リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「^<13>N-ammonia positron emission tomography-derived endocardial strain for the assessment of ischemia using feature-tracking in high-resolution cine imaging」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

^<13>N-ammonia positron emission tomography-derived endocardial strain for the assessment of ischemia using feature-tracking in high-resolution cine imaging

Kawakubo, Masateru 河窪, 正照 カワクボ, マサテル Nagao, Michinobu 長尾, 充展 ナガオ, ミチノブ Yamamoto, Atsushi ヤマモト, アツシ Nakao, Risako ナカオ, リサコ Matsuo, Yuka マツオ, ユカ Fukushim, Kenji フクシマ, ケンジ Watanabe, Eri ワタナベ, エリ Sakai, Akiko サカイ, アキコ Sasaki, Masayuki 佐々木, 雅之 ササキ, マサユキ Sakai, Shuji 坂井, 修二 サカイ, シュウジ 九州大学

2021.06.11

概要

Background:
Assessing endocardial strain using a single ^<13>-ammonia positron emission tomography (PET) scan would be clinically useful, given the association between ischemia and myocardial deformati

この論文で使われている画像

関連論文

参考文献

1.

Carvajal-Juarez I, Monroy-Gonzalez A, Espinola-Zavaleta N, Meave-Gonzalez A,

Alexanderson-Rosas E. PET/CT with 13N-ammonia: PET/CT with 13N-ammonia. Ann Nucl Cardiol

2019;5:63-8.

2.

Fiechter M, Ghadri JR, Gebhard C, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Diagnostic value

of 13N-ammonia myocardial perfusion PET: Added value of myocardial flow reserve. J Nucl Med

2012;53:1230-4.

3.

Giubbini R, Peli A, Milan E, Sciagrà R, Camoni L, Albano D, et al. Comparison between the

Fo

summed difference score and myocardial blood flow measured by 13N-ammonia. J Nucl Cardiol

2018;2:1621-8.

4.

rP

Fathala A, Aboulkheir M, Shoukri MM, Alsergani H. Diagnostic accuracy of 13 N-ammonia

ee

myocardial perfusion imaging with PET-CT in the detection of coronary artery disease. Cardiovasc

Diagn Ther 2019;9:35-42.

5.

rR

Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic

value of 13N-ammonia myocardial perfusion positron emission tomography. Added value of

ev

coronary flow reserve. J Am Coll Cardiol 2009;54:150-6.

6.

iew

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Nakao R, Nagao M, Yamamoto A, Fukushima K, Watanabe E, Sakai S, et al. Papillary muscle

ischemia on high-resolution cine imaging of nitrogen-13 ammonia positron emission tomography:

Association with myocardial flow reserve and prognosis in coronary artery disease. J Nucl Cardiol

2020; doi:10.1007/s12350-020-02231-z.

7.

Khorsand A, Graf S, Eidherr H, Wadsak W, Kletter K, Sochor H, et al. Gated cardiac 13N-NH3 PET

for assessment of left ventricular volumes, mass, and ejection fraction: comparison with

electrocardiography-gated 18F-FDG PET. J Nucl Med 2005;46:2009-13.

8.

Nagao M, Hatakenaka M, Matsuo Y, Kamitani T, Higuchi K, Shikata F, et al. Subendocardial

contractile impairment in chronic ischemic myocardium: Assessment by strain analysis of 3T tagged

CMR. J Cardiovasc Magn Reson 2012;14:14.

16

Footer Text

Page 18 of 34

Page 19 of 34

9.

Kido T, Nagao M, Kido T, Kurata A, Miyagawa M, Ogimoto A, et al. Stress/rest circumferential

strain in non-ischemia, ischemia, and infarction: Quantification by 3 tesla tagged magnetic resonance

imaging. Circ J 2013;77:1235-41.

10. Driss AB, Lepage BDC, Sfaxi A, Hakim M, Elhadad S, Tabet JY, et al. Strain predicts left

ventricular functional recovery after acute myocardial infarction with systolic dysfunction. Int J

Cardiol 2020;307:1-7.

11. Stathogiannis K, Mor-Avi V, Rashedi N, Lang RM, Patel AR. Regional myocardial strain by cardiac

magnetic resonance feature tracking for detection of scar in ischemic heart disease. Magn Reson

Fo

Imaging 2020;68:190-6.

