リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Monitoring of Crystallization Process in Solution-Processed Pentacene Thin Films by Chemical Conversion Reactions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Monitoring of Crystallization Process in Solution-Processed Pentacene Thin Films by Chemical Conversion Reactions

Shioya, Nobutaka Fujiwara, Ryoi Tomita, Kazutaka Shimoaka, Takafumi Okudaira, K. Koji Yoshida, Hiroyuki Koganezawa, Tomoyuki Hasegawa, Takeshi 京都大学 DOI:10.1021/acs.jpcc.0c10431

2021.01.10

概要

Solution-processable organic semiconductors having bulky substituent groups on the π-conjugated skeleton are rapidly gaining attention for their potential applications to large-area electronics. While the substituent groups contribute to the good solubility in organic solvents, they give rise to hopping sites in a thin film, affecting adversely the charge-carrier transport. As an alternative material, a solvent-soluble precursor compound with thermally cleavable functional groups is promising, which can be converted by heat treatment into a thin film to generate the desired material consisting solely of conjugated systems. This precursor approach is practically applied to various thin-film-based devices. The overall process of the thin film growth, however, remains unrevealed. In the present study, solution-processed pentacene thin films are prepared from a thermally convertible precursor, and the structural evolution during the chemical conversion reaction has been revealed by a combination of cutting-edge analytical tools of two-dimensional X-ray diffraction (2D-GIXD) and p-polarized multiple-angle incidence resolution spectrometry (pMAIRS). The highlight is that pentacene is crystallized in a stepwise manner in the thermally converted films, which is substantially different from a typical growth process. In addition, influences of the oxidation reaction of pentacene on the molecular arrangement are also discussed quantitatively. This study provides a fundamental schematic of thin films grown by the precursor method.

この論文で使われている画像

参考文献

1.

Yamamura, A.; Fujii, H.; Ogasawara, H.; Nordlund, D.; Takahashi, O.; Kishi, Y.; Ishii, H.;

Kobayashi, N.; Niitsu, N.; Blülle, B.; et al. Sub-Molecular Structural Relaxation at a

Physisorbed Interface with Monolayer Organic Single-Crystal Semiconductors. Commun.

Phys. 2020, 3 (1), 20.

2.

Zhang, Y.; Qiao, J.; Gao, S.; Hu, F.; He, D.; Wu, B.; Yang, Z.; Xu, B.; Li, Y.; Shi, Y.; et al.

Probing Carrier Transport and Structure-Property Relationship of Highly Ordered Organic

Semiconductors at the Two-Dimensional Limit. Phys. Rev. Lett. 2016, 116 (1), 016602.

3.

Mas-Torrent, M.; Rovira, C. Role of Molecular Order and Solid-State Structure in Organic

Field-Effect Transistors. Chem. Rev. 2011, 111 (8), 4833–4856.

4.

Wakabayashi, Y.; Takeya, J.; Kimura, T. Sub-Å Resolution Electron Density Analysis of the

Surface of Organic Rubrene Crystals. Phys. Rev. Lett. 2010, 104 (6), 066103.

5.

Yuan, Y.; Giri, G.; Ayzner, A. L.; Zoombelt, A. P.; Mannsfeld, S. C. B.; Chen, J.; Nordlund,

D.; Toney, M. F.; Huang, J.; Bao, Z. Ultra-High Mobility Transparent Organic Thin Film

Transistors Grown by an off-Centre Spin-Coating Method. Nat. Commun. 2014, 5 (1), 3005.

6.

Wu, H.; Iino, H.; Hanna, J. Scalable Ultrahigh-Speed Fabrication of Uniform Polycrystalline

Thin Films for Organic Transistors. ACS Appl. Mater. Interfaces 2020, 12 (26).

7.

