リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Nanoscale Solid-Phase Isobaric Labeling for Multiplexed Quantitative Phosphoproteomics」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Nanoscale Solid-Phase Isobaric Labeling for Multiplexed Quantitative Phosphoproteomics

Ogata, Kosuke Tsai, Chia-Feng Ishihama, Yasushi 京都大学 DOI:10.1021/acs.jproteome.1c00444

2021.08

概要

We established a workflow for highly sensitive multiplexed quantitative phosphoproteomics using a nanoscale solid-phase tandem mass tag (TMT) labeling reactor. Phosphopeptides were first enriched by titanium oxide chromatography and then labeled with isobaric TMT reagents in a StageTip packed with hydrophobic polymer-based sorbents. We found that TMT-labeled singly phosphorylated peptides tend to flow through the titanium oxide column. Therefore, TMT labeling should be performed after the enrichment step from tryptic peptides, resulting in the need for microscale reactions with small amounts of phosphopeptides. Using an optimized protocol for tens to hundreds of nanograms of phosphopeptides, we obtained a nearly 10-fold increase in sensitivity compared to the conventional solution-based TMT protocol. We demonstrate that this nanoscale phosphoproteomics protocol works for 50 μg of HeLa proteins treated with selumetinib, and we successfully quantified the selumetinib-regulated phosphorylated sites on a proteome scale. The MS raw data files have been deposited with the ProteomeXchange Consortium via the jPOST partner repository (https://jpostdb.org) with the data set identifier PXD025536.

この論文で使われている画像

参考文献

(1) Hunter, T. Tyrosine Phosphorylation: Thirty Years and Counting. Curr. Opin. Cell Biol.

2009, 21 (2), 140–146.

(2) Pawson, T.; Scott, J. D. Signaling through Scaffold, Anchoring, and Adaptor Proteins.

Science 1997, 278 (5346), 2075–2080.

(3) Hebert, A. S.; Richards, A. L.; Bailey, D. J.; Ulbrich, A.; Coughlin, E. E.; Westphall, M.

S.; Coon, J. J. The One Hour Yeast Proteome. Mol. Cell. Proteomics 2014, 13 (1), 339–

347.

(4) Bekker-Jensen, D. B.; Martínez-Val, A.; Steigerwald, S.; Rüther, P.; Fort, K. L.; Arrey, T.

N.; Harder, A.; Makarov, A.; Olsen, J. V. A Compact Quadrupole-Orbitrap Mass

Spectrometer with FAIMS Interface Improves Proteome Coverage in Short LC

Gradients. Mol. Cell. Proteomics 2020, 19 (4), 716–729.

(5) Meier, F.; Brunner, A.-D.; Koch, S.; Koch, H.; Lubeck, M.; Krause, M.; Goedecke, N.;

Decker, J.; Kosinski, T.; Park, M. A.; Bache, N.; Hoerning, O.; Cox, J.; Räther, O.;

Mann, M. Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel

Trapped Ion Mobility Mass Spectrometer. Mol. Cell. Proteomics 2018, 17 (12), 2534–

2545.

(6) Scheltema, R. A.; Hauschild, J.-P.; Lange, O.; Hornburg, D.; Denisov, E.; Damoc, E.;

Kuehn, A.; Makarov, A.; Mann, M. The Q Exactive HF, a Benchtop Mass Spectrometer

with a Pre-Filter, High-Performance Quadrupole and an Ultra-High-Field Orbitrap

Analyzer. Mol. Cell. Proteomics 2014, 13 (12), 3698–3708.

(7) MacNair, J. E.; Patel, K. D.; Jorgenson, J. W. Ultrahigh-Pressure Reversed-Phase

Capillary Liquid Chromatography: Isocratic and Gradient Elution Using Columns Packed

with 1.0-Micron Particles. Anal. Chem. 1999, 71 (3), 700–708.

(8) Mellors, J. S.; Jorgenson, J. W. Use of 1.5-Microm Porous Ethyl-Bridged Hybrid

Particles as a Stationary-Phase Support for Reversed-Phase Ultrahigh-Pressure Liquid

Chromatography. Anal. Chem. 2004, 76 (18), 5441–5450.