12. Berry C, Mangion K, Pathan F. Spotlight on strain following myocardial infarction. JACC

rP

Cardiovasc Imaging 2018;11:1445-7.

ee

13. Reindl M, Tiller C, Holzknecht M, Lechner I, Beck A, Plappert D, et al. Prognostic implications of

global longitudinal strain by feature-tracking cardiac magnetic resonance in ST-elevation myocardial

rR

infarction. Circ Cardiovasc Imaging 2019;12:e009404.

14. Mordi I, Bezerra H, Carrick D, Tzemos N. The combined incremental prognostic value of LVEF,

ev

late gadolinium enhancement, and global circumferential strain assessed by CMR. JACC Cardiovasc

iew

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Journal of Nuclear Cardiology

Imaging 2015;8:540-9.

15. Kawakubo M, Yamasaki Y, Kamitani T, Sagiyama K, Matsuura Y, Hino T, et al. Clinical usefulness

of right ventricular 3D area strain in the assessment of treatment effects of balloon pulmonary

angioplasty in chronic thromboembolic pulmonary hypertension: comparison with 2D

feature-tracking MRI. Eur Radiol 2019;29:4583-92.

16. Kawakubo M, Nagao M, Ishizaki U, Shiina Y, Inai K, Yamasaki Y, et al. Feature-tracking MRI

fractal analysis of right ventricular remodeling in adults with congenitally corrected transposition of

the great arteries. Radiol Cardiothorac Imaging 2019;1:e190026.

17. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Dorbala S, et al. ASNC

imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear

17

Footer Text

Journal of Nuclear Cardiology

cardiology procedures. J Nucl Cardiol 2016;23:1187-26.

18. Cerqueira MD, Weissman, NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized

myocardial segmentation and nomenclature for tomographic imaging of the heart. J Cardiovasc

Magn Reson 2002;4:203-10.

19. Germano G, Erel J, Kiat H, Kavanagh PB, Berman DS. Quantitative LVEF and qualitative regional

function from gated thallium-201 perfusion SPECT. J Nucl Med 1997;38:749-54.

20. Yamasaki Y, Abe K, Kamitani T, Hosokawa K, Kawakubo M, Sagiyama K, et al. Balloon

pulmonary angioplasty improves right atrial reservoir and conduit functions in chronic

Fo

thromboembolic pulmonary hypertension. Eur Heart J Cardiovasc Imaging 2020;21:855-62.

21. Mangion K, Burke NMM, McComb C, Carrick D, Woodward R, Berry C. Feature-tracking

rP

myocardial strain in healthy adults- a magnetic resonance study at 3.0 tesla. Sci Rep 2019;9:3239.

ee

22. Sicari R, Cortigiani L. The clinical use of stress echocardiography in ischemic heart disease.

Cardiovasc Ultrasound 2017;15:7.

rR

23. Weiss AT, Berman DS, Lew AS, Nielsen J, Potkin B, Swan HJ, et al. Transient ischemic dilation of

the left ventricle on stress thallium-201 scintigraphy: A marker of severe and extensive coronary

artery disease. J Am Coll Cardiol 1987;9:752-9.

iew

ev

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

24. Eitel I, Stiermaier T, Lange T, Rommel KP, Koschalka A, Kowallick JT, et al. Cardiac magnetic

resonance myocardial feature tracking for optimized prediction of cardiovascular events following

myocardial infarction. JACC Cardiovasc Imaging 2018;11:1433-44.

25. Cheng A, Langer F, Rodriguez F, Criscione JC, Daughters GT, Miller DC, et al. Transmural cardiac

strains in the lateral wall of the ovine left ventricle. Am J Physiol Hear Circ Physiol

2005;288:1546-56.

26. Kawakubo M, Arai H, Nagao M, Yamasaki Y, Sanui K, Nishimura H, et al. Global left ventricular

area strain using standard two-dimensional cine magnetic resonance imaging with inter-slice

interpolation. Cardiovasc Imaging Asia 2018;2:187-93.