Niazi, M. R.; Li, R.; Li, E. Q.; Kirmani, A. R.; Abdelsamie, M.; Wang, Q.; Pan, W.; Payne,

M. M.; Anthony, J. E.; Smilgies, D.-M.; et al. Solution-Printed Organic Semiconductor Blends

Exhibiting Transport Properties on Par with Single Crystals. Nat. Commun. 2015, 6 (1), 8598.

20

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

8.

Diao, Y.; Tee, B. C.-K.; Giri, G.; Xu, J.; Kim, D. H.; Becerril, H. A.; Stoltenberg, R. M.; Lee,

T. H.; Xue, G.; Mannsfeld, S. C. B.; et al. Solution Coating of Large-Area Organic

Semiconductor Thin Films with Aligned Single-Crystalline Domains. Nat. Mater. 2013, 12

(7), 665–671.

9.

Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J.; Haas, S.; Chiba, R.; Kumai, R.;

Hasegawa, T. Inkjet Printing of Single-Crystal Films. Nature 2011, 475 (7356), 364–367.

10. Singh, M.; Haverinen, H. M.; Dhagat, P.; Jabbour, G. E. Inkjet Printing—Process and Its

Applications. Adv. Mater. 2010, 22 (6), 673–685.

11. Arias, A. C.; MacKenzie, J. D.; McCulloch, I.; Rivnay, J.; Salleo, A. Materials and

Applications for Large Area Electronics: Solution-Based Approaches. Chem. Rev. 2010, 110

(1), 3–24.

12. Okamoto, T.; Mitani, M.; Yu, C. P.; Mitsui, C.; Yamagishi, M.; Ishii, H.; Watanabe, G.;

Kumagai, S.; Hashizume, D.; Tanaka, S.; et al. Alkyl-Substituted Selenium-Bridged VShaped Organic Semiconductors Exhibiting High Hole Mobility and Unusual Aggregation

Behavior. J. Am. Chem. Soc. 2020, 142 (35), 14974–14984.

13. Yamaguchi, Y.; Kojiguchi, Y.; Kawata, S.; Mori, T.; Okamoto, K.; Tsutsui, M.; Koganezawa,

T.; Katagiri, H.; Yasuda, T. Solution-Processable Organic Semiconductors Featuring SShaped Dinaphthothienothiophene (S-DNTT): Effects of Alkyl Chain Length on SelfOrganization and Carrier Transport Properties. Chem. Mater. 2020, 32 (12), 5350–5360.

21

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

14. Bilgaiyan, A.; Cho, S.-I.; Abiko, M.; Watanabe, K.; Mizukami, M. Solution Processed

Organic Transistors on Polymeric Gate Dielectric with Mobility Exceeding 15 cm2 V−1 S−1.

Phys. Status Solidi RPL 2020, 14 (8), 2000156.

15. Kawabata, K.; Usui, S.; Takimiya, K. Synthesis of Soluble Dinaphtho[2,3-b:2′,3′f]thieno[3,2-b]thiophene (DNTT) Derivatives: One-Step Functionalization of 2-BromoDNTT. J. Org. Chem. 2020, 85 (1), 195–206.

16. Iino, H.; Usui, T.; Hanna, J. Liquid Crystals for Organic Thin-Film Transistors. Nat. Commun.

2015, 6 (1), 6828.

17. Amin, A. Y.; Khassanov, A.; Reuter, K.; Meyer-Friedrichsen, T.; Halik, M. Low-Voltage

Organic Field Effect Transistors with a 2-Tridecyl[1]benzothieno[3,2-b][1]benzothiophene

Semiconductor Layer. J. Am. Chem. Soc. 2012, 134 (40), 16548–16550.

18. Ebata, H.; Izawa, T.; Miyazaki, E.; Takimiya, K.; Ikeda, M.; Kuwabara, H.; Yui, T. Highly

Soluble [1]Benzothieno[3,2-b]benzothiophene (BTBT) Derivatives for High-Performance,

Solution-Processed Organic Field-Effect Transistors. J. Am. Chem. Soc. 2007, 129 (51),

15732–15733.