(9) Patel, K. D.; Jerkovich, A. D.; Link, J. C.; Jorgenson, J. W. In-Depth Characterization of

Slurry Packed Capillary Columns with 1.0-Microm Nonporous Particles Using ReversedPhase Isocratic Ultrahigh-Pressure Liquid Chromatography. Anal. Chem. 2004, 76 (19),

5777–5786.

(10) Iwasaki, M.; Sugiyama, N.; Tanaka, N.; Ishihama, Y. Human Proteome Analysis by

Using Reversed Phase Monolithic Silica Capillary Columns with Enhanced Sensitivity. J.

Chromatogr. A 2012, 1228, 292–297.

(11) Luo, Q.; Shen, Y.; Hixson, K. K.; Zhao, R.; Yang, F.; Moore, R. J.; Mottaz, H. M.;

Smith, R. D. Preparation of 20-Microm-I.d. Silica-Based Monolithic Columns and Their

Performance for Proteomics Analyses. Anal. Chem. 2005, 77 (15), 5028–5035.

(12) Kobayashi, H.; Ikegami, T.; Kimura, H.; Hara, T.; Tokuda, D.; Tanaka, N. Properties

of Monolithic Silica Columns for HPLC. Anal. Sci. 2006, 22 (4), 491–501.

(13) He, B.; Tait, N.; Regnier, F. Fabrication of Nanocolumns for Liquid Chromatography.

Anal. Chem. 1998, 70 (18), 3790–3797.

(14) Baca, M.; Desmet, G.; Ottevaere, H.; De Malsche, W. Achieving a Peak Capacity of

1800 Using an 8 M Long Pillar Array Column. Anal. Chem. 2019, 91 (17), 10932–10936.

(15) Ficarro, S. B.; McCleland, M. L.; Stukenberg, P. T.; Burke, D. J.; Ross, M. M.;

Shabanowitz, J.; Hunt, D. F.; White, F. M. Phosphoproteome Analysis by Mass

Spectrometry and Its Application to Saccharomyces Cerevisiae. Nat. Biotechnol. 2002,

20 (3), 301–305.

(16) Stensballe, A.; Andersen, S.; Jensen, O. N. Characterization of Phosphoproteins

from Electrophoretic Gels by Nanoscale Fe(III) Affinity Chromatography with off-Line

Mass Spectrometry Analysis. Proteomics 2001, 1 (2), 207–222.

(17) Ikeguchi, Y.; Nakamura, H. Determination of Organic Phosphates by ColumnSwitching High Performance Anion-Exchange Chromatography Using On-Line

Preconcentration on Titania. Anal. Sci. 1997, 13 (3), 479–483.

15

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(18)

Kweon, H. K.; Håkansson, K. Selective Zirconium Dioxide-Based Enrichment of

Phosphorylated Peptides for Mass Spectrometric Analysis. Anal. Chem. 2006, 78 (6),

1743–1749.

(19) Wolschin, F.; Wienkoop, S.; Weckwerth, W. Enrichment of Phosphorylated Proteins

and Peptides from Complex Mixtures Using Metal Oxide/hydroxide Affinity

Chromatography (MOAC). Proteomics 2005, 5 (17), 4389–4397.

(20) Rauniyar, N.; Yates, J. R., 3rd. Isobaric Labeling-Based Relative Quantification in

Shotgun Proteomics. J. Proteome Res. 2014, 13 (12), 5293–5309.

(21) Ting, L.; Rad, R.; Gygi, S. P.; Haas, W. MS3 Eliminates Ratio Distortion in Isobaric

Multiplexed Quantitative Proteomics. Nat. Methods 2011, 8 (11), 937–940.

(22) McAlister, G. C.; Nusinow, D. P.; Jedrychowski, M. P.; Wühr, M.; Huttlin, E. L.;

Erickson, B. K.; Rad, R.; Haas, W.; Gygi, S. P. MultiNotch MS3 Enables Accurate,

Sensitive, and Multiplexed Detection of Differential Expression across Cancer Cell Line

Proteomes. Anal. Chem. 2014, 86 (14), 7150–7158.

