リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Diurnal Change of the Photosynthetic Light-Response Curve of Buckbean (Menyanthes trifoliata), an Emergent Aquatic Plant」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Diurnal Change of the Photosynthetic Light-Response Curve of Buckbean (Menyanthes trifoliata), an Emergent Aquatic Plant

Okamoto Azumi Koyama Kohei Bhusal Narayan 帯広畜産大学

2022.06.13

概要

Understanding plant physiological responses to high temperature is an important concern pertaining to climate change. However, compared with terrestrial plants, information about aquatic plants remains limited. Since the degree of midday depression of photosynthesis under high temperature
depends on soil water conditions, it is expected that emergent aquatic plants, for which soil water conditions are always saturated, will show different patterns compared with terrestrial plants. We investigated the diurnal course of the photosynthetic light-response curve and incident light intensity for a freshwater emergent plant, buckbean (Menyanthes trifoliata L.; Menyanthaceae) in a cool temperate region. The effect of midday depression was observed only on a very hot day, but not on a moderately hot day, in summer. The diurnal course of photosynthetic light-response curves on this hot day showed that latent morning reduction of photosynthetic capacity started at dawn, preceding the apparent depression around the midday, in agreement with results reported in terrestrial plants. We concluded that (1) midday depression of emergent plants occurs when the stress intensity exceeds the species’ tolerance, and (2) measurements of not only photosynthetic rate under field conditions but also diurnal course of photosynthetic light-response curve are necessary to quantify the effect of midday depression.

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

Luyssaert, S.; Schulze, E.D.; Borner, A.; Knohl, A.; Hessenmoller, D.; Law, B.E.; Ciais, P.; Grace, J. Old-growth forests as global

carbon sinks. Nature 2008, 455, 213–215. [CrossRef]

Hubau, W.; Lewis, S.L.; Phillips, O.L.; Affum-Baffoe, K.; Beeckman, H.; Cuní-Sanchez, A.; Daniels, A.K.; Ewango, C.E.N.; Fauset,

S.; Mukinzi, J.M.; et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 2020, 579, 80–87.

[CrossRef] [PubMed]

Whiting, G.J. CO2 exchange in the Hudson Bay lowlands: Community characteristics and multispectral reflectance properties.

J. Geophys. Res. Atmos. 1994, 99, 1519–1528. [CrossRef]

Suyker, A.E.; Verma, S.B.; Arkebauer, T.J. Season-long measurement of carbon dioxide exchange in a boreal fen. J. Geophys. Res.

Atmos. 1997, 102, 29021–29028. [CrossRef]

Glenn, A.J.; Flanagan, L.B.; Syed, K.H.; Carlson, P.J. Comparison of net ecosystem CO2 exchange in two peatlands in western

Canada with contrasting dominant vegetation, Sphagnum and Carex. Agric. For. Meteorol. 2006, 140, 115–135. [CrossRef]

Liu, L.; Guan, L.; Liu, X. Directly estimating diurnal changes in GPP for C3 and C4 crops using far-red sun-induced chlorophyll

fluorescence. Agric. For. Meteorol. 2017, 232, 1–9. [CrossRef]

Harenda, K.M.; Lamentowicz, M.; Samson, M.; Chojnicki, B.H. The role of peatlands and their carbon storage function in the

context of climate change. In Interdisciplinary Approaches for Sustainable Development Goals; Springer: Cham, Switzerland, 2018;

pp. 169–187. [CrossRef]

Harenda, K.M.; Samson, M.; Juszczak, R.; Markowicz, K.M.; Stachlewska, I.S.; Kleniewska, M.; MacArthur, A.; Schüttemeyer, D.;

Chojnicki, B.H. Impact of atmospheric optical properties on net ecosystem productivity of peatland in poland. Remote Sens. 2021,

13, 2124. [CrossRef]

Plants 2022, 11, 174

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

17 of 21

Stangl, Z.R.; Tarvainen, L.; Wallin, G.; Marshall, J.D. Limits to photosynthesis: Seasonal shifts in supply and demand for CO2 in

Scots pine. New Phytol. 2021, 233, 1108–1120. [CrossRef]

Wu, Y.; Mao, X.; Zhang, Z.; Tang, W.; Cao, G.; Zhou, H.; Ma, J.; Yin, X. Temporal and spatial characteristics of CO2 flux in plateau

urban wetlands and their influencing factors based on eddy covariance technique. Water 2021, 13, 1176. [CrossRef]

Chen, F.; Cui, N.; Huang, Y.; Hu, X.; Gong, D.; Wang, Y.; Lv, M.; Jiang, S. Investigating the Patterns and Controls of Ecosystem

Light Use Efficiency with the Data from the Global Farmland Fluxdata Network. Sustainability 2021, 13, 12673. [CrossRef]

Cheng, X.; Zhou, Y.; Hu, M.; Wang, F.; Huang, H.; Zhang, J. The Links between Canopy Solar-Induced Chlorophyll Fluorescence

and Gross Primary Production Responses to Meteorological Factors in the Growing Season in Deciduous Broadleaf Forest.