19. Anthony, J. E.; Brooks, J. S.; Eaton, D. L.; Parkin, S. R. Functionalized Pentacene: Improved

Electronic Properties from Control of Solid-State Order. J. Am. Chem. Soc. 2001, 123 (38),

9482–9483.

20. Kim, D. H.; Lee, D. Y.; Lee, H. S.; Lee, W. H.; Kim, Y. H.; Han, J. I.; Cho, K. High‐Mobility

Organic Transistors Based on Single‐Crystalline Microribbons of Triisopropylsilylethynyl

Pentacene via Solution‐Phase Self‐Assembly. Adv. Mater. 2007, 19 (5), 678–682.

22

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

21. Park, S. K.; Jackson, T. N.; Anthony, J. E.; Mourey, D. A. High Mobility Solution Processed

6,13-Bis(Triisopropyl-Silylethynyl) Pentacene Organic Thin Film Transistors. Appl. Phys.

Lett. 2007, 91 (6), 063514.

22. Payne, M. M.; Parkin, S. R.; Anthony, J. E.; Kuo, C.-C.; Jackson, T. N. Organic Field-Effect

Transistors from Solution-Deposited Functionalized Acenes with Mobilities as High as 1

cm2/Vꞏs. J. Am. Chem. Soc. 2005, 127 (14).

23. Sheraw, C. D.; Jackson, T. N.; Eaton, D. L.; Anthony, J. E. Functionalized Pentacene Active

Layer Organic Thin‐Film Transistors. Adv. Mater. 2003, 15 (23), 2009–2011.

24. Yamada, H.; Kuzuhara, D.; Suzuki, M.; Hayashi, H.; Aratani, N. Synthesis and Morphological

Control of Organic Semiconducting Materials Using the Precursor Approach. Bull. Chem. Soc.

Jpn. 2020, 93 (10), 1234–1267.

25. Suzuki, M.; Aotake, T.; Yamaguchi, Y.; Noguchi, N.; Nakano, H.; Nakayama, K.; Yamada,

H. Synthesis and Photoreactivity of α-Diketone-Type Precursors of Acenes and Their Use in

Organic-Device Fabrication. J. Photochem. Photobiol. C 2014, 18, 50–70.

26. Yamada, H.; Okujima, T.; Ono, N. Organic Semiconductors Based on Small Molecules with

Thermally or Photochemically Removable Groups. Chem. Commun. 2008, 26, 2957.

27. Okujima, T.; Hashimoto, Y.; Furuta, T.; Yamanaka, R.; Jin, G.; Otsubo, S.; Aramaki, S.; Mori,

S.; Yamada, H.; Uno, H.; et al. Synthesis of the Soluble Precursors of Tetrabenzoporphyrin:

Control of the Solubility and the Conversion Temperature. Bull. Chem. Soc. Jpn. 2019, 92 (8),

1370–1378.

23

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

28. Carvalho, C. M. B.; Brocksom, T. J.; Oliveira, K. T. de. Tetrabenzoporphyrins: Synthetic

Developments and Applications. Chem. Soc. Rev. 2013, 42 (8), 3302–3317.

29. Hamaguchi, A.; Negishi, T.; Kimura, Y.; Ikeda, Y.; Takimiya, K.; Bisri, S.; Iwasa, Y.; Shiro,

T. Single‐Crystal‐Like Organic Thin‐Film Transistors Fabricated from Dinaphtho[2,3‐b:2′,3′‐

f]Thieno[3,2‐b]Thiophene (DNTT) Precursor–Polystyrene Blends. Adv. Mater. 2015, 27 (42),

6606–6611.