(23) Schweppe, D. K.; Eng, J. K.; Yu, Q.; Bailey, D.; Rad, R.; Navarrete-Perea, J.; Huttlin,

E. L.; Erickson, B. K.; Paulo, J. A.; Gygi, S. P. Full-Featured, Real-Time Database

Searching Platform Enables Fast and Accurate Multiplexed Quantitative Proteomics. J.

Proteome Res. 2020, 19 (5), 2026–2034.

(24) Schweppe, D. K.; Prasad, S.; Belford, M. W.; Navarrete-Perea, J.; Bailey, D. J.;

Huguet, R.; Jedrychowski, M. P.; Rad, R.; McAlister, G.; Abbatiello, S. E.; Woulters, E.

R.; Zabrouskov, V.; Dunyach, J.-J.; Paulo, J. A.; Gygi, S. P. Characterization and

Optimization of Multiplexed Quantitative Analyses Using High-Field AsymmetricWaveform Ion Mobility Mass Spectrometry. Anal. Chem. 2019, 91 (6), 4010–4016.

(25) Pfammatter, S.; Bonneil, E.; Thibault, P. Improvement of Quantitative Measurements

in Multiplex Proteomics Using High-Field Asymmetric Waveform Spectrometry. J.

Proteome Res. 2016, 15 (12), 4653–4665.

(26) Ogata, K.; Ishihama, Y. Extending the Separation Space with Trapped Ion Mobility

Spectrometry Improves the Accuracy of Isobaric Tag-Based Quantitation in Proteomic

LC/MS/MS. Anal. Chem. 2020, 92 (12), 8037–8040.

(27) Yi, L.; Tsai, C.-F.; Dirice, E.; Swensen, A. C.; Chen, J.; Shi, T.; Gritsenko, M. A.; Chu,

R. K.; Piehowski, P. D.; Smith, R. D.; Rodland, K. D.; Atkinson, M. A.; Mathews, C. E.;

Kulkarni, R. N.; Liu, T.; Qian, W.-J. Boosting to Amplify Signal with Isobaric Labeling

(BASIL) Strategy for Comprehensive Quantitative Phosphoproteomic Characterization

of Small Populations of Cells. Anal. Chem. 2019, 91 (9), 5794–5801.

(28) Budnik, B.; Levy, E.; Harmange, G.; Slavov, N. SCoPE-MS: Mass Spectrometry of

Single Mammalian Cells Quantifies Proteome Heterogeneity during Cell Differentiation.

Genome Biol. 2018, 19 (1), 161.

(29) Cheung, T. K.; Lee, C.-Y.; Bayer, F. P.; McCoy, A.; Kuster, B.; Rose, C. M. Defining

the Carrier Proteome Limit for Single-Cell Proteomics. Nat. Methods 2021, 18 (1), 76–

83.

(30) Huang, F.-K.; Zhang, G.; Lawlor, K.; Nazarian, A.; Philip, J.; Tempst, P.; Dephoure,

N.; Neubert, T. A. Deep Coverage of Global Protein Expression and Phosphorylation in

Breast Tumor Cell Lines Using TMT 10-Plex Isobaric Labeling. J. Proteome Res. 2017,

16 (3), 1121–1132.

(31) Navarrete-Perea, J.; Yu, Q.; Gygi, S. P.; Paulo, J. A. Streamlined Tandem Mass Tag

(SL-TMT) Protocol: An Efficient Strategy for Quantitative (Phospho)proteome Profiling

Using Tandem Mass Tag-Synchronous Precursor Selection-MS3. J. Proteome Res.

2018, 17 (6), 2226–2236.

(32) Lombardi, B.; Rendell, N.; Edwards, M.; Katan, M.; Zimmermann, J. G. Evaluation of

Phosphopeptide Enrichment Strategies for Quantitative TMT Analysis of Complex

Network Dynamics in Cancer-Associated Cell Signalling. EuPA Open Proteom 2015, 6,

10–15.

(33) Paulo, J. A.; Navarrete-Perea, J.; Erickson, A. R.; Knott, J.; Gygi, S. P. An Internal

Standard for Assessing Phosphopeptide Recovery from Metal Ion/Oxide Enrichment

Strategies. J. Am. Soc. Mass Spectrom. 2018, 29 (7), 1505–1511.

