リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Micelle-like Nanoassemblies of Short Peptides Create Antimicrobial Selectivity in a Conventional Antifungal Drug」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Micelle-like Nanoassemblies of Short Peptides Create Antimicrobial Selectivity in a Conventional Antifungal Drug

Morita, Kenta Nishimura, Yuya Ishii, Jun Maruyama, Tatsuo 神戸大学

2023.01.27

概要

The discovery of novel antibacterial drugs against infectious diseases has decreased over the past few decades because of their poor cost performance. In this study, we report that the nanoassembly of a short-peptide hydrogelator (P1) endowed novel antifungal selectivity to a conventional antifungal drug, amphotericin B (AmB), which expands its application spectrum. Clinical use of AmB is limited because of poor water solubility and poor selectivity in its toxicity, which often causes harmful effects on tissues. P1 was the low-molecular-weight hydrogelator (LMWHg) that showed low cytotoxicity and was enzymatically degraded. In general, an LMWHg entraps foreign hydrophobic molecules inside the hydrophobic space in the self-assembled body. P1 successfully solubilized AmB in water as a form of a nanocomplex (NC) that had a chain-like structure. The NCs showed remarkably low toxicity toward Saccharomyces cerevisiae as a model fungus when compared with free AmB, meaning that P1 suppressed the antifungal activity of AmB via coassembly. The suppressed antifungal activity of AmB recovered when P1 in the NCs was degraded by a protease to liberate AmB from the coassembly with P1. P1 at a high concentration formed a hydrogel incorporating AmB (AmB-P1 gel), in which the antifungal activity of AmB was suppressed as well as that in the NC. The coassembly with AmB affected the morphology of the P1 self-assembly. While S. cerevisiae that did not secrete proteases formed a colony on the AmB-P1 gel, Aspergillus oryzae that secreted proteases did not grow on the AmB-P1 gel at all, resulting in the selective killing of the fungus. Because some of malignant, infectious fungi secrete proteases, the coassembly strategy of conventional antifungal drugs with self-assembling molecules should lead to “drug repositioning” of approved drugs in the health and medical fields.

この論文で使われている画像

参考文献

(1)

Durand, G. A.; Raoult, D.; Dubourg, G. Antibiotic Discovery: History, Methods and

Perspectives. Int. J. Antimicrob. Agents 2019, 53 (4), 371–382.

https://doi.org/10.1016/j.ijantimicag.2018.11.010.

(2)

Hutchings, M.; Truman, A.; Wilkinson, B. Antibiotics: Past, Present and Future. Curr.

Opin. Microbiol. 2019, 51, 72–80. https://doi.org/10.1016/j.mib.2019.10.008.

(3)

Aminov, R. I. A Brief History of the Antibiotic Era: Lessons Learned and Challenges for

the Future. Front. Microbiol. 2010, 1 (134), 1–7.

https://doi.org/10.3389/fmicb.2010.00134.

(4)

Dheman, N.; Mahoney, N.; Cox, E. M.; Farley, J. J.; Amini, T.; Lanthier, M. L. An

Analysis of Antibacterial Drug Development Trends in the United States, 1980–2019.

Clin. Infect. Dis. 2021, 73 (11), E4444–E4450. https://doi.org/10.1093/cid/ciaa859.

(5)

Brown, E. D.; Wright, G. D. Antibacterial Drug Discovery in the Resistance Era. Nature

2016, 529 (7586), 336–343. https://doi.org/10.1038/nature17042.

26

(6)

Zhu, P.; Cai, L.; Liu, Q.; Feng, S.; Ruan, H.; Zhang, L.; Zhou, L.; Jiang, H.; Wang, H.;

Wang, J.; Chen, J. One-Pot Synthesis of α-Linolenic Acid Nanoemulsion-Templated

Drug-Loaded Silica Mesocomposites as Efficient Bactericide against Drug-Resistant

Mycobacterium Tuberculosis. Eur. J. Pharm. Sci. 2022, 176 (May), 106261.

https://doi.org/10.1016/j.ejps.2022.106261.