30. Kimura, Y.; Nagase, T.; Kobayashi, T.; Hamaguchi, A.; Ikeda, Y.; Shiro, T.; Takimiya, K.;

Naito, H. Soluble Organic Semiconductor Precursor with Specific Phase Separation for High‐

Performance Printed Organic Transistors. Adv. Mater. 2015, 27 (4), 727–732.

31. Soeda, J.; Okamoto, T.; Hamaguchi, A.; Ikeda, Y.; Sato, H.; Yamano, A.; Takeya, J. TwoDimensional Crystal Growth of Thermally Converted Organic Semiconductors at the Surface

of Ionic Liquid and High-Mobility Organic Field-Effect Transistors. Org. Electron. 2013, 14

(4), 1211–1217.

32. Hayakawa, S.; Matsuo, K.; Yamada, H.; Fukui, N.; Shinokubo, H. Dinaphthothiepine

Bisimide and Its Sulfoxide: Soluble Precursors for Perylene Bisimide. J. Am. Chem. Soc. 2020,

142 (27), 11663–11668.

33. Nakamura, T.; Shioya, N.; Shimoaka, T.; Nishikubo, R.; Hasegawa, T.; Saeki, A.; Murata, Y.;

Murdey, R.; Wakamiya, A. Molecular Orientation Change in Naphthalene Diimide Thin

Films Induced by Removal of Thermally Cleavable Substituents. Chem. Mater. 2019, 31 (5),

1729–1737.

24

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

34. Nakayama, K.; Ohashi, C.; Oikawa, Y.; Motoyama, T.; Yamada, H. Characterization and

Field-Effect Transistor Performance of Printed Pentacene Films Prepared by Photoconversion

of a Soluble Precursor. J. Mater. Chem. C 2013, 1 (39), 6244–6251.

35. Yamada, H.; Ohashi, C.; Aotake, T.; Katsuta, S.; Honsho, Y.; Kawano, H.; Okujima, T.; Uno,

H.; Ono, N.; Seki, S.; et al. FET Performance and Substitution Effect on 2,6Dithienylanthracene Devices Prepared by Photoirradiation of Their Diketone Precursors.

Chem. Commun. 2012, 48 (90), 11136–11138.

36. Shea, P. B.; Yamada, H.; Ono, N.; Kanicki, J. Solution-Processed Zinc Tetrabenzoporphyrin

Thin-Films and Transistors. Thin Solid Films 2012, 520 (11), 4031–4035.

37. Luzio, A.; Musumeci, C.; Newman, C. R.; Facchetti, A.; Marks, T. J.; Pignataro, B. Enhanced

Thin-Film Transistor Performance by Combining 13,6-N-Sulfinylacetamidopentacene with

Printed PEDOT:PSS Electrodes. Chem. Mater. 2011, 23 (4), 1061–1069.

38. Hirao, A.; Akiyama, T.; Okujima, T.; Yamada, H.; Uno, H.; Sakai, Y.; Aramaki, S.; Ono, N.

Soluble Precursors of 2,3-Naphthalocyanine and Phthalocyanine for Use in Thin Film

Transistors. Chem. Commun. 2008, 39, 4714–4716.

39. Shea, P. B.; Chen, C.; Kanicki, J.; Pattison, L. R.; Petroff, P.; Yamada, H.; Ono, N.

Polycrystalline Tetrabenzoporphyrin Organic Field-Effect Transistors with Nanostructured

Channels. Appl. Phys. Lett. 2007, 90 (23), 233107.

40. Shea, P. B.; Pattison, L. R.; Kawano, M.; Chen, C.; Chen, J.; Petroff, P.; Martin, D. C.;

Yamada,

H.;

Ono,

N.;

Kanicki,

J.

Solution-Processed

Polycrystalline

Copper

Tetrabenzoporphyrin Thin-Film Transistors. Synth. Met. 2007, 157 (4–5), 190–197.