Remote Sens. 2021, 13, 2363. [CrossRef]

Jiao, L.; Kosugi, Y.; Sempuku, Y.; Chang, T.-w. Canopy conductance and gas exchange of a Japanese cypress forest after

rainfall-induced wetness. Ecol. Res. 2021, 36, 947–960. [CrossRef]

Kato, Y.; Tomotsune, M.; Shiote, F.; Koyama, Y.; Koizumi, H.; Yoshitake, S. Comparison of inter-annual variation in net primary

production among three forest types in the same region over 7 years. J. For. Res. 2021, 26, 110–115. [CrossRef]

Colina, M.; Kosten, S.; Silvera, N.; Clemente, J.M.; Meerhoff, M. Carbon fluxes in subtropical shallow lakes: Contrasting regimes

differ in CH4 emissions. Hydrobiologia 2021, 1–18, in press. [CrossRef]

Koyama, K.; Kikuzawa, K. Can we estimate forest gross primary production from leaf lifespan? A test in a young Fagus crenata

forest. J. Ecol. Field Biol. 2010, 33, 253–260. [CrossRef]

Field, C.B. Ecological scaling of carbon gain to stress and resource availability. In Response of Plants to Multiple Stresses; Mooney,

H.A., Winner, W.E., Pell, E.J., Eds.; Academic Press: San Diego, USA, 1991; pp. 35–65.

Koyama, K.; Kikuzawa, K. Is whole-plant photosynthetic rate proportional to leaf area? A test of scalings and a logistic equation

by leaf demography census. Am. Nat. 2009, 173, 640–649. [CrossRef]

Koyama, K.; Kikuzawa, K. Geometrical similarity analysis of photosynthetic light response curves, light saturation and light use

efficiency. Oecologia 2010, 164, 53–63. [CrossRef] [PubMed]

Hikosaka, K. Optimality of nitrogen distribution among leaves in plant canopies. J. Plant Res. 2016, 129, 299–311. [CrossRef]

Ventre-Lespiaucq, A.; Flanagan, N.S.; Ospina-Calderón, N.H.; Delgado, J.A.; Escudero, A. Midday Depression vs. Midday Peak

in Diurnal Light Interception: Contrasting Patterns at Crown and Leaf Scales in a Tropical Evergreen Tree. Front. Plant Sci. 2018,

9, 727. [CrossRef] [PubMed]

Tang, L.; Yin, D.; Chen, C.; Yu, D.; Han, W. Optimal Design of Plant Canopy Based on Light Interception: A Case Study with

Loquat. Front. Plant Sci. 2019, 10, 364. [CrossRef]

Lin, Y.-S.; Medlyn, B.E.; Duursma, R.A.; Prentice, I.C.; Wang, H.; Baig, S.; Eamus, D.; de Dios, V.R.; Mitchell, P.; Ellsworth, D.S.;

et al. Optimal stomatal behaviour around the world. Nat. Clim. Chang. 2015, 5, 459–464. [CrossRef]

Xiao, J.; Fisher, J.B.; Hashimoto, H.; Ichii, K.; Parazoo, N.C. Emerging satellite observations for diurnal cycling of ecosystem

processes. Nat. Plants 2021, 7, 877–887. [CrossRef] [PubMed]

Rastogi, A.; Strózecki,

M.; Kalaji, H.M.; Łuców, D.; Lamentowicz, M.; Juszczak, R. Impact of warming and reduced precipitation

on photosynthetic and remote sensing properties of peatland vegetation. Environ. Exp. Bot. 2019, 160, 71–80. [CrossRef]

Liu, Z.; Guo, C.; Bai, Y.; Zhang, N.; Yu, Q.; Zhao, F.; Lu, X. Far-Red Chlorophyll Fluorescence Radiance Tracks Photosynthetic

Carbon Assimilation Efficiency of Dark Reactions. Appl. Sci. 2021, 11, 10821. [CrossRef]