16

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(34)

Zecha, J.; Satpathy, S.; Kanashova, T.; Avanessian, S. C.; Kane, M. H.; Clauser, K.

R.; Mertins, P.; Carr, S. A.; Kuster, B. TMT Labeling for the Masses: A Robust and CostEfficient, In-Solution Labeling Approach. Mol. Cell. Proteomics 2019, 18 (7), 1468–1478.

(35) Erickson, B. K.; Jedrychowski, M. P.; McAlister, G. C.; Everley, R. A.; Kunz, R.; Gygi,

S. P. Evaluating Multiplexed Quantitative Phosphopeptide Analysis on a Hybrid

Quadrupole Mass Filter/linear Ion Trap/orbitrap Mass Spectrometer. Anal. Chem. 2015,

87 (2), 1241–1249.

(36) Hogrebe, A.; von Stechow, L.; Bekker-Jensen, D. B.; Weinert, B. T.; Kelstrup, C. D.;

Olsen, J. V. Benchmarking Common Quantification Strategies for Large-Scale

Phosphoproteomics. Nat. Commun. 2018, 9 (1), 1045.

(37) Böhm, G.; Prefot, P.; Jung, S.; Selzer, S.; Mitra, V.; Britton, D.; Kuhn, K.; Pike, I.;

Thompson, A. H. Low-pH Solid-Phase Amino Labeling of Complex Peptide Digests with

TMTs Improves Peptide Identification Rates for Multiplexed Global Phosphopeptide

Analysis. J. Proteome Res. 2015, 14 (6), 2500–2510.

(38) de Graaf, E. L.; Pellegrini, D.; McDonnell, L. A. Set of Novel Automated Quantitative

Microproteomics Protocols for Small Sample Amounts and Its Application to Kidney

Tissue Substructures. J. Proteome Res. 2016, 15 (12), 4722–4730.

(39) Myers, S. A.; Rhoads, A.; Cocco, A. R.; Peckner, R.; Haber, A. L.; Schweitzer, L. D.;

Krug, K.; Mani, D. R.; Clauser, K. R.; Rozenblatt-Rosen, O.; Hacohen, N.; Regev, A.;

Carr, S. A. Streamlined Protocol for Deep Proteomic Profiling of FAC-Sorted Cells and

Its Application to Freshly Isolated Murine Immune Cells. Mol. Cell. Proteomics 2019, 18

(5), 995–1009.

(40) Mao, Y.; Chen, P.; Ke, M.; Chen, X.; Ji, S.; Chen, W.; Tian, R. Fully Integrated and

Multiplexed Sample Preparation Technology for Sensitive Interactome Profiling. Anal.

Chem. 2021, 93 (5), 3026–3034.

(41) Masuda, T.; Tomita, M.; Ishihama, Y. Phase Transfer Surfactant-Aided Trypsin

Digestion for Membrane Proteome Analysis. J. Proteome Res. 2008, 7 (2), 731–740.

(42) Rappsilber, J.; Mann, M.; Ishihama, Y. Protocol for Micro-Purification, Enrichment,

Pre-Fractionation and Storage of Peptides for Proteomics Using StageTips. Nat. Protoc.

2007, 2 (8), 1896–1906.

(43) Sugiyama, N.; Masuda, T.; Shinoda, K.; Nakamura, A.; Tomita, M.; Ishihama, Y.

Phosphopeptide Enrichment by Aliphatic Hydroxy Acid-Modified Metal Oxide

Chromatography for Nano-LC-MS/MS in Proteomics Applications. Mol. Cell. Proteomics

2007, 6 (6), 1103–1109.

(44) Olsen, J. V.; de Godoy, L. M. F.; Li, G.; Macek, B.; Mortensen, P.; Pesch, R.;

Makarov, A.; Lange, O.; Horning, S.; Mann, M. Parts per Million Mass Accuracy on an

Orbitrap Mass Spectrometer via Lock Mass Injection into a C-Trap. Mol. Cell.

Proteomics 2005, 4 (12), 2010–2021.