25

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

41. Shea, P. B.; Kanicki, J.; Pattison, L. R.; Petroff, P.; Kawano, M.; Yamada, H.; Ono, N.

Solution-Processed Nickel Tetrabenzoporphyrin Thin-Film Transistors. J. Appl. Phys. 2006,

100 (3), 034502.

42. Tulevski, G. S.; Miao, Q.; Afzali, A.; Graham, T. O.; Kagan, C. R.; Nuckolls, C. Chemical

Complementarity in the Contacts for Nanoscale Organic Field-Effect Transistors. J. Am.

Chem. Soc. 2006, 128 (6), 1788–1789.

43. Chen, K.-Y.; Hsieh, H.-H.; Wu, C.-C.; Hwang, J.-J.; Chow, T. J. A New Type of Soluble

Pentacene Precursor for Organic Thin-Film Transistors. Chem. Commun. 2006, 10, 1065–

1067.

44. Kagan, C. R.; Afzali, A.; Graham, T. O. Operational and Environmental Stability of Pentacene

Thin-Film Transistors. Appl. Phys. Lett. 2005, 86 (19), 193505.

45. Aramaki, S.; Sakai, Y.; Ono, N. Solution-Processible Organic Semiconductor for Transistor

Applications: Tetrabenzoporphyrin. Appl. Phys. Lett. 2004, 84 (12), 2085–2087.

46. Murphy, A. R.; Fréchet, J. M. J.; Chang, P.; Lee, J.; Subramanian, V. Organic Thin Film

Transistors from a Soluble Oligothiophene Derivative Containing Thermally Removable

Solubilizing Groups. J. Am. Chem. Soc. 2004, 126 (6), 1596–1597.

47. Weidkamp, K. P.; Afzali, A.; Tromp, R. M.; Hamers, R. J. A Photopatternable Pentacene

Precursor for Use in Organic Thin-Film Transistors. J. Am. Chem. Soc. 2004, 126 (40),

12740–12741.

26

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

48. Afzali, A.; Dimitrakopoulos, C. D.; Graham, T. O. Photosensitive Pentacene Precursor:

Synthesis, Photothermal Patterning, and Application in Thin‐Film Transistors. Adv. Mater.

2003, 15 (24), 2066–2069.

49. Afzali, A.; Dimitrakopoulos, C. D.; Breen, T. L. High-Performance, Solution-Processed

Organic Thin Film Transistors from a Novel Pentacene Precursor. J. Am. Chem. Soc. 2002,

124 (30), 8812–8813.

50. Takahashi, K.; Kumagai, D.; Yamada, N.; Kuzuhara, D.; Yamaguchi, Y.; Aratani, N.;

Koganezawa, T.; Koshika, S.; Yoshimoto, N.; Masuo, S.; et al. Side-Chain Engineering in a

Thermal Precursor Approach for Efficient Photocurrent Generation. J. Mater. Chem. A 2017,

5 (27), 14003–14011.

51. Saeki, H.; Kurimoto, O.; Nakaoka, H.; Misaki, M.; Kuzuhara, D.; Yamada, H.; Ishida, K.;

Ueda, Y. Effect of Crystallinity in Small Molecular Weight Organic Heterojunction Solar

Cells. J. Mater. Chem. C 2014, 2 (27), 5357–5364.

52. Motoyama, T.; Kiyota, T.; Yamada, H.; Nakayama, K. Hetero-Layered Organic Photovoltaic

Devices Fabricated Using Soluble Pentacene Photoprecursors. Sol. Energy Mater. Sol. Cells

2013, 114, 156–160.

53. Chen, T. L.; Chen, J. J.-A.; Catane, L.; Ma, B. Fully Solution Processed P-i-n Organic Solar

Cells with an Industrial Pigment – Quinacridone. Org. Electron. 2011, 12 (7), 1126–1131.

