リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Tunable Light Emission from Lignin: Various Photoluminescence Properties Controlled by the Lignocellulosic Species, Extraction Method, Solvent, and Polymer」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Tunable Light Emission from Lignin: Various Photoluminescence Properties Controlled by the Lignocellulosic Species, Extraction Method, Solvent, and Polymer

Takada, Masatsugu Okazaki, Yutaka Kawamoto, Haruo Sagawa, Takashi 京都大学 DOI:10.1021/acsomega.1c06104

2022.02.15

概要

This report describes the tunable light emission from lignin, which was achieved by carefully selecting the lignocellulosic species, extraction method, solvent, and polymer. Lignins comprising various taxonomic species with distinct primary structures exhibited diverse photoluminescence (PL) intensities and spectral patterns. Investigations probing how the solvent affects the PL properties revealed that the PL quenching phenomenon originated from the decreasing distance between aromatic moieties (luminophores). Therefore, polymers can play key roles as media to modulate the distance between luminophores, and the PL intensity can be enhanced by employing a relatively stiff polymer. In terms of the emission color, the PL spectral pattern can be tuned by changing the lignin primary structures or by deprotonating the phenolic hydroxyl groups. By modulating these influencing factors, various light emissions were obtained from lignins in solutions and transparent solid materials.

この論文で使われている画像

参考文献

(1) Lora, J. H. In Monomers, Polymers and Composites from Renewable

Resources; Belgacem, M. N.; Gandini, A., Eds.; Elsevier: Amsterdam,

2008.

(2) Shikinaka, K.; Nakamura, M.; Otsuka, Y. Strong UV Absorption

by Nanoparticulated Lignin in Polymer Films with Reinforcement of

Mechanical Properties. Polymer 2020, 190, No. 122254.

(3) Sadeghifar, H.; Ragauskas, A. Lignin as a UV Light Blocker  A

Review. Polymers 2020, 12, 1134.

(4) Chabbert, B.; Terryn, C.; Herbaut, M.; Vaidya, A.; Habrant, A.;

Paës, G.; Donaldson, L. Fluorescence Techniques Can Reveal Cell

Wall Organization and Predict Saccharification in Pretreated Wood

Biomass. Ind. Crops Prod. 2018, 123, 84−92.

(5) Donaldson, L. A.; Radotic, K. Fluorescence Lifetime Imaging of

Lignin Autofluorescence in Normal and Compression Wood. J.

Microsc. 2013, 251, 178−187.

(6) Donaldson, L.; Radotić, K.; Kalauzi, A.; Djikanović, D.; Jeremić,

M. Quantification of Compression Wood Severity in Tracheids of

Pinus Radiata D. Don Using Confocal Fluorescence Imaging and

Spectral Deconvolution. J. Struct. Biol. 2010, 169, 106−115.

(7) Xue, Y.; Wan, Z.; Ouyang, X.; Qiu, X. Lignosulfonate: A

Convenient Fluorescence Resonance Energy Transfer Platform for the

Construction of a Ratiometric Fluorescence PH-Sensing Probe. J.

Agric. Food Chem. 2019, 67, 1044−1051.

(8) Terryn, C.; Paës, G.; Spriet, C. FRET - SLiM on Native

Autofluorescence: A Fast and Reliable Method to Study Interactions

between Fluorescent Probes and Lignin in Plant Cell Wall. Plant

Methods 2018, 14, No. 74.

(9) Xue, Y.; Qiu, X.; Wu, Y.; Qian, Y.; Zhou, M.; Deng, Y.; Li, Y.

Aggregation-Induced Emission: The Origin of Lignin Fluorescence.

Polym. Chem. 2016, 7, 3502−3508.

(10) Ma, Z.; Liu, C.; Niu, N.; Chen, Z.; Li, S.; Liu, S.; Li, J. Seeking

Brightness from Nature: J-Aggregation-Induced Emission in Cellulolytic Enzyme Lignin Nanoparticles. ACS Sustainable Chem. Eng. 2018,

6, 3169−3175.

5103

https://doi.org/10.1021/acsomega.1c06104

ACS Omega 2022, 7, 5096−5103

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る