リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Stereoisomer-dependent conversion of dinaphthothienothiophene precursor films」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Stereoisomer-dependent conversion of dinaphthothienothiophene precursor films

Shioya, Nobutaka Fujii, Masamichi Shimoaka, Takafumi Eda, Kazuo Hasegawa, Takeshi 京都大学 DOI:10.1038/s41598-022-08505-5

2022.03.15

概要

Soluble precursor materials of organic semiconductors are employed for fabricating solution-processable thin film devices. While the so-called precursor approach has already been tried for various organic electronic devices such as transistors and solar cells, understanding of the conversion process in the film lags far behind. Here, we report that molecular aggregation of the precursor compound significantly influences the thermal conversion reaction in the film. For this study, two stereoisomers of a dinaphthothienothiophene (DNTT) precursor that are the endo- and exo-DNTT-phenylmaleimide monoadducts are focused on. The structural change during the thermal conversion process has been investigated by a combination of infrared spectroscopy and X-ray diffraction techniques. The results show that the endo-isomer is readily converted to DNTT in the film by heating, whereas the exo-isomer exhibits no reaction at all. This reaction suppression is found to be due to the self-aggregation property of the exo-isomer accompanying the intermolecular C–H⋯O interactions. This finding shows a new direction of controlling the on-surface reaction, as well as the importance of analyzing the film structure at the initial stage of the reaction.

この論文で使われている画像

参考文献

1. Song, S. et al. On-surface synthesis of graphene nanostructures with π-magnetism. Chem. Soc. Rev. 50, 3238–3262 (2021).

2. Clair, S. & Oteyza, D. G. Controlling a chemical coupling reaction on a surface: Tools and strategies for on-surface synthesis. Chem.

Rev. 119, 4717–4776 (2019).

3. Shen, Q., Gao, H.-Y. & Fuchs, H. Frontiers of on-surface synthesis: From principles to applications. Nano Today 13, 77–96 (2017).

Scientific Reports |

(2022) 12:4448 |

https://doi.org/10.1038/s41598-022-08505-5

Vol.:(0123456789)

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

4. Auwärter, W., Écija, D., Klappenberger, F. & Barth, J. V. Porphyrins at interfaces. Nat. Chem. 7, 105–120 (2015).

5. Zuzak, R. et al. Higher acenes by on-surface dehydrogenation: From heptacene to undecacene. Angew. Chem. Int. Ed. 57, 10500–

10505 (2018).

6. Yamada, H., Kuzuhara, D., Suzuki, M., Hayashi, H. & Aratani, N. Synthesis and morphological control of organic semiconducting

materials using the precursor approach. Bull. Chem. Soc. Jpn. 93, 1234–1267 (2020).

7. Hayakawa, S., Matsuo, K., Yamada, H., Fukui, N. & Shinokubo, H. Dinaphthothiepine bisimide and its sulfoxide: Soluble precursors for perylene bisimide. J. Am. Chem. Soc. 142, 11663–11668 (2020).

8. Nakamura, T. et al. Molecular orientation change in naphthalene diimide thin films induced by removal of thermally cleavable

substituents. Chem. Mater. 31, 1729–1737 (2019).

9. Hamaguchi, A. et al. Single-crystal-like organic thin-film transistors fabricated from dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene

(DNTT) precursor–polystyrene blends. Adv. Mater. 27, 6606–6611 (2015).

10. Kimura, Y. et al. Soluble organic semiconductor precursor with specific phase separation for high-performance printed organic

transistors. Adv. Mater. 27, 727–732 (2015).

11. Suzuki, M. et al. Synthesis and photoreactivity of α-diketone-type precursors of acenes and their use in organic-device fabrication.

J. Photochem. Photobiol. C 18, 50–70 (2014).

12. Matsuo, Y. et al. Columnar structure in bulk heterojunction in solution-processable three-layered p-i-n organic photovoltaic

devices using tetrabenzoporphyrin precursor and silylmethyl[60]fullerene. J. Am. Chem. Soc. 131, 16048–16050 (2009).

13. Afzali, A., Dimitrakopoulos, C. D. & Breen, T. L. High-performance, solution-processed organic thin film transistors from a novel

pentacene precursor. J. Am. Chem. Soc. 124, 8812–8813 (2002).

14. Shioya, N. et al. Alternative face-on thin film structure of Pentacene. Sci. Rep. 9, 579 (2019).

15. Watanabe, T., Hosokai, T., Koganezawa, T. & Yoshimoto, N. In situ real-time X-ray diffraction during thin film growth of pentacene.

Mol. Cryst. Liq. Cryst. 566, 18–21 (2012).

16. Kowarik, S. et al. Energy-dispersive X-ray reflectivity and GID for real-time growth studies of pentacene thin films. Thin Solid

Films 515, 5606–5610 (2007).

17. Ruiz, R. et al. Pentacene thin film growth. Chem. Mater. 16, 4497–4508 (2004).

18. Shioya, N. et al. Monitoring of crystallization process in solution-processed pentacene thin films by chemical conversion reactions.