54. Matsuo, Y.; Sato, Y.; Niinomi, T.; Soga, I.; Tanaka, H.; Nakamura, E. Columnar Structure in

Bulk Heterojunction in Solution-Processable Three-Layered p-i-n Organic Photovoltaic

27

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Devices Using Tetrabenzoporphyrin Precursor and Silylmethyl[60]Fullerene. J. Am. Chem.

Soc. 2009, 131 (44), 16048–16050.

55. Shioya, N.; Fujiwara, R.; Tomita, K.; Shimoaka, T.; Hasegawa, T. Simultaneous Analysis of

Molecular Orientation and Quantity Change of Constituents in a Thin Film Using pMAIRS.

J. Phys. Chem. A 2020, 124 (13), 2714–2720.

56. Shioya, N.; Murdey, R.; Nakao, K.; Yoshida, H.; Koganezawa, T.; Eda, K.; Shimoaka, T.;

Hasegawa, T. Alternative Face-on Thin Film Structure of Pentacene. Sci. Rep. 2019, 9 (1),

579.

57. Watanabe, T.; Hosokai, T.; Koganezawa, T.; Yoshimoto, N. In Situ Real-Time X-Ray

Diffraction During Thin Film Growth of Pentacene. Mol. Cryst. Liq. Cryst. 2012, 566 (1), 18–

21.

58. Kowarik, S.; Gerlach, A.; Leitenberger, W.; Hu, J.; Witte, G.; Wöll, C.; Pietsch, U.; Schreiber,

F. Energy-Dispersive X-Ray Reflectivity and GID for Real-Time Growth Studies of

Pentacene Thin Films. Thin Solid Films 2007, 515 (14), 5606–5610.

59. Ruiz, R.; Choudhary, D.; Nickel, B.; Toccoli, T.; Chang, K.-C.; Mayer, A. C.; Clancy, P.;

Blakely, J. M.; Headrick, R. L.; Iannotta, S.; et al. Pentacene Thin Film Growth. Chem. Mater.

2004, 16 (23), 4497–4508.

60. Chou, K. W.; Khan, H. U.; Niazi, M. R.; Yan, B.; Li, R.; Payne, M. M.; Anthony, J. E.;

Smilgies, D.-M.; Amassian, A. Late Stage Crystallization and Healing during Spin-Coating

Enhance Carrier Transport in Small-Molecule Organic Semiconductors. J. Mater. Chem. C

2014, 2 (28), 5681–5689.

28

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

61. Hasegawa, T.; Shioya, N. MAIRS: Innovation of Molecular Orientation Analysis in a Thin

Film. Bull. Chem. Soc. Jpn. 2020, 93 (9), 1127–1138.

62. Hasegawa, T. Advanced Multiple-Angle Incidence Resolution Spectrometry for Thin-Layer

Analysis on a Low-Refractive-Index Substrate. Anal. Chem. 2007, 79 (12), 4385–4389.

63. Murai, Y.; Misaki, M.; Ishida, K.; Ueda, Y. Pillarlike Crystals of Pentacene Prepared from

Soluble Precursor. Appl. Phys. Express 2011, 4 (12), 121603.

64. Akinaga, T.; Yasutake, S.; Sasaki, S.; Sakata, O.; Otsuka, H.; Takahara, A. Analysis of

Molecular Aggregation States in Pentacene Thin Films Prepared from Soluble Precursor.

Chem. Lett. 2006, 35 (10), 1162–1163.

65. Bishop, C.; Thelen, J. L.; Gann, E.; Toney, M. F.; Yu, L.; DeLongchamp, D. M.; Ediger, M.

D. Vapor Deposition of a Nonmesogen Prepares Highly Structured Organic Glasses. Proc.

Natl. Acad. Sci. U.S.A. 2019, 116 (43), 21421–21426.

66. Yoshida, H.; Inaba, K.; Sato, N. X-Ray Diffraction Reciprocal Space Mapping Study of the

Thin Film Phase of Pentacene. Appl. Phys. Lett. 2007, 90 (18), 181930.

