tracked points. (d) Calculation of the systolic strain from

the strain curves as the minimum values of the normalized regional lengths.

Fig. 2 Scatter plots and Bland−Altman plots between PET-derived

strains and CMR derived strains

Graphs of the left column of a to d are shown as black dotted plots of the

strain values. The dashed lines are indicated as approximate lines. Graphs

of the right column are shown as Bland–Altman plots. Blue solid lines

show bias, and dashed red lines show limits of agreement.

Plots of a to d show the basal, middle, apical, and LS regions, respectively.

PET, positron emission tomography; CMR, cardiovascular magnetic

resonance; CS, circumferential strain; LS, longitudinal strain.

Fig. 3 Circumferential strains between left ventricular regions

Box–whisker plots of the circumferential strains are shown. PET-derived strains

(a) and CMR-derived strains (b) are indicated. Regional circumferential strains

are anterior, inferior, septum, and lateral, from left to right.

**p<0.01, *p<0.05. PET, positron emission tomography; CMR, cardiovascular

magnetic resonance.

a. Resting PET

b. Stress PET

Circumferential strain [%]

Circumferential strain [%]

Circumferential strain [%]

c. CMR

Fig. 4 Colored circumferential strain maps according to left ventricular 16segments model

PET-derived strain maps at resting and stress states (a and b) and a CMRderived strain map (c) are indicated. Circumferential strains of −20 % to −30 %

are described in blue to red.

PET, positron emission tomography; CMR, cardiovascular magnetic resonance.

Fig.5 Longitudinal strains between left ventricular regions

Box–whisker plots of the longitudinal strains are shown. PET-derived strains (a)

and CMR-derived strains (b) are indicated. The regional longitudinal strains are

the free wall and septum (left and right, respectively).

**p<0.01, *p<0.05. PET, positron emission tomography; CMR, cardiovascular

magnetic resonance.

TABLE 1

Characteristics

Patients after heart transplantation (n = 15)

Male/Female

P-value

10/5

Age (y)

43 ± 14

WHO classification ( / / / )

10/2/3/0

Years after transplantation

12 ± 8

6/9

PET to CMR duration (day)

LV volume parameters

67 ± 23

PET

CMR

EDV (mL)

79.5 ± 22.9

92.3 ± 18.3

0.002

ESV (mL)

22.3 ± 10.1

44.9 ± 13.7

<0.0001

EF (%)

72.8 ± 6.3

52.0 ± 6.1

<0.0001

PET

CMR

Basal CS (%)

-25.0 ± 3.4

-25.5 ± 3.9

0.49

Middle CS (%)

-25.1 ± 4.8

-23.8 ± 4.6

0.048

Apical CS (%)

-27.2 ± 5.1

-25.8 ± 5.1

0.13

LS (%)

-22.0 ± 1.6

-16.9 ± 1.9

<0.0001

LV strain parameters

HR, heart rate; WHO, world health organization; PET, positron emission tomography; CMR,

cardiovascular magnetic resonance; LV, left ventricular; EDV, end-diastole volume; ESV, end-systole

volume; EF, ejection fraction; CS, circumferential strain; LS, longitudinal strain.

TABLE 2 Parameters of agreement of LV strains and LV volumes

LV strains [%]

Parameter

Correlation

coefficients

Bias (LOA)

SDD

ICC (95% CI)

Basal CS

Middle

CS

LV volumes

EDV

ESV

[mL]

[mL]

0.87**

0.80**

0.87**

0.75**

7.1 (

12.7 (

22.6 (

20.8

10.5,

35.6,

39.1,

(11.9,

3.8)

10.2)

6.1)

30.0)

Apical CS

LS

EF [%]

0.69**

0.80**

0.79**

0.6 ( 5.4,

1.3 (

1.4 (

6.5)

5.8, 3.3)

8.2, 5.3)

3.0

2.3

3.4

1.7

11.7

8.4

4.5

0.69

0.89

0.79

0.85

0.85

0.77

0.75

(0.29

(0.70

(0.47

(0.61

(0.62

(0.45

(0.41

0.88)

0.96)

0.92)

0.95)

0.95)

0.92)

0.91)

CI, confidence interval; CS, circumferential strain; EDV, end-diastolic volume; ESV, end-systolic volume;

EF, ejection fraction; ICC, intraclass correlation coefficient; LOA, limit of agreement; LV, left ventricular;

LS, longitudinal strain; SDD, standard deviation of the difference.

Underlined parameters are normal data distribution.

**p < 0.01.

TABLE 3 Correlation coefficients between circumferential strains and myocardial flow reserves

Stress/Resting

Ratio

Stress PET

Resting PET

CMR

Correlation

coefficients

P-value

Correlation

coefficients

P-value

Correlation

coefficients

P-value

Correlation

coefficients

P-value

Global CS vs.

Global MFR

0.30

0.28

0.02

0.94

0.14

0.62

0.21

0.44

RCA CS vs.

RCA MFR

0.05

0.85

0.07

0.80

0.20

0.48

0.03

0.90

LAD CS vs.

LAD MFR

0.53

0.04

0.20

0.48

0.35

0.20

0.37

0.18

LCx CS vs.

LCx MFR

0.32

0.25

0.08

0.77

0.09

0.74

0.07

0.80

due to data non-normal distribution were expressed with underline.

PET, positron emission tomography; CMR, cardiovascular magnetic resonance; CS, circumferential

strain, MFR; myocardial flow reserve; RCA, right coronary artery; LAD, left anterior descending artery;

LCx, left circumflex coronary artery.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る