リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Phosphate starvation response precedes abscisic acid response under progressive mild drought in plants」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Phosphate starvation response precedes abscisic acid response under progressive mild drought in plants

Nagatoshi, Yukari Ikazaki, Kenta Kobayashi, Yasufumi Mizuno, Nobuyuki Sugita, Ryohei Takebayashi, Yumiko Kojima, Mikiko Sakakibara, Hitoshi Kobayashi, Natsuko I. Tanoi, Keitaro Fujii, Kenichiro Baba, Junya Ogiso-Tanaka, Eri Ishimoto, Masao Yasui, Yasuo Oya, Tetsuji Fujita, Yasunari 京都大学 DOI:10.1038/s41467-023-40773-1

2023.08.19

概要

Drought severely damages crop production, even under conditions so mild that the leaves show no signs of wilting. However, it is unclear how field-grown plants respond to mild drought. Here, we show through six years of field trials that ridges are a useful experimental tool to mimic mild drought stress in the field. Mild drought reduces inorganic phosphate levels in the leaves to activate the phosphate starvation response (PSR) in soybean plants in the field. Using Arabidopsis thaliana and its mutant plants grown in pots under controlled environments, we demonstrate that PSR occurs before abscisic acid response under progressive mild drought and that PSR plays a crucial role in plant growth under mild drought. Our observations in the field and laboratory using model crop and experimental plants provide insight into the molecular response to mild drought in field-grown plants and the relationship between nutrition and drought stress response.

この論文で使われている画像

参考文献

Total RNA was extracted from three Arabidopsis seedlings per pot

using RNAiso Plus (Takara Bio, Japan) according to the manufacturer’s

instructions. Three biological replicates per treatment were performed

for RNA-Seq analysis. The extracted RNA was used to construct

paired-end libraries using a TruSeq Stranded mRNA Sample Prep

Kit (Illumina). The libraries were sequenced on an Illumina

NovaSeq6000 sequencer with a 151-bp paired-end protocol (Macrogen). Trimmomatic v0.3964 with the options SLIDINGWINDOW:4:20

and MINLEN:40 was used for trimming low-quality reads and adaptor

sequences. Trimmed reads were mapped against the reference

sequence of TAIR10 (https://www.arabidopsis.org/) using STAR v2.5.165

with the options outSAMstrandField: intronMotif; and outFilterType:

1.

Nature Communications | (2023)14:5047

2.

3.

4.

5.

Pennisi, E. The blue revolution, drop by drop, gene by gene. Science

320, 171–173 (2008).

Fujita, Y., Fujita, M., Shinozaki, K. & Yamaguchi-Shinozaki, K. ABAmediated transcriptional regulation in response to osmotic stress in

plants. J. Plant Res. 124, 509–525 (2011).

Zhang, H., Zhu, J., Gong, Z. & Zhu, J. K. Abiotic stress responses in

plants. Nat. Rev. Genet. 23, 104–119 (2022).

Skirycz, A. et al. Survival and growth of Arabidopsis plants given

limited water are not equal. Nat. Biotechnol. 29, 212–214 (2011).

Claeys, H., Van Landeghem, S., Dubois, M., Maleux, K. & Inzé, D.

What is stress? Dose-response effects in commonly used in vitro

stress assays. Plant Physiol. 165, 519–527 (2014).

13

Article

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Verslues, P. E. Time to grow: factors that control plant growth

during mild to moderate drought stress. Plant Cell Environ. 40,

177–179 (2017).

Harb, A., Krishnan, A., Ambavaram, M. M. R. & Pereira, A. Molecular

and physiological analysis of drought stress in Arabidopsis reveals

early responses leading to acclimation in plant growth. Plant Physiol. 154, 1254–1271 (2010).

Des Marais, D. L. et al. Physiological genomics of response to soil

drying in diverse Arabidopsis accessions. Plant Cell 24,

893–914 (2012).

Ma, X., Sukiran, N. L., Ma, H. & Su, Z. Moderate drought causes

dramatic floral transcriptomic reprogramming to ensure successful

reproductive development in Arabidopsis. BMC Plant Biol. 14, 164

(2014).

Clauw, P. et al. Leaf growth response to mild drought: natural variation in Arabidopsis sheds light on trait architecture. Plant Cell 28,

2417–2434 (2016).

Dubois, M., Claeys, H., Van den Broeck, L. & Inzé, D. Time of day

determines Arabidopsis transcriptome and growth dynamics under

mild drought. Plant Cell Environ. 40, 180–189 (2017).

Claeys, H. & Inzé, D. The agony of choice: how plants balance

growth and survival under water-limiting conditions. Plant Physiol.