67. Yoshida, H.; Sato, N. Grazing-Incidence X-Ray Diffraction Study of Pentacene Thin Films

with the Bulk Phase Structure. Appl. Phys. Lett. 2006, 89 (10), 101919.

68. Siegrist, T.; Besnard, C.; Haas, S.; Schiltz, M.; Pattison, P.; Chernyshov, D.; Batlogg, B.; Kloc,

C. A Polymorph Lost and Found: The High-Temperature Crystal Structure of Pentacene. Adv.

Mater. 2007, 19 (16), 2079–2082.

29

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

69. Campbell, R. B.; Robertson, J. M.; Trotter, J. The Crystal Structure of Hexacene, and a

Revision of the Crystallographic Data for Tetracene. Acta Cryst. 1962, 15 (3), 289–290.

70. Nabok, D.; Puschnig, P.; Ambrosch-Draxl, C.; Werzer, O.; Resel, R.; Smilgies, D.-M. Crystal

and Electronic Structures of Pentacene Thin Films from Grazing-Incidence X-Ray Diffraction

and First-Principles Calculations. Phys. Rev. B 2007, 76 (23), 235322.

71. Schiefer, S.; Huth, M.; Dobrinevski, A.; Nickel, B. Determination of the Crystal Structure of

Substrate-Induced Pentacene Polymorphs in Fiber Structured Thin Films. J. Am. Chem. Soc.

2007, 129 (34), 10316–10317.

72. Pachmajer, S.; Jones, A. O. F.; Truger, M.; Röthel, C.; Salzmann, I.; Werzer, O.; Resel, R.

Self-Limited Growth in Pentacene Thin Films. ACS Appl. Mater. Interfaces 2017, 9 (13),

11977–11984.

73. Moser, A.; Flesch, H.-G.; Neuhold, A.; Marchl, M.; Ausserlechner, S. J.; Edler, M.; Griesser,

T.; Haase, A.; Smilgies, D.-M.; Jakabovič, J.; et al. Crystallization of Pentacene Thin Films

on Polymeric Dielectrics. Synth. Met. 2012, 161 (23–24), 2598–2602.

74. Yang, H.; Ling, M.-M.; Yang, L. Temperature-Dependent Pentacene Nanostructures on

Hydrophobic Gate-Dielectrics Correlated with Charge Carrier Mobilities. J. Phys. Chem. C

2007, 111 (34), 12508–12511.

75. Yu, X.; Yu, J.; Huang, W.; Zhang, L.; Zeng, H. Source/Drain Electrodes Contact Effect on

the Stability of Bottom-Contact Pentacene Field-Effect Transistors. AIP Adv. 2012, 2 (2),

022113.

30

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

76. Knipp, D.; Benor, A.; Wagner, V.; Muck, T. Influence of Impurities and Structural Properties

on the Device Stability of Pentacene Thin Film Transistors. J. Appl. Phys. 2007, 101 (4),

044504.

77. Cipolloni, S.; Mariucci, L.; Valletta, A.; Simeone, D.; Angelis, F. D.; Fortunato, G. Aging

Effects and Electrical Stability in Pentacene Thin Film Transistors. Thin Solid Films 2007,

515 (19), 7546–7550.

78. Angelis, F. D.; Cipolloni, S.; Mariucci, L.; Fortunato, G. Aging Effects in Pentacene ThinFilm Transistors: Analysis of the Density of States Modification. Appl. Phys. Lett. 2006, 88

(19), 193508.

79. Li, D.; Borkent, E.-J.; Nortrup, R.; Moon, H.; Katz, H.; Bao, Z. Humidity Effect on Electrical

Performance of Organic Thin-Film Transistors. Appl. Phys. Lett. 2005, 86 (4), 042105.

80. Jurchescu, O. D.; Baas, J.; Palstra, T. T. M. Electronic Transport Properties of Pentacene

Single Crystals upon Exposure to Air. Appl. Phys. Lett. 2005, 87 (5), 052102.