(45) Käll, L.; Canterbury, J. D.; Weston, J.; Noble, W. S.; MacCoss, M. J. SemiSupervised Learning for Peptide Identification from Shotgun Proteomics Datasets. Nat.

Methods 2007, 4 (11), 923–925.

(46) Taus, T.; Köcher, T.; Pichler, P.; Paschke, C.; Schmidt, A.; Henrich, C.; Mechtler, K.

Universal and Confident Phosphorylation Site Localization Using phosphoRS. J.

Proteome Res. 2011, 10 (12), 5354–5362.

(47) Okuda, S.; Watanabe, Y.; Moriya, Y.; Kawano, S.; Yamamoto, T.; Matsumoto, M.;

Takami, T.; Kobayashi, D.; Araki, N.; Yoshizawa, A. C.; Tabata, T.; Sugiyama, N.; Goto,

S.; Ishihama, Y. jPOSTrepo: An International Standard Data Repository for Proteomes.

Nucleic Acids Res. 2017, 45 (D1), D1107–D1111.

(48) Moriya, Y.; Kawano, S.; Okuda, S.; Watanabe, Y.; Matsumoto, M.; Takami, T.;

Kobayashi, D.; Yamanouchi, Y.; Araki, N.; Yoshizawa, A. C.; Tabata, T.; Iwasaki, M.;

Sugiyama, N.; Tanaka, S.; Goto, S.; Ishihama, Y. The jPOST Environment: An

Integrated Proteomics Data Repository and Database. Nucleic Acids Res. 2019, 47

(D1), D1218–D1224.

(49) Thompson, A.; Wölmer, N.; Koncarevic, S.; Selzer, S.; Böhm, G.; Legner, H.;

Schmid, P.; Kienle, S.; Penning, P.; Höhle, C.; Berfelde, A.; Martinez-Pinna, R.;

17

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Farztdinov, V.; Jung, S.; Kuhn, K.; Pike, I. TMTpro: Design, Synthesis, and Initial

Evaluation of a Proline-Based Isobaric 16-Plex Tandem Mass Tag Reagent Set. Anal.

Chem. 2019, 91 (24), 15941–15950.

(50) Thingholm, T. E.; Palmisano, G.; Kjeldsen, F.; Larsen, M. R. Undesirable ChargeEnhancement of Isobaric Tagged Phosphopeptides Leads to Reduced Identification

Efficiency. J. Proteome Res. 2010, 9 (8), 4045–4052.

(51) Kyte, J.; Doolittle, R. F. A Simple Method for Displaying the Hydropathic Character of

a Protein. J. Mol. Biol. 1982, 157 (1), 105–132.

(52) Tsai, C.-F.; Smith, J. S.; Krajewski, K.; Zhao, R.; Moghieb, A. M.; Nicora, C. D.;

Xiong, X.; Moore, R. J.; Liu, T.; Smith, R. D.; Jacobs, J. M.; Rajagopal, S.; Shi, T.

Tandem Mass Tag Labeling Facilitates Reversed-Phase Liquid Chromatography-Mass

Spectrometry Analysis of Hydrophilic Phosphopeptides. Anal. Chem. 2019, 91 (18),

11606–11613.

(53) Dass, C.; Mahalakshmi, P.; Grandberry, D. Manipulation of Ion-Pairing Reagents for

Reversed-Phase High-Performance Liquid Chromatographic Separation of

Phosphorylated Opioid Peptides from Their Non-Phosphorylated Analogues. J.

Chromatogr. A 1994, 678 (2), 249–257.

(54) Ogata, K.; Krokhin, O. V.; Ishihama, Y. Retention Order Reversal of Phosphorylated

and Unphosphorylated Peptides in Reversed-Phase LC/MS. Anal. Sci. 2018, 34 (9),

1037–1041.

(55) Bhhatarai, B.; Gramatica, P. Prediction of Aqueous Solubility, Vapor Pressure and

Critical Micelle Concentration for Aquatic Partitioning of Perfluorinated Chemicals.

Environ. Sci. Technol. 2011, 45 (19), 8120–8128.