27. Ishizaki U, Nagao M, Shiina Y, Inai K, Mori H, Takahashi T, et al. Global strain and dyssynchrony

18

Footer Text

Page 20 of 34

Page 21 of 34

of the single ventricle predict adverse cardiac events after the Fontan procedure: Analysis using

feature-tracking cine magnetic resonance imaging. J Cardiol 2019;73:163-70.

28. Schmidt B, Dick A, Treutlein M, Schiller P, Bunck AC, Maintz D, et al. Intra- and inter-observer

reproducibility of global and regional magnetic resonance feature tracking derived strain parameters

of the left and right ventricle. Eur J Radiol 2017;89:97-105.

29. Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU. Normal human left and right

ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession

imaging sequences. J Magn Reson Imaging 2003;17:323-9.

iew

ev

rR

ee

rP

Fo

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Journal of Nuclear Cardiology

19

Footer Text

Journal of Nuclear Cardiology

FIGURE LEGENDS

Fig. 1 Resting and adenosine stress protocols for 13N-ammonia PET

A low-dose fast helical (1.5-s) computed tomography scan was performed for attenuation correction.

Next, 13N-ammonia (185 MBq) was administered intravenously, and electrocardiography-gated

acquisition was performed (10 min at 16 frames/cardiac cycle using a parallel list mode). After the resting

PET scan, an adenosine stress test was performed (0.12 mg/kg/min for 6 min). Then, 13N-ammonia (555

MBq) was infused at 3 min after completion of the vasodilator infusion, and the stress PET scan was

performed using the same acquisition parameters.

Fo

PET, positron emission tomography

rP

Fig. 2 Semi-automatic strain analysis with feature-tracking

ee

(a) The regional endocardial border is manually defined at the end of the diastole frame (left: short-axis,

middle: horizontal long-axis, right: vertical long-axis). (b) Endocardium points are automatically and

rR

evenly set based on the line length. (c) The points are automatically tracked during a cardiac cycle using a

local template-matching technique. (d) The endocardial regions are automatically segmented as lines with

ev

spline interpolation of points tracked during a cardiac cycle. Systolic strain is calculated from the strain

iew

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Page 22 of 34

curves as the minimum values of the normalized regional lengths.

Fig. 3 Global systolic strain values according to global MFR status

(a) Global circumferential strain values for patients with abnormal global myocardial flow reserves

(purple/dark purple, <2.0) and normal global myocardial flow reserves (red/dark red,

and in control

patients (cyan/dark cyan). (b) Global longitudinal strain values for patients with abnormal global

myocardial flow reserves (purple/dark purple, <2.0) and normal global myocardial flow reserves

(red/dark red,

and in control patients (cyan/dark cyan).

**p<0.01, *p<0.05. MFR, myocardial flow reserve

20

Footer Text

Page 23 of 34

Fig. 4 Correlations between global strains and LVEFs

Scatter plots show the correlations between global strain and LVEF. Plots in the upper row and lower row

indicate the values in the stressed and resting states, respectively. Plots in the left and right columns

indicate the correlations of LVEF with circumferential and longitudinal strains, respectively.

LVEF, left ventricular ejection fraction

Fig. 5 Regional systolic strain values according to regional MFR status

Strain values for patients with abnormal myocardial flow reserves (purple/dark purple, <2.0) and normal

Fo

myocardial flow reserves (red/dark red,

, and in control patients (cyan/dark cyan): the upper low

indicates the circumferential strain values of the right coronary artery territory (a), left anterior

rP

descending artery territory (b), and left circumflex coronary artery territory (c), and the lower low

ee

indicates the longitudinal strain values of the right coronary artery territory (d), left anterior descending

artery territory (e), and left circumflex coronary artery territory (f).

rR

**p<0.01, *p<0.05. MFR, myocardial flow reserve

ev

Fig. 6 Circumferential strain polar maps at stress (left) and 13N-ammonia PET cine images (right)

iew

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Journal of Nuclear Cardiology

for a woman in her 60s with 90% stenosis at the proximal LAD, 50% stenosis at the proximal RCA,

and 50% stenosis at the diagonal branch

Before (upper row) and after (lower row) percutaneous coronary intervention. The cold color of the strain

map indicates a decrease in strain, while the warm color indicates an increase. After percutaneous

coronary intervention, there is a marked improvement in strain reduction over a wide area of the apex to

anteroseptal wall, and the cine images show improvement of blood flow in the anteroseptal wall and

reduction of the left ventricular cavity.