81. Qiu, Y.; Hu, Y.; Dong, G.; Wang, L.; Xie, J.; Ma, Y. H2O Effect on the Stability of Organic

Thin-Film Field-Effect Transistors. Appl. Phys. Lett. 2003, 83 (8), 1644–1646.

82. Angelis, F. D.; Gaspari, M.; Procopio, A.; Cuda, G.; Fabrizio, E. D. Direct Mass Spectrometry

Investigation on Pentacene Thin Film Oxidation upon Exposure to Air. Chem. Phys. Lett.

2009, 468 (4–6), 193–196.

31

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

83. Maliakal, A.; Raghavachari, K.; Katz, H.; Chandross, E.; Siegrist, T. Photochemical Stability

of Pentacene and a Substituted Pentacene in Solution and in Thin Films. Chem. Mater. 2004,

16 (24), 4980–4986.

84. Angelis, F. D.; Das, G.; Fabrizio, E. D. Analysis of the Interactions between Pentacene Film

and Air Molecules by Means of Raman Spectroscopy. Chem. Phys. Lett. 2008, 462 (4–6),

234–237.

85. Koch, N.; Salzmann, I.; Johnson, R. L.; Pflaum, J.; Friedlein, R.; Rabe, J. P. Molecular

Orientation Dependent Energy Levels at Interfaces with Pentacene and Pentacenequinone.

Org. Electron. 2006, 7 (6), 537–545.

86. Jurchescu, O. D.; Baas, J.; Palstra, T. T. M. Effect of Impurities on the Mobility of Single

Crystal Pentacene. Appl. Phys. Lett. 2004, 84 (16), 3061–3063.

87. Salzmann, I.; Nabok, D.; Oehzelt, M.; Duhm, S.; Moser, A.; Heimel, G.; Puschnig, P.;

Ambrosch-Draxl, C.; Rabe, J. P.; Koch, N. Structure Solution of the 6,13-Pentacenequinone

Surface-Induced Polymorph by Combining X-Ray Diffraction Reciprocal-Space Mapping

and Theoretical Structure Modeling. Cryst. Growth Des. 2011, 11 (2), 600–606.

88. Salzmann, I.; Duhm, S.; Opitz, R.; Rabe, J. P.; Koch, N. Impact of Low 6,13Pentacenequinone Concentration on Pentacene Thin Film Growth. Appl. Phys. Lett. 2007, 91

(5), 051919.

89. Shioya, N.; Shimoaka, T.; Hasegawa, T. Fringe and Noise Reductions of pMAIRS Spectra

Using Principal Component Analysis. Anal. Sci. 2017, 33 (1), 117–120.

32

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

90. Norimoto, S.; Morimine, S.; Shimoaka, T.; Hasegawa, T. Analysis of the Surface Coverage

of a Self-Assembled Monolayer of Octadecyl Silane on a Si(100) Surface by Infrared

External-Reflection Spectroscopy. Anal. Sci. 2013, 29 (10), 979–984.

91. Parisse, P.; Bussolotti, F.; Passacantando, M.; Ottaviano, L. 3D Island Growth of 6,13

Pentacenequinone on Silicon Oxide and Gold. J. Non. Cryst. Solids 2010, 356 (37–40), 2079–

2082.

92. Hwang, D. K.; Kim, K.; Kim, J. H.; Im, S.; Jung, D.-Y.; Kim, E. Structural and Optical

Properties of 6,13-Pentacenequinone Thin Films. Appl. Phys. Lett. 2004, 85 (23), 5568–5570.

93. Kamura, Y.; Shirotani, I.; Inokuchi, H.; Maruyama, Y. Absorption Spectra of Oriented and

Amorphous Naphthacene and Pentacene Films. Chem. Lett. 1974, 3 (6), 627–630.

33

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る