Miao, Y.; Cai, Y.; Wu, H.; Wang, D. Diurnal and seasonal variations in the photosynthetic characteristics and the gas exchange

simulations of two rice cultivars grown at ambient and elevated CO2 . Front. Plant Sci. 2021, 12, 651606. [CrossRef]

Hirasawa, T. Leaf Photosynthesis of Upland and Lowland Crops Grown under Moisture-Rich Conditions. In The Leaf: A Platform

for Performing Photosynthesis; Adams, W.W., III, Terashima, I., Eds.; Springer International Publishing: Cham, Switzerland, 2018;

pp. 345–369. [CrossRef]

Maai, E.; Nishimura, K.; Takisawa, R.; Nakazaki, T. Light stress-induced chloroplast movement and midday depression of

photosynthesis in sorghum leaves. Plant Prod. Sci. 2020, 23, 172–181. [CrossRef]

Marino, G.; Scalisi, A.; Guzmán-Delgado, P.; Caruso, T.; Marra, F.P.; Lo Bianco, R. Detecting Mild Water Stress in Olive with

Multiple Plant-Based Continuous Sensors. Plants 2021, 10, 131. [CrossRef] [PubMed]

Mihaljevi´c, I.; Viljevac-Vuleti´c, M.; Šimi´c, D.; Tomaš, V.; Horvat, D.; Josipovi´c, M.; Zduni´c, Z.; Dugali´c, K.; Vukovi´c, D. Comparative

Study of Drought Stress Effects on Traditional and Modern Apple Cultivars. Plants 2021, 10, 561. [CrossRef] [PubMed]

Romero-Trigueros, C.; Gambín, J.M.B.; Nortes Tortosa, P.A.; Cabañero, J.J.A.; Nicolás Nicolás, E. Isohydricity of Two Different

Citrus Species under Deficit Irrigation and Reclaimed Water Conditions. Plants 2021, 10, 2121. [CrossRef]

Shapira, O.; Chernoivanov, S.; Neuberger, I.; Levy, S.; Rubinovich, L. Physiological Characterization of Young ‘Hass’ Avocado

Plant Leaves Following Exposure to High Temperatures and Low Light Intensity. Plants 2021, 10, 1562. [CrossRef] [PubMed]

Cabrera, J.A.; Ritter, A.; Raya, V.; Pérez, E.; Lobo, M.G. Papaya (Carica papaya L.) Phenology under Different Agronomic Conditions

in the Subtropics. Agriculture 2021, 11, 173. [CrossRef]

Faralli, M.; Bianchedi, P.L.; Bertamini, M.; Varotto, C. Rootstock genotypes shape the response of cv. Pinot gris to water deficit.

Agronomy 2021, 11, 75. [CrossRef]

Zheng, K.; Bo, Y.; Bao, Y.; Zhu, X.; Wang, J.; Wang, Y. A machine learning model for photorespiration response to multi-factors.

Horticulturae 2021, 7, 207. [CrossRef]

Plants 2022, 11, 174

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

18 of 21

Ben Hamed, S.; Lefi, E.; Chaieb, M. Diurnal kinetics related to physiological parameters in Pistacia vera L. versus Pistacia atlantica

Desf. under water stress conditions. Acta Physiol. Plant 2021, 43, 126. [CrossRef]

Peng, X.; Hu, X.; Chen, D.; Zhou, Z.; Guo, Y.; Deng, X.; Zhang, X.; Yu, T. Prediction of Grape Sap Flow in a Greenhouse Based on

Random Forest and Partial Least Squares Models. Water 2021, 13, 3078. [CrossRef]

Angmo, P.; Phuntsog, N.; Namgail, D.; Chaurasia, O.P.; Stobdan, T. Effect of shading and high temperature amplitude in

greenhouse on growth, photosynthesis, yield and phenolic contents of tomato (Lycopersicum esculentum Mill.). Physiol. Mol. Biol.