21

Footer Text

Journal of Nuclear Cardiology

TABLE 1 Baseline patient characteristics and 13N-ammonia PET measurements

Patients

Characteristics

Global

Control

Global

All

P-value

MFR<2.0

Number

95

39

56

Age (years)

68±11

71±10

65±11

Male/female

62/33

22/17

40/16

6/4

69 (73%)

29 (74%)

40 (71%)

0 (0%)

68 (72%)

23 (60%)

45 (80%)

0 (0%)

Cardiovascular risk factors

Dyslipidemia

Diabetes mellitus

Family history

10

<0.05

41±15

44 (46%)

18 (46%)

26 (46%)

0 (0%)

42 (44%)

15 (38%)

27 (48%)

0 (0%)

22 (23%)

8 (21%)

14 (25%)

0 (0%)

Clinical history of coronary artery disease

14 (15%)

11 (28%)

3 (5%)

0 (0%)

Percutaneous coronary intervention

21 (22%)

11 (28%)

10 (18%)

0 (0%)

8 (8%)

3 (8%)

5 (9%)

0 (0%)

Summed stress score

5.7±7.1

8.6± .3

3.6±5.3

<0.01

1.5±3.3

Summed resting score

1.8±3.4

2.7±4.2

1.1±2.5

<0.01

0.5±1.2

Summed difference score

3.9±5.8

5.9±7.5

2.5±3.7

<0.01

1.0±2.2

Stressed myocardial blood flow (mL/g/min)

2.07±0.65

1.62±0.55

2.39±0.52

<0.01

2.43±1.00

Resting myocardial blood flow (mL/g/min)

0.98±0.25

1.05±0.29

0.92±0.22

0.03

1.06±0.28

Global MFR

2.2±0.7

1.5±0.4

2.6±0.5

<0.01

2.2±0.6

RCA MFR

2.3±0.8

1.5±0.5

2.7±0.6

<0.01

2.3±0.6

Coronary artery bypass grafting

iew

Myocardial infarction

ev

rR

Smoking

ee

rP

Hypertension

Fo

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Page 24 of 34

Ammonia PET measurements

22

Footer Text

Page 25 of 34

LAD MFR

2.2±0.7

1.6±0.5

2.6±0.6

<0.01

2.3±0.6

LCx MFR

2.2±0.7

1.6±0.4

2.6±0.6

<0.01

2.2±0.6

Resting LVEDV (mL)

88±28

90±34

86±24

0.79

71±15

Resting LVESV (mL)

30±22

36±28

25±15

0.14

17±5

Resting LVEF (%)

70±12

66±15

72±10

<0.05

76±5

Stress LVEDV (mL)

101±28

103±33

100±26

0.84

76±15

Stress LVESV (mL)

34±22

43±28

31±17

0.06

17±5

Stress LVEF (%)

67±12

62±16

71±9

<0.01

78±4

Fo

MFR, myocardial flow reserve; RCA, right coronary artery; LAD, left anterior descending artery; LCx,

left circumflex artery; LV, left ventricular; EDV, end-diastole volume; ESV, end-systole volume; EF,

ejection fraction.

iew

ev

rR

ee

rP

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Journal of Nuclear Cardiology

23

Footer Text

Journal of Nuclear Cardiology

TABLE 2 Reproducibility of strain analyses

Intra-observer reproducibility

Inter-observer reproducibility

ICC (95%

Parameter

Bias (LOA)

ICC (95%

SDD

Bias (LOA)

SDD

CI)

CI)

Stress

–0.7 (–3.5,

CS

0.98 (0.92–

(–2.7,

1.4

0.98 (0.93–

1.3

2.0)

0.99)

2.5)

0.95 (0.82–

3.2 (–0.2,

1.00)

Global

0.4 (–1.6,

LS

Fo

1.0

2.3)

(–6.6,

CS

0.99)

6.7)

0.97 (0.96–

0.8 (–4.0,

2.5

5.6)

2.1

0.985(0.83–

4.9 (1.5,

0.99)

