リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Bioinertization of NanoLC/MS/MS Systems by Depleting Metal Ions From the Mobile Phases for Phosphoproteomics」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Bioinertization of NanoLC/MS/MS Systems by Depleting Metal Ions From the Mobile Phases for Phosphoproteomics

Komori, Yumi Niinae, Tomoya Imami, Koshi Yanagibayashi, Jun Yasunaga, Kenichi Imamura, Shinya Tomita, Masami Ishihama, Yasushi 京都大学 DOI:10.1016/j.mcpro.2023.100535

2023.05

概要

We have successfully developed a bioinertized nanoflow liquid chromatography/tandem mass spectrometry (nanoLC/MS/MS) system for the highly sensitive analysis of phosphopeptides by depleting metal ions from the mobile phase. We found that not only direct contact of phosphopeptides with metal components, but also indirect contact with nanoLC pumps through the mobile phase causes significant losses during the recovery of phosphopeptides. Moreover, electrospray ionization was adversely affected by the mobile phase containing multiple metal ions as well as by the sample solvents contaminated with metal ions used in immobilized metal ion affinity chromatography for phosphopeptide enrichment. To solve these problems, metal ions were depleted by inserting an on-line metal ion removal device containing metal-chelating membranes between the gradient mixer and the autosampler. As a result, the peak areas of the identified phosphopeptides increased an average of 9.9-fold overall and 77-fold for multiply phosphorylated peptides with the insertion of the on-line metal ion removal system. This strategy would be applicable to highly sensitive analysis of other phosphorylated biomolecules by microscale-LC/MS/MS.

この論文で使われている画像

参考文献

1. Pawson, T., and Nash, P. (2003) Assembly of cell regulatory systems

through protein interaction domains. Science 300, 445–452

2. Cohen, P. T. (1997) Novel protein serine/threonine phosphatases: variety is

the spice of life. Trends Biochem. Sci. 22, 245–251

3. Hunter, T. (2000) Signaling–2000 and beyond. Cell 100, 113–127

4. Cohen, P. (2002) The origins of protein phosphorylation. Nat. Cell Biol. 4,

E127–E130

5. Needham, E. J., Parker, B. L., Burykin, T., James, D. E., and Humphrey,

S. J. (2019) Illuminating the dark phosphoproteome. Sci. Signal. 12,

eaau8645

6. Takahashi, C., Yazaki, T., Sugiyama, N., and Ishihama, Y. (2019) Selected

reaction monitoring of kinase activity-targeted phosphopeptides. Chromatography 40, 39–47

7. Tsai, C.-F., Ogata, K., Sugiyama, N., and Ishihama, Y. (2022) Motif-centric

phosphoproteomics to target kinase-mediated signaling pathways. Cell

Rep. Methods 2, 100138

8. Niinae, T., Imami, K., Sugiyama, N., and Ishihama, Y. (2021) Identification of

endogenous kinase substrates by proximity labeling combined with

Bioinertization of NanoLC/MS/MS for Phosphoproteomics

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

kinase perturbation and phosphorylation motifs. Mol. Cell. Proteomics 20,

100119

Ochoa, D., Jarnuczak, A. F., Vieitez,

C., Gehre, M., Soucheray, M., Mateus,

A., et al. (2020) The functional landscape of the human phosphoproteome. Nat. Biotechnol. 38, 365–373

Hornbeck, P. V., Zhang, B., Murray, B., Kornhauser, J. M., Latham, V., and

Skrzypek, E. (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 43, D512–D520

Dinkel, H., Chica, C., Via, A., Gould, C. M., Jensen, L. J., Gibson, T. J., et al.

(2011) Phospho.ELM: a database of phosphorylation sites–update 2011.

Nucleic Acids Res. 39, D261–D267

Hogrebe, A., von Stechow, L., Bekker-Jensen, D. B., Weinert, B. T.,

Kelstrup, C. D., and Olsen, J. V. (2018) Benchmarking common quantification strategies for large-scale phosphoproteomics. Nat. Commun. 9,

1045

Humphrey, S. J., Azimifar, S. B., and Mann, M. (2015) High-throughput

phosphoproteomics reveals in vivo insulin signaling dynamics. Nat. Biotechnol. 33, 990–995

Ogata, K., Tsai, C.-F., and Ishihama, Y. (2021) Nanoscale solid-phase

isobaric labeling for multiplexed quantitative phosphoproteomics. J.