Plants 2021, 27, 1539–1546. [CrossRef]

Azhar, A.; Makihara, D.; Naito, H.; Ehara, H. Photosynthesis of Sago Palm (Metroxylon sagu Rottb.) Seedling at Different Air

Temperatures. Agriculture 2018, 8, 4. [CrossRef]

Oliveira da Silva, P.S.; de Oliveira Alves Sena, E.; Silva Gonzaga, M.I.; Ganassali de Oliveira, L.F.; dos Santos Maciel, L.B.; Pinheiro

Fiaes dos Santos, M.; Costa de Mattos, E.; Lima Dias, K.L.; Botelho Carneiro, R.; Gutierrez Carnelossi, M.A. Calcium carbonate

particle films and water regimes affect the acclimatization, ecophysiology and reproduction of tomato. Environ. Exp. Bot. 2019,

165, 19–29. [CrossRef]

Hua, L.; Yu, F.; Qiu, Q.; He, Q.; Su, Y.; Liu, X.; Li, J. Relationships between diurnal and seasonal variation of photosynthetic

characteristics of Eucalyptus plantation and environmental factors under dry-season irrigation with fertilization. Agric. Water

Manag. 2021, 248, 106737. [CrossRef]

Kenzo, T.; Inoue, Y.; Araki, M.G.; Kawasaki, T.; Kitaoka, S.; Tsurita, T.; Sakata, T.; Saito, S. Effects of Throughfall Exclusion on

Photosynthetic Traits in Mature Japanese Cedar (Cryptomeria japonica (L. f.) D. Don.). Forests 2021, 12, 971. [CrossRef]

Farquhar, G.D.; von Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.

Planta 1980, 149, 78–90. [CrossRef] [PubMed]

Wünsche, J.N.; Palmer, J.W.; Greer, D.H. Effects of Crop Load on Fruiting and Gas-exchange Characteristics of ‘Braeburn’/M.26

Apple Trees at Full Canopy. J. Am. Soc. Hort. Sci. 2000, 125, 93–99. [CrossRef]

Snir, A.; Gurevitz, M.; Marcus, Y. Alterations in Rubisco activity and in stomatal behavior induce a daily rhythm in photosynthesis

of aerial leaves in the amphibious-plant Nuphar lutea. Photosynth. Res. 2006, 90, 233–242. [CrossRef] [PubMed]

Jarvis, P.G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field.

Philos. T. R. Soc. B 1976, 273, 593–610. [CrossRef]

Schulze, E.D. Carbon Dioxide and Water Vapor Exchange in Response to Drought in the Atmosphere and in the Soil. Annu. Rev.

Plant Physiol. 1986, 37, 247–274. [CrossRef]

Ball, J.T.; Woodrow, I.E.; Berry, J. A model predicting stomatal conductance and its contribution to the control of photosynthesis

under different environmental conditions. In Progress in Photosynthesis Research; Biggins, J., Ed.; Springer: Dordrecht, The Netherlands, 1987; pp. 221–224. [CrossRef]

Tenhunen, J.; Pearcy, R.; Lnge, O. Diurnal variations in leaf conductance and gas exchange in natural environments. In Stomatal

function; Zeiger, E., Farquhar, G.D., Cowan, I., Eds.; Stanford University Press: Stanford, CA, USA, 1987; pp. 323–351.

Leuning, R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ. 1995, 18, 339–355.

[CrossRef]

Katul, G.; Manzoni, S.; Palmroth, S.; Oren, R. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf

photosynthesis and transpiration. Ann. Bot. 2010, 105, 431–442. [CrossRef]

Medlyn, B.E.; Duursma, R.A.; Eamus, D.; Ellsworth, D.S.; Prentice, I.C.; Barton, C.V.M.; Crous, K.Y.; De Angelis, P.; Freeman, M.;

Wingate, L. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Chang. Biol. 2011, 17,

2134–2144. [CrossRef]

Schulze, E.-D.; Lange, O.; Evenari, M.; Kappen, L.; Buschbom, U. Long-term effects of drought on wild and cultivated plants in

the Negev desert. Oecologia 1980, 45, 19–25. [CrossRef]

Tenhunen, J.D.; Lange, O.L.; Gebel, J.; Beyschlag, W.; Weber, J.A. Changes in photosynthetic capacity, carboxylation efficiency,

and CO2 compensation point associated with midday stomatal closure and midday depression of net CO2 exchange of leaves of

Quercus suber. Planta 1984, 162, 193–203. [CrossRef] [PubMed]

Muraoka, H.; Tang, Y.H.; Terashima, I.; Koizumi, H.; Washitani, I. Contributions of diffusional limitation, photoinhibition and

photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light. Plant Cell Environ. 2000,

23, 235–250. [CrossRef]

Li, J.; Hou, F.; Ren, J. Grazing Intensity Alters Leaf and Spike Photosynthesis, Transpiration, and Related Parameters of Three

Grass Species on an Alpine Steppe in the Qilian Mountains. Plants 2021, 10, 294. [CrossRef] [PubMed]

Deng, X.; Shi, Z.; Zeng, L.; Lei, L.; Xin, X.; Pei, S.; Xiao, W. Photosynthetic Product Allocations to the Organs of Pinus massoniana

Are Not Affected by Differences in Synthesis or Temporal Variations in Translocation Rates. Forests 2021, 12, 471. [CrossRef]

Tazaki, T.; Ishihara, K.; Ushijima, T. Influence of water stress on the photosynthesis and productivity of plants in humid areas.