(7)

Ashburn, T. T.; Thor, K. B. Drug Repositioning: Identifying and Developing New Uses

for Existing Drugs. Nat. Rev. Drug Discov. 2004, 3 (8), 673–683.

https://doi.org/10.1038/nrd1468.

(8)

Kumar, R.; Harilal, S.; Gupta, S. V.; Jose, J.; Thomas, D. G.; Uddin, M. S.; Shah, M. A.;

Mathew, B. Exploring the New Horizons of Drug Repurposing: A Vital Tool for Turning

Hard Work into Smart Work. Eur. J. Med. Chem. 2019, 182, 111602.

https://doi.org/10.1016/j.ejmech.2019.111602.

(9)

Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.;

Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of Therapeutic Targets for SARS-CoV-2 and

Discovery of Potential Drugs by Computational Methods. Acta Pharm. Sin. B 2020, 10

(5), 766–788. https://doi.org/10.1016/j.apsb.2020.02.008.

(10) Messer, S. A.; Moet, G. J.; Kirby, J. T.; Jones, R. N. Activity of Contemporary Antifungal

Agents, Including the Novel Echinocandin Anidulafungin, Tested against Candida Spp.,

Cryptococcus Spp., and Aspergillus Spp.: Report from the SENTRY Antimicrobial

Surveillance Program (2006 to 2007). J. Clin. Microbiol. 2009, 47 (6), 1942–1946.

https://doi.org/10.1128/JCM.02434-08.

27

(11) Tortorano, A. M.; Prigitano, A.; Morroni, G.; Brescini, L.; Barchiesi, F. Candidemia:

Evolution of Drug Resistance and Novel Therapeutic Approaches. Infect. Drug Resist.

2021, 14, 5543–5553. https://doi.org/10.2147/idr.s274872.

(12) Ellis, D. Amphotericin B: Spectrum and Resistance. J. Antimicrob. Chemother. 2002, 49

(SUPL. S1), 7–10. https://doi.org/10.1093/jac/49.suppl_1.7.

(13) Laniado-Laborín, R.; Cabrales-Vargas, M. N. Amphotericin B: Side Effects and Toxicity.

Rev. Iberoam. Micol. 2009, 26 (4), 223–227. https://doi.org/10.1016/j.riam.2009.06.003.

(14) Eriksson, U.; Seifert, B.; Schaffner, A. Comparison of Effects of Amphotericin B

Deoxycholate Infused over 4 or 24 Hours: Randomised Controlled Trial. Br. Med. J. 2001,

322 (7286), 579–582. https://doi.org/10.1136/bmj.322.7286.579.

(15) Kamiński, D. M. Recent Progress in the Study of the Interactions of Amphotericin B with

Cholesterol and Ergosterol in Lipid Environments. Eur. Biophys. J. 2014, 43 (10–11),

453–467. https://doi.org/10.1007/s00249-014-0983-8.

(16) Matsumori, N.; Tahara, K.; Yamamoto, H.; Morooka, A.; Doi, M.; Oishi, T.; Murata, M.

Direct Interaction between Amphotericin B and Ergosterol in Lipid Bilayers as Revealed

by 2H NMR Spectroscopy. J. Am. Chem. Soc. 2009, 131 (33), 11855–11860.

https://doi.org/10.1021/ja9033473.

(17) Saka, Y.; Mita, T. Interaction of Amphotericin B with Cholesterol in Monolayers,

Aqueous Solutions, and Phospholipid Bilayers. J. Biochem. 1998, 123 (5), 798–805.

https://doi.org/10.1093/oxfordjournals.jbchem.a022007.

(18) Latgé, J. P. Aspergillus Fumigatus and Aspergillosis. Clin. Microbiol. Rev. 1999, 12 (2),

310–350. https://doi.org/10.1128/cmr.12.2.310.

28

(19) Abad-zapatero, C.; Goldman, R.; Muchmore, S. W.; Hutchins, C.; Stewart, K.; Navaza, J.;

Payne, C. D.; Ray, T. L.; Group, A.; Laboratories, A.; Park, A. Structure of a Secreted

Aspartic Protease from C. Albicans Complexed with a Potent Inhibitor: Implications for

the Design of Antifungal Agents. Protein Sci. 1996, 5, 640–652.