(56) Olsen, J. V.; Blagoev, B.; Gnad, F.; Macek, B.; Kumar, C.; Mortensen, P.; Mann, M.

Global, in Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks. Cell

2006, 127 (3), 635–648.

(57) Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M. Y.; Geiger, T.; Mann, M.;

Cox, J. The Perseus Computational Platform for Comprehensive Analysis of

(prote)omics Data. Nat. Methods 2016, 13 (9), 731–740.

(58) Davies, B. R.; Logie, A.; McKay, J. S.; Martin, P.; Steele, S.; Jenkins, R.; Cockerill,

M.; Cartlidge, S.; Smith, P. D. AZD6244 (ARRY-142886), a Potent Inhibitor of MitogenActivated Protein Kinase/extracellular Signal-Regulated Kinase Kinase 1/2 Kinases:

Mechanism of Action in Vivo, Pharmacokinetic/pharmacodynamic Relationship, and

Potential for Combination in Preclinical Models. Mol. Cancer Ther. 2007, 6 (8), 2209–

2219.

(59) Basken, J.; Stuart, S. A.; Kavran, A. J.; Lee, T.; Ebmeier, C. C.; Old, W. M.; Ahn, N.

G. Specificity of Phosphorylation Responses to Mitogen Activated Protein (MAP) Kinase

Pathway Inhibitors in Melanoma Cells. Mol. Cell. Proteomics 2018, 17 (4), 550–564.

(60) Kosako, H.; Yamaguchi, N.; Aranami, C.; Ushiyama, M.; Kose, S.; Imamoto, N.;

Taniguchi, H.; Nishida, E.; Hattori, S. Phosphoproteomics Reveals New ERK MAP

Kinase Targets and Links ERK to Nucleoporin-Mediated Nuclear Transport. Nat. Struct.

Mol. Biol. 2009, 16 (10), 1026–1035.

(61) Stuart, S. A.; Houel, S.; Lee, T.; Wang, N.; Old, W. M.; Ahn, N. G. A

Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma

Cells. Mol. Cell. Proteomics 2015, 14 (6), 1599–1615.

(62) Wiredja, D. D.; Koyutürk, M.; Chance, M. R. The KSEA App: A Web-Based Tool for

Kinase Activity Inference from Quantitative Phosphoproteomics. Bioinformatics 2017, 33

(21), 3489–3491.

(63) Hoeflich, K. P.; O’Brien, C.; Boyd, Z.; Cavet, G.; Guerrero, S.; Jung, K.; Januario, T.;

Savage, H.; Punnoose, E.; Truong, T.; Zhou, W.; Berry, L.; Murray, L.; Amler, L.; Belvin,

M.; Friedman, L. S.; Lackner, M. R. In Vivo Antitumor Activity of MEK and

Phosphatidylinositol 3-Kinase Inhibitors in Basal-like Breast Cancer Models. Clin.

Cancer Res. 2009, 15 (14), 4649–4664.

(64) Sunayama, J.; Matsuda, K.-I.; Sato, A.; Tachibana, K.; Suzuki, K.; Narita, Y.; Shibui,

S.; Sakurada, K.; Kayama, T.; Tomiyama, A.; Kitanaka, C. Crosstalk between the

18

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

PI3K/mTOR and MEK/ERK Pathways Involved in the Maintenance of Self-Renewal and

Tumorigenicity of Glioblastoma Stem-like Cells. Stem Cells 2010, 28 (11), 1930–1939.

(65) Holt, S. V.; Logie, A.; Davies, B. R.; Alferez, D.; Runswick, S.; Fenton, S.; Chresta, C.

M.; Gu, Y.; Zhang, J.; Wu, Y.-L.; Wilkinson, R. W.; Guichard, S. M.; Smith, P. D.

Enhanced Apoptosis and Tumor Growth Suppression Elicited by Combination of MEK

(selumetinib) and mTOR Kinase Inhibitors (AZD8055). Cancer Res. 2012, 72 (7), 1804–

1813.

(66) Posch, C.; Sanlorenzo, M.; Ma, J.; Kim, S. T.; Zekhtser, M.; Ortiz-Urda, S.