In Adaptation of Plants to Water and High Temperature Stress; Turner, N., Krammer, P., Eds.; Wiley: New York, NY, USA, 1980;

pp. 309–321.

Bates, L.M.; Hall, A.E. Stomatal closure with soil water depletion not associated with changes in Bulk leaf water status. Oecologia

1981, 50, 62–65. [CrossRef] [PubMed]

Valladares, F.; Pearcy, R.W. Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the

sclerophyll Heteromeles arbutifolia. Plant Cell Environ. 1997, 20, 25–36. [CrossRef]

Plants 2022, 11, 174

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

19 of 21

Koyama, K.; Kikuzawa, K. Reduction of photosynthesis before midday depression occurred: Leaf photosynthesis of Fagus crenata

in a temperate forest in relation to canopy position and a number of days after rainfall. Ecol. Res. 2011, 26, 999–1006. [CrossRef]

Scoffoni, C.; Sack, L.; Ort, D. The causes and consequences of leaf hydraulic decline with dehydration. J. Exp. Bot. 2017, 68,

4479–4496. [CrossRef]

Bhusal, N.; Kim, H.S.; Han, S.-G.; Yoon, T.-M. Photosynthetic traits and plant–water relations of two apple cultivars grown as

bi-leader trees under long-term waterlogging conditions. Environ. Exp. Bot. 2020, 176, 104111. [CrossRef]

Gadi, V.K.; Hussain, R.; Bordoloi, S.; Hossain, S.; Singh, S.R.; Garg, A.; Sekharan, S.; Karangat, R.; Lingaraj, S. Relating stomatal

conductance and surface area with evapotranspiration induced suction in a heterogeneous grass cover. J. Hydrol. 2019, 568,

867–876. [CrossRef]

Hirasawa, T.; Tsuchida, M.; Ishihara, K. Relationship between Resistance to Water Transport and Exudation Rate and the Effect of

the Resistance on the Midday Depression of Stomatal Aperture in Rice Plants. Jpn. J. Crop Sci. 1992, 61, 145–152. [CrossRef]

Fabre, D.; Yin, X.; Dingkuhn, M.; Clément-Vidal, A.; Roques, S.; Rouan, L.; Soutiras, A.; Luquet, D. Is triose phosphate utilization

involved in the feedback inhibition of photosynthesis in rice under conditions of sink limitation? J. Exp. Bot. 2019, 70, 5773–5785.

[CrossRef]

Niinemets, U.; Sonninen, E.; Tobias, M. Canopy gradients in leaf intercellular CO2 mole fractions revisited: Interactions between

leaf irradiance and water stress need consideration. Plant Cell Environ. 2004, 27, 569–583. [CrossRef]

Ishida, A.; Toma, T.; Marjenah. Leaf gas exchange and chlorophyll fluorescence in relation to leaf angle, azimuth, and canopy

position in the tropical pioneer tree, Macaranga conifera. Tree Physiol. 1999, 19, 117–124. [CrossRef]

Ishida, A.; Toma, T.; Marjenah. Limitation of leaf carbon gain by stomatal and photochemical processes in the top canopy of

Macaranga conifera, a tropical pioneer tree. Tree Physiol. 1999, 19, 467–473. [CrossRef]

Koyama, K.; Takemoto, S. Morning reduction of photosynthetic capacity before midday depression. Sci. Rep. 2014, 4, 4389.

[CrossRef]

Murakami, K.; Hamasaki, T.; Nemoto, M.; Inoue, S.; Hirota, T. Photosynthetic and respiratory activities of spinach in an unheated

greenhouse during winter in Sapporo, Japan. J. Agric. Meteorol. 2021, 77, 109–117. [CrossRef]

Pearcy, R.; Berry, J.; Bartholoomew, B. Field photosynthetic performance and leaf temperatures of Phragmites communis under

summer conditions in Death Valley, California. Photosynthetica 1974, 8, 104–108.