(20) Kryštůfek, R.; Šácha, P.; Starková, J.; Brynda, J.; Hradilek, M.; Tloušt’ová, E.; Grzymska,

J.; Rut, W.; Boucher, M. J.; Drąg, M.; Majer, P.; Hájek, M.; Řezáčová, P.; Madhani, H.

D.; Craik, C. S.; Konvalinka, J. Re-Emerging Aspartic Protease Targets: Examining

Cryptococcus Neoformans Major Aspartyl Peptidase 1 as a Target for Antifungal Drug

Discovery. J. Med. Chem. 2021, 64 (10), 6706–6719.

https://doi.org/10.1021/acs.jmedchem.0c02177.

(21) Martinez, D. A.; Oliver, B. G.; Gräser, Y.; Goldberg, J. M.; Li, W.; Martinez-Rossi, N.

M.; Monod, M.; Shelest, E.; Barton, R. C.; Birch, E.; Brakhage, A. A.; Chen, Z.; Gurr, S.

J.; Heiman, D.; Heitman, J.; Kosti, I.; Rossi, A.; Saif, S.; Samalova, M.; Saunders, C. W.;

Shea, T.; Summerbell, R. C.; Xu, J.; Young, S.; Zeng, Q.; Birren, B. W.; Cuomo, C. A.;

White, T. C. Comparative Genome Analysis of Trichophyton Rubrum and Related

Dermatophytes Reveals Candidate Genes Involved in Infection. MBio 2012, 3 (5).

https://doi.org/10.1128/mBio.00259-12.

(22) Monod, M.; Capoccia, S.; Léchenne, B.; Zaugg, C.; Holdom, M.; Jousson, O. Secreted

Proteases from Pathogenic Fungi. Int. J. Med. Microbiol. 2002, 292 (5–6), 405–419.

https://doi.org/10.1078/1438-4221-00223.

(23) Gräser, Y.; Monod, M.; Bouchara, J. P.; Dukik, K.; Nenoff, P.; Kargl, A.; Kupsch, C.;

Zhan, P.; Packeu, A.; Chaturvedi, V.; De Hoog, S. New Insights in Dermatophyte

Research. Med. Mycol. 2018, 56, S2–S9. https://doi.org/10.1093/mmy/myx141.

29

(24) Maeda, H. Role of Microbial Proteases in Pathogenesis. Microbiol. Immunol. 1996, 40

(10), 685–699. https://doi.org/10.1111/j.1348-0421.1996.tb01129.x.

(25) Du, X.; Zhou, J.; Shi, J.; Xu, B. Supramolecular Hydrogelators and Hydrogels: From Soft

Matter to Molecular Biomaterials. Chem. Rev. 2015, 115 (24), 13165–13307.

https://doi.org/10.1021/acs.chemrev.5b00299.

(26) Suzuki, M.; Yumoto, M.; Shirai, H.; Hanabusa, K. Supramolecular Gels Formed by

Amphiphilic Low-Molecular-Weight Gelators of Nα-Nεdiacyl-L-Lysine Derivatives.

Chem. - A Eur. J. 2008, 14 (7), 2133–2144. https://doi.org/10.1002/chem.200701111.

(27) De Loos, M.; Feringa, B. L.; Van Esch, J. H. Design and Application of Self-Assembled

Low Molecular Weight Hydrogels. European J. Org. Chem. 2005, No. 17, 3615–3631.

https://doi.org/10.1002/ejoc.200400723.

(28) Bieser, A. M.; Tiller, J. C. Structure and Properties of Low Molecular Weight

Hydrogelators. J. Phys. Chem. B 2007, 111, 13180–13187.

https://doi.org/10.1021/jp076495x.

(29) Tanaka, A.; Fukuoka, Y.; Morimoto, Y.; Honjo, T.; Koda, D.; Goto, M.; Maruyama, T.

Cancer Cell Death Induced by the Intracellular Self-Assembly of an Enzyme-Responsive

Supramolecular Gelator. J. Am. Chem. Soc. 2015, 137 (2), 770–775.

https://doi.org/10.1021/ja510156v.