Proteome Res. 20, 4193–4202

Hsiao, J. J., Potter, O. G., Chu, T.-W., and Yin, H. (2018) Improved LC/MS

methods for the analysis of metal-sensitive analytes using medronic acid

as a mobile phase additive. Anal. Chem. 90, 9457–9464

Wakamatsu, A., Morimoto, K., Shimizu, M., and Kudoh, S. (2005) A severe

peak tailing of phosphate compounds caused by interaction with stainless steel used for liquid chromatography and electrospray mass spectrometry. J. Sep. Sci. 28, 1823–1830

Winter, D., Seidler, J., Ziv, Y., Shiloh, Y., and Lehmann, W. D. (2009) Citrate

boosts the performance of phosphopeptide analysis by UPLC-ESI-MS/

MS. J. Proteome Res. 8, 418–424

Myint, K. T., Uehara, T., Aoshima, K., and Oda, Y. (2009) Polar anionic

metabolome analysis by nano-LC/MS with a metal chelating agent. Anal.

Chem. 81, 7766–7772

Pesek, J. J., Matyska, M. T., and Fischer, S. M. (2011) Improvement of peak

shape in aqueous normal phase analysis of anionic metabolites. J. Sep.

Sci. 34, 3509–3516

Fleitz, A., Nieves, E., Madrid-Aliste, C., Fentress, S. J., Sibley, L. D., Weiss,

L. M., et al. (2013) Enhanced detection of multiply phosphorylated peptides and identification of their sites of modification. Anal. Chem. 85,

8566–8576

Kim, S., Choi, H., and Park, Z.-Y. (2007) Improved detection of multiphosphorylated peptides by LC-MS/MS without phosphopeptide

enrichment. Mol. Cells 23, 340–348

Sandra, P., Sandra, K., and Vandenbussche, J. (2018) Analyzing phosphorylated N-glycans with recovery on bio-inert LC systems and PEEKlined HILIC columns. LCGC Eur. 31, 566–571

23. Sakamaki, H., Uchida, T., Lim, L. W., and Takeuchi, T. (2015) Evaluation of

column hardware on liquid chromatography-mass spectrometry of

phosphorylated compounds. J. Chromatogr. A 1381, 125–131

24. Hughes, C. J., Gethings, L. A., Wilson, I. D., and Plumb, R. S. (2022) Access

to the phospho-proteome via the mitigation of peptide-metal interactions.

J. Chromatogr. A 1673, 463024

25. Tanna, N., Mullin, L. G., Rainville, P. D., Wilson, I. D., and Plumb, R. S. (2021)

Improving LC/MS/MS-based bioanalytical method performance and

sensitivity via a hybrid surface barrier to mitigate analyte – metal surface

interactions. J. Chromatogr. B 1179, 122825

26. Masuda, T., Saito, N., Tomita, M., and Ishihama, Y. (2009) Unbiased

quantitation of Escherichia coli membrane proteome using phase transfer

surfactants. Mol. Cell. Proteomics 8, 2770–2777

27. Rappsilber, J., Ishihama, Y., and Mann, M. (2003) Stop and go extraction

tips for matrix-assisted laser desorption/ionization, nanoelectrospray,

and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670

28. Sugiyama, N., Masuda, T., Shinoda, K., Nakamura, A., Tomita, M., and

Ishihama, Y. (2007) Phosphopeptide enrichment by aliphatic hydroxy

acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications* S. Mol. Cell. Proteomics 6, 1103–1109

29. Ishihama, Y., Rappsilber, J., Andersen, J. S., and Mann, M. (2002) Microcolumns with self-assembled particle frits for proteomics. J. Chromatogr.

A 979, 233–239

30. Kessner, D., Chambers, M., Burke, R., Agus, D., and Mallick, P. (2008)

ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24, 2534–2536

31. Schneider, S., and Planitz, P. (2011) Determination of Low-Metal Release From

the Agilent 1260 Infinity Bio-Inert Quaternary LC System Using ICP-MS.

Agilent Technologies Technical Overview, Santa Clara, CA. 5990–9352EN

32. Xhaferaj, M., Hippler, J., and Schneider, S. (2017) Determination of Low-Metal

Release Using the Agilent 1260 Infinity II Bio-Inert LC With ICP-MS. Agilent

Technologies Technical Overview, Santa Clara, CA. 5991–8314EN

33. Zhou, H., Ye, M., Dong, J., Han, G., Jiang, X., Wu, R., et al. (2008) Specific

phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. J. Proteome Res.

7, 3957–3967

34. Stensballe, A., Andersen, S., and Jensen, O. N. (2001) Characterization of

phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity

chromatography with off-line mass spectrometry analysis. Proteomics 1,

207–222

35. Feng, S., Ye, M., Zhou, H., Jiang, X., Jiang, X., Zou, H., et al. (2007)

Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis. Mol. Cell. Proteomics 6, 1656–1665

36. Okuda, S., Watanabe, Y., Moriya, Y., Kawano, S., Yamamoto, T., Matsumoto, M., et al. (2017) jPOSTrepo: an international standard data repository for proteomes. Nucleic Acids Res. 45, D1107–D1111

Mol Cell Proteomics (2023) 22(5) 100535 9

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る