MEK/CDK4,6 Co-Targeting Is Effective in a Subset of NRAS, BRAF and “Wild Type”

Melanomas. Oncotarget 2018, 9 (79), 34990–34995.

19

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 1. Combining TMT labeling with TiO2-based phosphopeptide enrichment

workflow.

(A) Schematic representation of the workflow. TMT-labeled phosphopeptides from both

methods were mixed in equal amounts and analyzed by LC/MS/MS. (B) Distribution of reporter

ion intensities of identified phosphopeptides. TMT quantitation was performed only when the

signals were detected in all 6 TMT channels. The box itself spans the interquartile range. The

whiskers represent 5% and 95% quantiles. The thick horizontal line in each box indicates the

median. (C) Relationship between reporter ion intensity ratios and the number of

phosphorylations or acidic residues (Glu, Asp) on each phosphopeptide. The monophosphorylated peptides were harder to capture in the TMT-TiO2 workflow. The box itself

spans the interquartile range. The whiskers represent 5% and 95% quantiles. The thick

horizontal line in each box indicates the median. (D) Frequency distribution of relative standard

deviation (RSD) of identified phosphopeptide reporter ion intensities.

Figure 2. pH optimization of StageTip-based solid-phase TMT reaction.

(A) Peak area ratio of a synthetic phosphopeptide, YLpSFTPPEK. The peptide was

categorized into three classes according to the number of TMT-tags. Not labeled: The peptide

with no TMT-tag. Partially labeled: The peptide with a TMT-tag, but either the lysine side chain

or peptide N-terminus is not labeled. Fully labeled: The peptide completely labeled with TMT.

(B) Extracted ion chromatogram of synthetic phosphopeptide in each category.

Figure 3. Sorbent optimization for StageTip-based solid-phase TMT labeling.

(A) Screening of reversed-phase particles for solid-phase labeling. Each sorbent was

evaluated in duplicate experiments. The sum of the phosphopeptide peak area is shown. Not

labeled: The peptide with no TMT-tag. Partially labeled: The peptide with a TMT-tag but either

the lysine side chain or peptide N-terminus is not labeled. Fully labeled: The peptide

completely labeled with TMT. (B) GRAVY index distribution of identified phosphopeptides

labeled with or without TMT from 5 different sorbents. (C) Phosphopeptide ID numbers from

solid-phase labeling using different sorbents. Error bars show the standard deviation (n = 3).

Figure 4. Ion-pairing reagent optimization for StageTip-based solid-phase TMT labeling.

(A) Comparison of distributions of reporter ion intensity ratios between solution-phase and

solid-phase labeling method with each ion-pairing reagent (n = 5, average). The box itself

spans the interquartile range. The whiskers represent 5% and 95% quantiles. The thick

horizontal line in each box indicates the median. (B-D) Relationship between reporter ion

intensity ratio of phosphopeptides and their elution ACN composition in gradient analysis. (B)

20

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Comparison between solid-phase TMT labeling with TFA and solution-phase labeling. (C)

Comparison between solid-phase TMT labeling with HFBA and solution-phase labeling. (D)

Comparison between solid-phase TMT labeling with HFBA and solid-phase TMT labeling with

TFA. The box itself spans the interquartile range. The whiskers represent 5% and 95%

quantiles. The thick horizontal line in each box indicates the median.

Figure 5. Differential analysis of selumetinib-treated HeLa phosphoproteomes.

(A) Schematic representation of the workflow. Control and selumetinib-treated HeLa cells were

stimulated with EGF (15 min) and collected. After protein digestion, phosphopeptide

enrichment and solid-phase TMT labeling, samples were analyzed in triplicate LC/MS/MS runs.

(B) Phosphoproteome differential analysis. The plot shows the intensity ratio and the p-value

of the identified phosphopeptides (n = 7524). 305 and 165 phosphopeptides showed

significant down- and up-regulation, respectively (highlighted in blue/red: S0 = 0.05 and FDR

= 0.01, n = 5). (C) The result of Kinase-Set Enrichment Analysis (KSEA). All identified

phosphopeptides (n=7524) were utilized for the analysis. The z-scores of kinases with four

and more substrates are shown. A negative score corresponds to a decrease of the kinase

activity. The kinases with |z-score| > 1 are colored blue/red.