(30) Restu, W. K.; Yamamoto, S.; Nishida, Y.; Ienaga, H.; Aoi, T.; Maruyama, T. Hydrogel

Formation by Short D-Peptide for Cell-Culture Scaffolds. Mater. Sci. Eng. C 2020, 111,

110746. https://doi.org/10.1016/j.msec.2020.110746.

(31) Yamamoto, S.; Nishimura, K.; Morita, K.; Kanemitsu, S.; Nishida, Y.; Morimoto, T.; Aoi,

T.; Tamura, A.; Maruyama, T. Microenvironment PH-Induced Selective Cell Death for

30 Potential Cancer Therapy Using Nanofibrous Self-Assembly of a Peptide Amphiphile.

Biomacromolecules 2021, 22 (6), 2524–2531.

https://doi.org/10.1021/acs.biomac.1c00267.

(32) Restu, W. K.; Nishida, Y.; Yamamoto, S.; Ishii, J.; Maruyama, T. Short Oligopeptides for

Biocompatible and Biodegradable Supramolecular Hydrogels. Langmuir 2018, 34 (27),

8065–8074. https://doi.org/10.1021/acs.langmuir.8b00362.

(33) Albadr, A. A.; Coulter, S. M.; Porter, S. L.; Thakur, R. R. S.; Laverty, G. Ultrashort SelfAssembling Peptide Hydrogel for the Treatment of Fungal Infections. Gels 2018, 4 (2), 1–

15. https://doi.org/10.3390/gels4020048.

(34) Fleming, S.; Ulijn, R. V. Design of Nanostructures Based on Aromatic Peptide

Amphiphiles. Chem. Soc. Rev. 2014, 43 (23), 8150–8177.

https://doi.org/10.1039/c4cs00247d.

(35) Panja, S.; Dietrich, B.; Adams, D. J. Controlling Syneresis of Hydrogels Using Organic

Salts. Angew. Chemie - Int. Ed. 2022, 61 (4), 1–6. https://doi.org/10.1002/anie.202115021.

(36) Basu, K.; Baral, A.; Basak, S.; Dehsorkhi, A.; Nanda, J.; Bhunia, D.; Ghosh, S.;

Castelletto, V.; Hamley, I. W.; Banerjee, A. Peptide Based Hydrogels for Cancer Drug

Release: Modulation of Stiffness, Drug Release and Proteolytic Stability of Hydrogels by

Incorporating d-Amino Acid Residue(S). Chem. Commun. 2016, 52 (28), 5045–5048.

https://doi.org/10.1039/c6cc01744d.

(37) Skilling, K. J.; Citossi, F.; Bradshaw, T. D.; Ashford, M.; Kellam, B.; Marlow, M.

Insights into Low Molecular Mass Organic Gelators: A Focus on Drug Delivery and

Tissue Engineering Applications. Soft Matter 2014, 10 (2), 237–256.

https://doi.org/10.1039/c3sm52244j.

31 (38) Kumura, H.; Ishido, T.; Shimazaki, K. Production and Partial Purification of Proteases

from Aspergillus Oryzae Grown in a Medium Based on Whey Protein as an Exclusive

Nitrogen Source. J. Dairy Sci. 2011, 94 (2), 657–667. https://doi.org/10.3168/jds.20103587.

(39) Ojima, Y.; Sawabe, T.; Konami, K.; Azuma, M. Construction of Hypervesiculation

Escherichia Coli Strains and Application for Secretory Protein Production. Biotechnol.

Bioeng. 2020, 117 (3), 701–709. https://doi.org/10.1002/bit.27239.

(40) Shiina, S.; Ohshima, T.; Sato, M. Extracellular Release of Recombinant α-Amylase from

Escherichia Coli Using Pulsed Electric Field. Biotechnol. Prog. 2004, 20 (5), 1528–1533.

https://doi.org/10.1021/bp049760u.

TABLE OF CONTENTS

Novel antifungal selectivity was created in a conventional antifungal drug, amphotericin B (AmB)

via the co-assembly formation with a short-peptide hydrogelator (P1). The co-assembly complex

suppressed the intrinsic antifungal activity. When P1 in the complex was degraded by a protease

secreted from a fungus, the suppressed antifungal activity of AmB recovered, resulting in the

selective killing of the fungus.

32

33 ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る