8.4)

0.97 (0.88–

0.5 (–4.1,

0.99)

0.3 (–1.6,

0.99 (0.97–

LS

1.0

2.2)

1.00)

(–6.9,

CS

0.91 (0.68–

0.99)

0.96 (0.83–

5.1)

0.99)

2.5 (–2.2,

0.94 (0.79–

2.4

7.2)

0.99)

–0.8 (–6.2,

3.3

5.9)

0.97 (0.90–

2.4

iew

3.4)

LAD

0.99)

1.8

ev

–0.7 (–4.8,

CS

5.0)

rR

LS

0.96 (0.84–

2.6

0.98)

ee

RCA

0.99)

(–5.3,

3.2

6.1)

0.97 (0.89–

1.7

rP

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Page 26 of 34

0.91 (0.68–

2.8

0.98)

4.6)

0.99 (0.97–

3.0 (–1.1,

0.98)

LCx

–0.0 (–1.9,

LS

0.98

1.9)

0.96 (0.85–

2.1

1.00)

7.2)

0.99)

Resting

–0.7 (–3.5,

Global CS

0.99 (0.95–

(–2.7,

1.4

2.0)

0.98 (0.93–

1.3

1.00)

24

Footer Text

2.5)

1.00)

Page 27 of 34

0.1 (–1.8,

LS

0.99 (0.97–

2.5 (–1.9,

1.00)

6.9)

0.96 (0.85–

1.0 (–3.8,

1.0

0.1 (–5.2,

CS

0.95 (0.83–

2.3

2.0)

2.7

0.99)

0.96 (0.86–

2.4

5.5)

0.99)

5.7)

0.99 (0.97–

3.0 (–1.1,

0.99)

RCA

LS

0.0 (1.9, 1.9)

1.0

(–5.2,

CS

1.00)

7.2)

0.96 (0.87–

–0.2 (–3.9,

2.6

0.2 (–2.2,

3.6)

0.99)

0.99 (0.96–

1.9 (–3.0,

0.94 (0.79–

1.2

2.6)

3.4

5.1)

0.94 (0.78–

0.3 (–7.4,

0.99 (0.97–

1.0

0.92 (0.70–

8.0)

0.98)

3.0 (–1.1,

0.96 (0.85–

2.1

7.2)

ev

1.00)

0.99)

3.9

rR

–0.0 (–1.9,

1.9)

6.9)

0.98)

LCx

LS

2.5

1.00)

ee

–1.5 (–8.2,

CS

0.98 (0.92–

0.99)

rP

LS

0.99)

1.9

5.0)

LAD

0.96 (0.85–

2.1

Fo

0.99)

RCA, right coronary artery; LAD, left anterior descending artery; LCx, left circumflex artery; CS;

iew

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Journal of Nuclear Cardiology

circumferential strain, LS; longitudinal strain, LOA, limit of agreement; SDD, standard deviation of the

difference; ICC, intraclass correlation coefficient; CI, confidence interval.

25

Footer Text

Journal of Nuclear Cardiology

rR

ee

rP

Fo

Resting and adenosine stress protocols for 13N-ammonia positron emission tomography A lowdose fast helical (1.5-s) computed tomography scan was performed for attenuation correction. Next, 13Nammonia (185 MBq) was administered intravenously, and electrocardiography-gated acquisition was

performed (10 min at 16 frames/cardiac cycle using a parallel list mode). After the resting PET scan, an

adenosine stress test was performed (0.12 mg/kg/min for 6 min). Then, 13N-ammonia (555 MBq) was

infused at 3 min after completion of the vasodilator infusion, and the stress PET scan was performed using

the same acquisition parameters.PET, positron emission tomography

iew

ev

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

84x59mm (600 x 600 DPI)

Footer Text

Page 28 of 34

Page 29 of 34

rR

ee

rP

Fo

Semi-automatic strain analysis with feature-tracking

(a) The regional endocardial border is manually defined at the end of the diastole frame (left: short-axis,

middle: horizontal long-axis, right: vertical long-axis). (b) Endocardium points are automatically and evenly

set based on the line length. (c) The points are automatically tracked during a cardiac cycle using a local

template-matching technique. (d) The endocardial regions are automatically segmented as lines with spline

interpolation of points tracked during a cardiac cycle. Systolic strain is calculated from the strain curves as

the minimum values of the normalized regional lengths.