21

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

For TOC only

22

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 1

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 2

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 3

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 4

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 5

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

For TOC only

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Supporting Information

Nano-scale

solid-phase

phosphoproteomics

isobaric

labeling

for

multiplexed

quantitative

Kosuke Ogata1, Chia-Feng Tsai1, Yasushi Ishihama1,2,*

1) Department of Molecular & Cellular BioAnalysis, Graduate School of Pharmaceutical

Sciences, Kyoto University, Kyoto 606–8501, Japan

2) Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical

Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.

*Corresponding author:

Tel: +81-75-753-4555, Fax: +81-75-753-4601, E-mail: yishiham@pharm.kyoto-u.ac.jp

--------------------------------------------------------------------------------------------------------------------------

Table of content

Figure S1. Recovery of TMT-labeled phosphopeptides in TiO2-based phosphopeptide

enrichment.

Figure S2. Photograph of a StageTip used for solid-phase TMT labeling.

Figure S3. Applicable range of peptide amounts in the optimized solid-phase TMT labeling

method.

Figure S4. Labeling efficiency of solid-phase TMTpro labeling.

Figure S5. STRING network analysis of proteins having decreased phosphopeptides upon

selumetinib treatment.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure S1. Recovery of TMT-labeled phosphopeptides in TiO2-based phosphopeptide

enrichment.

Analysis of the flow-through fraction from TiO2-based phosphopeptide enrichment. Tandem

phosphopeptide enrichment experiments were performed to analyze phosphopeptides in the

flow-through fraction. The peak areas of identified phosphopeptides were compared between

eluted and flow-through fractions.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure S2. Photograph of a StageTip used for solid-phase TMT labeling.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure S3. Applicable range of peptide amounts in the optimized solid-phase TMT labeling

method. Phosphopeptides were enriched by TiO2 chromatography from HeLa digests, and

were divided into the amounts indicated in (A). After labeling with TMT10plex reagents by the

optimized solid-phase TMT labeling method. The indicated amounts of peptides were mixed

and analyzed by LC/MS/MS. An Orbitrap Exploris 480 mass spectrometer equipped with

FAIMS pro and an UltiMate 3000 RSLCnano pump (Thermo Fisher Scientific) was employed

for the analysis. (B) The bar chart shows the number of quantifiable phosphopeptides.

Phosphopeptides from 1 μg with peaks detected in all ten reporter ion channels were

considered as quantifiable. Phosphopeptides from 5 μg, 10 μg, and 50 μg with eight reporter

ions (127C, 128N, 128C, 129N, 129C, 130N, 130C, and 131), six reporter ions (128C, 129N,

129C, 130N, 130C, and 131), and four reporter ions (129C, 130N,130C, and 131), respectively

were considered quantifiable. (C) The box plot shows the upper quartile, median, and lower

quartile for the TMT reporter ion intensity ratios to channel 131. Outliers were identified using

box-plot statistics (threshold: 1.5 x the interquartile range (IQR)). Dashed lines represent

expected ratios. The phosphopeptides quantifiable from 1 μg were plotted.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure S4. Labeling efficiency of solid-phase TMTpro labeling.

The bar graph showed the peak area ratio of TMTpro-labeled phosphopeptides from HeLa

cell digests using the optimized solid-phase TMT labeling protocol. The samples were

prepared in triplicate. The peptide was categorized into three classes according to the number

of TMT-tags. Not labeled: The peptide with no TMT-tag. Partially labeled: The peptide with a

TMT-tag but either the lysine side chain or peptide N-terminus is not labeled. Fully labeled:

The peptide completely labeled with TMT. Over 98% of the phosphopeptide peak area was

due to fully labeled peptides.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure S5. STRING network analysis of proteins having decreased phosphopeptides

upon selumetinib treatment.

STRING network (v11.0) of high-confidence interactions (minimum confidence score of 0.700)

among proteins with decreased phosphosites upon selumetinib treatment. Colors on nodes

indicate the clusters based on STRING MCL clustering (inflation parameter: 1.6).

Disconnected nodes are not shown.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る