Tsuchiya, T.; Shinozuka, A.; Ikusima, I. Photosynthesis and transpiration of an emergent Plant Zizania latifolia. Jpn. J. Limnol. 1995,

56, 33–38. [CrossRef]

Jones, M.B. The photosynthetic characteristics of papyrus in a tropical swamp. Oecologia 1987, 71, 355–359. [CrossRef]

Sale, P.J.M.; Orr, P.T. Gas exchange of Typha orientalis Presl. communities in artificial ponds. Aquat. Bot. 1986, 23, 329–339.

[CrossRef]

Sale, P.J.M.; Orr, P.T.; Shell, G.S.; Erskine, D.J.C. Photosynthesis and growth rates in Salvinia molesta and Eichhornia crassipes. J. Appl.

Ecol. 1985, 22, 125–137. [CrossRef]

Takanashi, S.; Kosugi, Y.; Matsuo, N.; Tani, M.; Ohte, N. Patchy stomatal behavior in broad-leaved trees grown in different

habitats. Tree Physiol. 2006, 26, 1565–1578. [CrossRef]

Kosugi, Y.; Takanashi, S.; Matsuo, N.; Nik, A.R. Midday depression of leaf CO2 exchange within the crown of Dipterocarpus

sublamellatus in a lowland dipterocarp forest in Peninsular Malaysia. Tree Physiol. 2009, 29, 505–515. [CrossRef]

Kamakura, M.; Kosugi, Y.; Takanashi, S.; Tobita, H.; Uemura, A.; Utsugi, H. Observation of the scale of patchy stomatal behavior

in leaves of Quercus crispula using an Imaging-PAM chlorophyll fluorometer. Tree Physiol. 2012, 32, 839–846. [CrossRef] [PubMed]

Zedler, J.B.; Kercher, S. WETLAND RESOURCES: Status, Trends, Ecosystem Services, and Restorability. Annu. Rev. Environ.

Resour. 2005, 30, 39–74. [CrossRef]

Erwin, K.L. Wetlands and global climate change: The role of wetland restoration in a changing world. Wetl. Ecol. Manag. 2008, 17,

71. [CrossRef]

Short, F.T.; Kosten, S.; Morgan, P.A.; Malone, S.; Moore, G.E. Impacts of climate change on submerged and emergent wetland

plants. Aquat. Bot. 2016, 135, 3–17. [CrossRef]

Valentini, R.; Epron, D.; Deangelis, P.; Matteucci, G.; Dreyer, E. In situ estimation of net CO2 assimilation, photosynthetic electron

flow and photorespiration in Turkey oak (Q. cerris L.) leaves: Diurnal cycles under different levels of water-supply. Plant Cell

Environ. 1995, 18, 631–640. [CrossRef]

Ishida, A.; Nakano, T.; Matsumoto, Y.; Sakoda, M.; Ang, L.H. Diurnal changes in leaf gas exchange and chlorophyll fluorescence

in tropical tree species with contrasting light requirements. Ecol. Res. 1999, 14, 77–88. [CrossRef]

Yamazaki, J.-Y.; Yoda, E.; Takahashi, A.; Sonoike, K.; Maruta, E. Pacific Ocean and Japan Sea ecotypes of Japanese beech

(Fagus crenata) differ in photosystem responses to continuous high light. Tree Physiol. 2007, 27, 961–968. [CrossRef] [PubMed]

Misson, L.; Limousin, J.M.; Rodriguez, R.; Letts, M.G. Leaf physiological responses to extreme droughts in Mediterranean

Quercus ilex forest. Plant Cell Environ. 2010, 33, 1898–1910. [CrossRef] [PubMed]

Palma, C.F.F.; Castro-Alves, V.; Morales, L.O.; Rosenqvist, E.; Ottosen, C.-O.; Strid, Å. Spectral Composition of Light Affects

Sensitivity to UV-B and Photoinhibition in Cucumber. Front. Plant Sci. 2021, 11, 610011. [CrossRef] [PubMed]

Weis, E. Reversible heat-inactivation of the Calvin cycle: A possible mechanism of the temperature regulation of photosynthesis.

Planta 1981, 151, 33–39. [CrossRef] [PubMed]

Plants 2022, 11, 174

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

20 of 21

Yamori, W.; Suzuki, K.; Noguchi, K.O.; Nakai, M.; Terashima, I. Effects of Rubisco kinetics and Rubisco activation state on the

temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant Cell Environ.