iew

ev

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Journal of Nuclear Cardiology

Footer Text

Journal of Nuclear Cardiology

Fo

Global systolic strain values according to global MFR status

(a) Global circumferential strain values for patients with abnormal global myocardial flow reserves

(purple/dark purple, <2.0) and normal global myocardial flow reserves (red/dark red,

and in control

patients (cyan/dark cyan). (b) Global longitudinal strain values for patients with abnormal global myocardial

flow reserves (purple/dark purple, <2.0) and normal global myocardial flow reserves (red/dark red,

and in control patients (cyan/dark cyan).

**p<0.01, *p<0.05. MFR, myocardial flow reserve

iew

ev

rR

ee

rP

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Footer Text

Page 30 of 34

Page 31 of 34

ev

rR

ee

rP

Fo

Correlations between global strains and LVEFsScatter plots show the correlations between global strain

and LVEF. Plots in the upper row and lower row indicate the values in the stressed and resting states,

respectively. Plots in the left and right columns indicate the correlations of LVEF with circumferential and

longitudinal strains, respectively.LVEF, left ventricular ejection fraction

iew

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Journal of Nuclear Cardiology

Footer Text

Journal of Nuclear Cardiology

ee

rP

Fo

Regional systolic strain values according to regional MFR status

Strain values for patients with abnormal myocardial flow reserves (purple/dark purple, <2.0) and normal

myocardial flow reserves (red/dark red,

and in control patients (cyan/dark cyan): the upper low

indicates the circumferential strain values of the right coronary artery territory (a), left anterior descending

artery territory (b), and left circumflex coronary artery territory (c), and the lower low indicates the

longitudinal strain values of the right coronary artery territory (d), left anterior descending artery territory

(e), and left circumflex coronary artery territory (f).

**p<0.01, *p<0.05. MFR, myocardial flow reserve

iew

ev

rR

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Footer Text

Page 32 of 34

Page 33 of 34

rR

ee

rP

Fo

Circumferential strain polar maps at stress (left) and 13N-ammonia PET cine images (right) for a

woman in her 60s with 90% stenosis at the proximal LAD, 50% stenosis at the proximal RCA,

and 50% stenosis at the diagonal branch

Before (upper row) and after (lower row) percutaneous coronary intervention. The cold color of the strain

map indicates a decrease in strain, while the warm color indicates an increase. After percutaneous coronary

intervention, there is a marked improvement in strain reduction over a wide area of the apex to anteroseptal

wall, and the cine images show improvement of blood flow in the anteroseptal wall and reduction of the left

ventricular cavity.

iew

ev

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Journal of Nuclear Cardiology

84x61mm (600 x 600 DPI)

Footer Text

Journal of Nuclear Cardiology

Supplementary Movies

Supplementary Movie 1

Short-axis: Calculation of the short-axis regional circumferential strain at the middle ventricle and the

tracked points during a cardiac cycle. Cyan solid and dotted lines indicate segments 7 and 8 of the left

ventricle, yellow solid and dotted lines indicate segments 9 and 10, and magenta solid and dotted lines

indicate segments 11 and 12. This algorithm can be made available by contacting our research team

(contact: k-mstr@hs.med.kyushu-u.ac.jp).

Fo

Supplementary Movie 2

Horizontal long-axis: Calculation of the horizontal long-axis regional strain at the middle ventricle and

rP

the tracked points during a cardiac cycle. The magenta solid line indicates the longitudinal strain curve for

ee

a cardiac cycle. This algorithm can be made available by contacting our research team (contact: kmstr@hs.med.kyushu-u.ac.jp).

ev

Supplementary Movie 3

rR

Vertical long-axis: Calculation of vertical long-axis regional strain at the middle ventricle and the

iew

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

tracked points during a cardiac cycle. The magenta solid line indicates the longitudinal strain curve for a

cardiac cycle. This algorithm can be made available by contacting our research team (contact: kmstr@hs.med.kyushu-u.ac.jp).

Footer Text

Page 34 of 34

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る