162, 1768–1779 (2013).

Zhu, Q., Riley, W. J., Tang, J. & Koven, C. D. Multiple soil nutrient

competition between plants, microbes, and mineral surfaces:

model development, parameterization, and example applications

in several tropical forests. Biogeosciences 13, 341–363 (2016).

Richardson, A. E. & Simpson, R. J. Soil microorganisms mediating

phosphorus availability update on microbial phosphorus. Plant

Physiol. 156, 989–996 (2011).

Poirier, Y. & Bucher, M. Phosphate transport and homeostasis in

Arabidopsis. Arabidopsis Book 1, e0024 (2002).

Chiou, T. J. & Lin, S. I. Signaling network in sensing phosphate

availability in plants. Annu. Rev. Plant Biol. 62, 185–206 (2011).

Ried, M. K. et al. Inositol pyrophosphates promote the interaction of

SPX domains with the coiled-coil motif of PHR transcription factors

to regulate plant phosphate homeostasis. Nat. Commun. 12, 384

(2021).

Zhou, J. et al. Mechanism of phosphate sensing and signaling

revealed by rice SPX1-PHR2 complex structure. Nat. Commun. 12,

7040 (2021).

Guan, Z. et al. Mechanistic insights into the regulation of plant

phosphate homeostasis by the rice SPX2 - PHR2 complex. Nat.

Commun. 13, 1581 (2022).

Sun, L., Song, L., Zhang, Y., Zheng, Z. & Liu, D. Arabidopsis PHL2 and

PHR1 act redundantly as the key components of the central regulatory system controlling transcriptional responses to phosphate

starvation. Plant Physiol. 170, 499–514 (2016).

Castrillo, G. et al. Root microbiota drive direct integration of phosphate stress and immunity. Nature 543, 513–518 (2017).

Hiruma, K. et al. Root endophyte Colletotrichum tofieldiae confers

plant fitness benefits that are phosphate status dependent. Cell

165, 464–474 (2016).

He, M. & Dijkstra, F. A. Drought effect on plant nitrogen and phosphorus: a meta-analysis. N. Phytol. 204, 924–931 (2014).

Graham, P. H. & Vance, C. P. Legumes: importance and constraints

to greater use. Plant Physiol. 131, 872–877 (2003).

FAO. Faostat-Production, F. A. O. “Crops and Livestock Products.”

(FAO, 2022), accessed on July 2022.

Manavalan, L. P., Guttikonda, S. K., Tran, L. S. P. & Nguyen, H. T.

Physiological and molecular approaches to improve drought

resistance in soybean. Plant Cell Physiol. 50, 1260–1276 (2009).

Gebre, M. G. & Earl, H. J. Soil water deficit and fertilizer placement

effects on root biomass distribution, soil water extraction, water

use, yield, and yield components of soybean [Glycine max (L.)

Nature Communications | (2023)14:5047

https://doi.org/10.1038/s41467-023-40773-1

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Merr.] grown in 1-m rooting columns. Front. Plant Sci. 12,

581127 (2021).

Nagatoshi, Y. & Fujita, Y. Accelerating soybean breeding in a CO2supplemented growth chamber. Plant Cell Physiol. 60, 77–84

(2019).

Zhang, M. et al. Progress in soybean functional genomics over the

past decade. Plant Biotechnol. J. 20, 256–282 (2022).

Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J. & Zhu, J. K.

Methods and concepts in quantifying resistance to drought, salt

and freezing, abiotic stresses that affect plant water status. Plant J.

45, 523–539 (2006).

Kuromori, T., Fujita, M., Takahashi, F., Yamaguchi-Shinozaki, K. &

Shinozaki, K. Inter-tissue and inter-organ signaling in drought stress

response and phenotyping of drought tolerance. Plant J. 109,

342–358 (2022).

Prince, S. J. et al. Root xylem plasticity to improve water use and

yield in water-stressed soybean. J. Exp. Bot. 68, 2027–2036 (2017).

Nelissen, H., Moloney, M. & Inzé, D. Translational research: from pot

to plot. Plant Biotechnol. J. 12, 277–285 (2014).

Fuganti-Pagliarini, R. et al. Characterization of soybean genetically

modified for drought tolerance in field conditions. Front. Plant Sci.

8, 448 (2017).

Kundel, D. et al. Design and manual to construct rainout-shelters for

climate change experiments in agroecosystems. Front. Environ. Sci.

6, 14 (2018).

Hoover, D. L., Wilcox, K. R. & Young, K. E. Experimental droughts

with rainout shelters: a methodological review. Ecosphere 9,

e02088 (2018).

Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water

footprint of crops and derived crop products. Hydrol. Earth Sys. Sci.

15, 1577–1600 (2011).

Li, C. et al. Identification of soybean purple acid phosphatase genes

and their expression responses to phosphorus availability and

symbiosis. Ann. Bot. 109, 275–285 (2012).

Yao, Z., Tian, J. & Liao, H. Comparative characterization of GmSPX

members reveals that GmSPX3 is involved in phosphate homeostasis in soybean. Ann. Bot. 114, 477–488 (2014).

Song, L. et al. A transcription factor hierarchy defines an environmental stress response network. Science 354, aag1550 (2016).

Bustos, R. et al. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet. 6, e1001102 (2010).

Wang, Z., Zheng, Z., Zhu, Y., Kong, S. & Liu, D. Phosphate response 1

family members act distinctly to regulate transcriptional responses

to phosphate starvation. Plant Physiol. 191, 1324–1343 (2023).

Pang, J., Ryan, M. H., Lambers, H. & Siddique, K. H. Phosphorus

acquisition and utilisation in crop legumes under global change.

Curr. Opin. Plant Biol. 45, 248–254 (2018).

Chen, W. et al. Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and

flooding stress revealed by RNA-Seq. Front. Plant Sci. 7, 1044

(2016).

Marcolino-Gomes, J. et al. Diurnal oscillations of soybean circadian

clock and drought responsive genes. PLoS ONE 9, e86402 (2014).

Li, M. et al. Transcriptome analysis reveals key drought-stressresponsive genes in soybean. Front. Genet. 13, 1060529 (2022).

Suriyagoda, L. D. B., Ryan, M. H., Renton, M. & Lambers, H. Plant

responses to limited moisture and phosphorus availability: a metaanalysis. Adv. Agron. 124, 143–200 (2014).

Kalladan, R. et al. Natural variation in 9-cis-epoxycartenoid dioxygenase 3 and ABA accumulation. Plant Physiol. 179,

1620–1631 (2019).

Jones, H. G. Monitoring plant and soil water status: established and

novel methods revisited and their relevance to studies of drought

tolerance. J. Exp. Bot. 58, 119–130 (2007).

14

Article

50. Jones, H. G. & Leinonen, I. Thermal imaging for the study of plant

water relations. J. Agric. Meteorol. 59, 205–217 (2003).

51. Tardieu, F., Simonneau, T. & Muller, B. The physiological basis of

drought tolerance in crop plants: A scenario-dependent probabilistic approach. Annu. Rev. Plant Biol. 69, 733–759 (2018).

52. Gupta, A., Rico-Medina, A. & Cano-Delgado, A. I. The physiology of

plant responses to drought. Science 368, 266–269 (2020).

53. Approaching peak phosphorus. Nat Plants 8, 979 (2022).

54. Schmutz, J. et al. Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183 (2010).

55. Shimomura, M. et al. The Glycine max cv. Enrei genome for

improvement of Japanese soybean cultivars. Int. J. Genomics 2015,

358127 (2015).

56. Driessen, P., Deckers J., Spaargaren, O. & Nachtergaele, F. “Andosols” in Lecture Notes on the Major Soils of the World. World Soil

Resources Rep. 94, (FAO, 2001).

57. Dane, J. H. & Hopmans, J. W. in Methods of Soil Analysis, Part 4:

Physical Methods (eds Dane, J. H., Topp, G. C.) 688–690 (SSSA,

Madison, 2002).

58. Scanlon, B. R., Andraski, B. J. & Bilskie, J. in Methods of Soil Analysis,

Part 4: Physical Methods (eds Dane, J. H., Topp, G. C.) 662–665

(SSSA, Madison, 2002).

59. Fredlund, D. G. & Xing, A. Equations for the soil-water characteristic

curve. Can. Geotech. J. 31, 521–532 (1994).

60. Seki, K. SWRC fit—a nonlinear fitting program with a water retention

curve for soils having unimodal and bimodal pore structure. Hydrol.

Earth Syst. Sci. Discuss 4, 407–437 (2007).

61. Durner, W. Hydraulic Conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res. 30, 211–223 (1994).

62. Van Reeuwijk, L. P. “Procedures for Soil Analysis” Tech. Paper Vol. 9

(International Soil Reference and Information Centre (ISRIC),

Wageningen, 2002).

63. Bray, R. H. & Kurtz, L. T. Determination of total, organic, and available forms of phosphorus in soils. Soil Science 59, 39–46 (1945).

64. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120

(2014).

65. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

66. Trapnell, C. et al. Transcript assembly and quantification by RNASeq reveals unannotated transcripts and isoform switching during

cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

67. Warnes, G. R. et al. gplots: Various R Programming Tools for Plotting

Data, 2016. https://cran.r-project.org/web/packages/gplots/index.

html. (2016).

68. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package

for comparing biological themes among gene clusters. OMICS 16,

284–287 (2012).

69. Morgan, M., Carlson, M., Tenenbaum, D. & Arora, S. AnnotationHub:

Client to Access AnnotationHub Resources. (R package version

2.10.1, 2017).

70. Kojima, M. et al. Highly sensitive and high-throughput analysis of

plant hormones using MS-probe modification and liquid

chromatography-tandem mass spectrometry: an application for

hormone profiling in Oryza sativa. Plant Cell Physiol. 50, 1201–1214

(2009).

71. Kojima, M. & Sakakibara, H. Highly sensitive high-throughput profiling of six phytohormones using MS-probe modification and liquid

chromatography-tandem mass spectrometry. Methods Mol. Biol.

918, 151–164 (2012).

72. Shinozaki, Y. et al. Ethylene suppresses tomato (Solanum lycopersicum) fruit set through modification of gibberellin metabolism.

Plant J. 83, 237–251 (2015).

73. Ames, B. N. Assay of inorganic phosphate, total phosphate and

phosphatases. Methods Enzymol. 8, 115–118 (1966).

Nature Communications | (2023)14:5047

https://doi.org/10.1038/s41467-023-40773-1

74. Chiou, T. J. et al. Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18, 412–421 (2006).

75. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general

purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

76. Vera Alvarez, R., Pongor, L. S., Mariño-Ramírez, L. & Landsman,

D. TPMCalculator: one-step software to quantify mRNA abundance of genomic features. Bioinformatics 35, 1960–1962

(2019).

77. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital

gene expression data. Bioinformatics 26, 139–140 (2010).

Acknowledgements

We thank S. Shu, M. Toyoshima, K. Ozawa, N. Komatsu, H. Ishiyama, K.

Matayoshi, K. Kawamura, N. Hisatomi, Y. Saito, Y. Shirai, Y. Nakamura, Y.

Nonoue, Y. Takiguchi, Y. Masamura, A. Aoyama, K. Mitadera, I. Gejima, H.

Ohwada, N. Tayama, K. Watanabe, T. Sekine, S. Nakamura, K. Yoshihara,

and S. Takasugi for technical assistance, and J. Kikuchi, Y. Tsuboi, K.

Yoshida, T. Fujiwara, T. Taji, K. Nakashima, M. Fujita, T. Ogata, Y. Murata,

T. Kashiwa, O. Rollano-Peñaloza, J. Quezada, and S. Neyrot for discussions. This work was supported by Grants-in-Aid for Scientific Research

(KAKENHI) from the Japan Society for the Promotion of Science (JSPS)

(Grant Nos. JP18K05379 to Y.N.; JP21H02158 to Y.N., Y.F.; JP16K07412,

JP24510312 to Y.F.), the Cabinet Office, Government of Japan, Moonshot

Research and Development Program for Agriculture, Forestry and

Fisheries (funding agency: Bio-oriented Technology Research

Advancement Institution; Grant No. JPJ009237), the Japan International

Cooperation Agency (JICA) for the Science and Technology Research

Partnership for Sustainable Development (SATREPS; Grant No.

JPMJSA1907), and the Ministry of Agriculture, Forestry and Fisheries

(MAFF) of Japan.

Author contributions

Y.N. and Y.F. conceived and designed the study and wrote the

paper; Y.N. performed most of the experiments and analyzed the

data; K.I. performed the soil and chemical analyses; Y.N., K.I., K.F.,

and Y.F. performed the field experiments, with support from T.O.

and Y.K.; R.S. performed the analysis using radioisotopes; Y.T.,

M.K., and H.S. performed quantitative analyses of abscisic acid;

N.K., K.T., and R.S. performed elemental analyses; J.B. assisted

Y.N.’s analyses; Y.N., N.M., Y.K., E.O-T., M.I., and Y.Y. performed the

transcriptome analysis. All authors discussed and commented on

the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains

supplementary material available at

https://doi.org/10.1038/s41467-023-40773-1.

Correspondence and requests for materials should be addressed to

Yasunari Fujita.

Peer review information Nature Communications thanks Hatem Rouached and Paul Verslues for their contribution to the peer review of this

work. A peer review file is available.

Reprints and permissions information is available at

http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

15

Article

https://doi.org/10.1038/s41467-023-40773-1

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if

changes were made. The images or other third party material in this

article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2023

Nature Communications | (2023)14:5047

16

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る