2006, 29, 1659–1670. [CrossRef]

Miyashita, A.; Sugiura, D.; Sawakami, K.; Ichihashi, R.; Tani, T.; Tateno, M. Long-term, short-interval measurements of the

frequency distributions of the photosynthetically active photon flux density and net assimilation rate of leaves in a cool-temperate

forest. Agric. For. Meteorol. 2012, 152, 1–10. [CrossRef]

Deguchi, R.; Koyama, K. Photosynthetic and morphological acclimation to high and low light environments in Petasites japonicus

subsp. giganteus. Forests 2020, 11, 1365. [CrossRef]

Morales, A.; Kaiser, E. Photosynthetic acclimation to fluctuating irradiance in plants. Front. Plant Sci. 2020, 11, 268. [CrossRef]

[PubMed]

Way, D.A.; Pearcy, R.W. Sunflecks in trees and forests: From photosynthetic physiology to global change biology. Tree Physiol.

2012, 32, 1066–1081. [CrossRef] [PubMed]

Kaiser, E.; Morales, A.; Harbinson, J. Fluctuating light takes crop photosynthesis on a rollercoaster ride. Plant Physiol. 2018, 176,

977–989. [CrossRef]

Sakoda, K.; Yamori, W.; Groszmann, M.; Evans, J.R. Stomatal, mesophyll conductance, and biochemical limitations to photosynthesis during induction. Plant Physiol. 2021, 185, 146–160. [CrossRef] [PubMed]

Kimura, H.; Hashimoto-Sugimoto, M.; Iba, K.; Terashima, I.; Yamori, W. Improved stomatal opening enhances photosynthetic

rate and biomass production in fluctuating light. J. Exp. Bot. 2020, 71, 2339–2350. [CrossRef]

Shimadzu, S.; Seo, M.; Terashima, I.; Yamori, W. Whole irradiated plant leaves showed faster photosynthetic induction than

individually irradiated leaves via improved stomatal opening. Front. Plant Sci. 2019, 10, 1512. [CrossRef]

Yamori, W.; Kusumi, K.; Iba, K.; Terashima, I. Increased stomatal conductance induces rapid changes to photosynthetic rate in

response to naturally fluctuating light conditions in rice. Plant Cell Environ. 2020, 43, 1230–1240. [CrossRef]

Tatsumi, K.; Kuwabara, Y.; Motobayashi, T. Photosynthetic light-use efficiency of rice leaves under fluctuating incident light.

Agrosyst. Geosci. Environ. 2020, 3, e20030. [CrossRef]

Okajima, Y.; Taneda, H.; Noguchi, K.; Terashima, I. Optimum leaf size predicted by a novel leaf energy balance model incorporating dependencies of photosynthesis on light and temperature. Ecol. Res. 2012, 27, 333–346. [CrossRef]

Leigh, A.; Sevanto, S.; Close, J.D.; Nicotra, A.B. The influence of leaf size and shape on leaf thermal dynamics: Does theory hold

up under natural conditions? Plant Cell Environ. 2017, 40, 237–248. [CrossRef] [PubMed]

Jagadish, S.V.K.; Way, D.A.; Sharkey, T.D. Plant heat stress: Concepts directing future research. Plant Cell Environ. 2021, 44,

1992–2005. [CrossRef]

Madsen, J.D.; Morgan, C.M. Water temperature controls the growth of waterhyacinth and South American sponge plant. J. Aquat.

Plant Manag. 2021, 59s, 28–32.

Chen, Y.-J.; Choat, B.; Sterck, F.; Maenpuen, P.; Katabuchi, M.; Zhang, S.-B.; Tomlinson, K.W.; Oliveira, R.S.; Zhang, Y.-J.; Shen,

J.-X.; et al. Hydraulic prediction of drought-induced plant dieback and top-kill depends on leaf habit and growth form. Ecol. Lett.

2021, 24, 2350–2363. [CrossRef] [PubMed]

Bhusal, N.; Lee, M.; Reum Han, A.; Han, A.; Kim, H.S. Responses to drought stress in Prunus sargentii and Larix kaempferi seedlings

using morphological and physiological parameters. For. Ecol. Manag. 2020, 465, 118099. [CrossRef]

Bhusal, N.; Bhusal, S.J.; Yoon, T.-M. Comparisons of physiological and anatomical characteristics between two cultivars in

bi-leader apple trees (Malus × domestica Borkh.). Sci. Hortic. 2018, 231, 73–81. [CrossRef]

Japan Meteorological Agency. 2020. Available online: https://www.jma.go.jp (accessed on 14 September 2020).

The Global Biodiversity Information Facility. 2021. Available online: http://www.gbif.org (accessed on 30 November 2021).

Haraguchi, A. Seasonal changes in redox properties of peat, nutrition and phenology of Menyanthes trifoliata L. in a floating peat

mat in Mizorogaike Pond, central Japan. Aquat. Ecol. 2004, 38, 351–357. [CrossRef]

Tagawa, K. Repellence of nectar-thieving ants by a physical barrier: Adaptive role of petal hairs on Menyanthes trifoliata

(Menyanthaceae). J. Asia-Pac. Entomol. 2018, 21, 1211–1214. [CrossRef]

Baasanmunkh, S.; Oyuntsetseg, B.; Urgamal, M.; Norris, J.; Shiga, T.; Choi, H.J. Notes on the taxonomy of Nymphaeaceae and

Menyanthaceae in Mongolia. J. Asia-Pac. Biodivers. 2021, in press. [CrossRef]

Niwa, H. Assessing the activity of deer and their influence on vegetation in a wetland using automatic cameras and low altitude

remote sensing (LARS). Eur. J. Wildl. Res. 2021, 67, 3. [CrossRef]

Zhu, J.-J.; Yang, H.-X.; Li, Z.-H.; Wang, G.-K.; Feng, T.; Liu, J.-K. Anti-inflammatory lupane triterpenoids from Menyanthes

trifoliata. J. Asian Nat. Prod. Res. 2019, 21, 597–602. [CrossRef]

Kim, Y.; Lee, Y.-S.; Wee, J.; Hong, J.; Lee, M.; Kim, J.G.; Bae, Y.J.; Cho, K. Process-based modeling to assess the nutrient removal

efficiency of two endangered hydrophytes: Linking nutrient-cycle with a multiple-quotas approach. Sci. Total Environ. 2021, 763,

144223. [CrossRef]

Martz, F.; Turunen, M.; Julkunen-Tiitto, R.; Lakkala, K.; Sutinen, M.-L. Effect of the temperature and the exclusion of UVB

radiation on the phenolics and iridoids in Menyanthes trifoliata L. leaves in the subarctic. Environ. Pollut. 2009, 157, 3471–3478.

[CrossRef] [PubMed]

Turusova, E.V.; Aleksandrova, L.N.; Lyshchikov, A.N.; Nasakin, O.E. Chemical Composition of Menyanthes trifoliata L. Leaves.

Pharm. Chem. J. 2021, 55, 265–268. [CrossRef]

Plants 2022, 11, 174

21 of 21

118. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021.

119. Clarke, E.; Sherrill-Mix, S. ggbeeswarm: Categorical Scatter (Violin Point) Plots. 2017. Available online: https://cran.r-project.

org/web/packages/ggbeeswarm/index.html (accessed on 29 November 2021).

120. Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer International Publishing: Cham, Switzerland, 2016.

121. Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R Package Version 0.4.0. 2020. Available online: https:

//CRAN.R-project.org/package=ggpubr (accessed on 30 November 2021).

122. Elzhov, T.V.; Mullen, K.M.; Spiess, A.-N.; Bolker, B. minpack.lm: R Interface to the Levenberg-Marquardt Nonlinear LeastSquares Algorithm Found in MINPACK, Plus Support for Bounds. R Package Version 1.2-1. 2016. Available online: https:

//CRAN.R-project.org/package=minpack.lm (accessed on 30 November 2021).

123. Johnson, I.R.; Thornley, J.H.M. A model of instantaneous and daily canopy photosynthesis. J. Theor. Biol. 1984, 107, 531–545.

[CrossRef]

124. Liu, Y.Y.; Li, J.; Liu, S.C.; Yu, Q.; Tong, X.J.; Zhu, T.T.; Gao, X.X.; Yu, L.X. Sugarcane leaf photosynthetic light responses and their

difference between varieties under high temperature stress. Photosynthetica 2020, 58, 1009–1018. [CrossRef]

125. Case, S.B.; Tarwater, C.E. Functional traits of avian frugivores have shifted following species extinction and introduction in the

Hawaiian Islands. Funct. Ecol. 2020, 34, 2467–2476. [CrossRef]

126. Koyama, K.; Tashiro, M. No effect of selective maturation on fruit traits for a bird-dispersed species, Sambucus racemosa. Plants

2021, 10, 376. [CrossRef] [PubMed]

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る