J. Phys. Chem. C 125, 2437–2445 (2021).

19. Shioya, N., Fujiwara, R., Tomita, K., Shimoaka, T. & Hasegawa, T. Simultaneous analysis of molecular orientation and quantity

change of constituents in a thin film using pMAIRS. J. Phys. Chem. A 124, 2714–2720 (2020).

20. Zschieschang, U. et al. Dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) thin-film transistors with improved performance

and stability. Org. Electron. 12, 1370–1375 (2011).

21. Zschieschang, U. et al. Flexible low-voltage organic transistors and circuits based on a high-mobility organic semiconductor with

good air stability. Adv. Mater. 22, 982–985 (2009).

22. Haas, S., Takahashi, Y., Takimiya, K. & Hasegawa, T. High-performance dinaphtho-thieno-thiophene single crystal field-effect

transistors. Appl. Phys. Lett. 95, 022111 (2009).

23. Yamamoto, T. & Takimiya, K. Facile synthesis of highly π-extended heteroarenes, dinaphtho[2,3-b:2‘,3‘-f]chalcogenopheno[3,2-b]

chalcogenophenes, and their application to field-effect transistors. J. Am. Chem. Soc. 129, 2224–2225 (2007).

24. Kimura, Y. et al. Solution-processed dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene transistor memory based on phosphorusdoped silicon nanoparticles as a nano-floating gate. Appl. Phys. Express 8, 101601 (2015).

25. Soeda, J. et al. Two-dimensional crystal growth of thermally converted organic semiconductors at the surface of ionic liquid and

high-mobility organic field-effect transistors. Org. Electron. 14, 1211–1217 (2013).

26. Hasegawa, T. & Shioya, N. MAIRS: Innovation of molecular orientation analysis in a thin film. Bull. Chem. Soc. Jpn. 93, 1127–1138

(2020).

27. Hasegawa, T. Advanced multiple-angle incidence resolution spectrometry for thin-layer analysis on a low-refractive-index substrate.

Anal. Chem. 79, 4385–4389 (2007).

28. Shioya, N., Eda, K., Shimoaka, T. & Hasegawa, T. Hidden thin-film phase of dinaphthothienothiophene revealed by high-resolution

X-ray diffraction. Appl. Phys. Express 13, 095505 (2020).

29. Tomita, K. et al. Substrate-independent control of polymorphs in tetraphenylporphyrin thin films by varying the solvent evaporation time using a simple spin-coating technique. Cryst. Growth Des. 21, 5116–5125 (2021).

30. Hada, M. et al. Comprehensive understanding of structure-controlling factors of a zinc tetraphenylporphyrin thin film using

pMAIRS and GIXD techniques. Chem. Eur. J. 22, 16539–16546 (2016).

31. Meaurio, E., de Arenaza, I. M., Lizundia, E. & Sarasua, J. R. Analysis of the C═O stretching band of the α-crystal of poly(L-lactide).

Macromolecules 42, 5717–5727 (2009).

32. Bantignies, J.-L. et al. Hydrogen bonding in self organized lamellar hybrid silica. J. Non-cryst. Solids 345, 605–609 (2004).

33. Wasserman, J. G., Murphy, K. J. & Newby, J. J. Evidence of C-H···O interactions in the thiophene:water complex. J. Phys. Chem. A

123, 10406–10417 (2019).

34. Veljković, D. Ž. Strong CH/O interactions between polycyclic aromatic hydrocarbons and water: Influence of aromatic system

size. J. Mol. Graph. Model 80, 121–125 (2018).

35. Kawai, S. et al. Direct quantitative measurement of the C=O⋅⋅⋅H–C bond by atomic force microscopy. Sci. Adv. 3, e1603258 (2017).

36. Dragelj, J. L., Janjic, G. V., Veljkovic, D. Z. & Zaric, S. D. Crystallographic and ab initio study of pyridine CH–O interactions:

Linearity of the interactions and influence of pyridine classical hydrogen bonds. CrystEngComm 15, 10481–10489 (2013).

37. Veljković, D. Ž, Janjić, G. V. & Zarić, S. D. Are C-H⋯O interactions linear? The case of aromatic CH donors. CrystEngComm 13,

5005–5010 (2011).

38. Aburaya, K. et al. Importance of weak hydrogen bonds in the formation of cholamide inclusion crystals with aromatic guests.

Cryst. Growth Des. 8, 1013–1022 (2008).

39. Omote, K. et al. High resolution grazing-incidence in-plane x-ray diffraction for measuring the strain of a Si thin layer. J. Phys.

Condens. Matter. 22, 474004 (2010).

40. Frisch, M. J. et al. Gaussian 09, Revision E.01 (Gaussian Inc, 2013).

41. Yoshida, H., Takeda, K., Okamura, J., Ehara, A. & Matsuura, H. A new approach to vibrational analysis of large molecules by density

functional theory: Wavenumber-linear scaling method. J. Phys. Chem. 106, 3580–3586 (2002).

Acknowledgements

This work was financially supported by a Grant-in-Aid for Scientific Research (A) (No. 15H02185 (TH)), Grantin-Aid for Young Scientists (B) (No. 17K14502 (TS)) and Grant-in-Aid for Early-Career Scientists (No. 19K15602

(NS)) from the Japan Society for the Promotion of Science (JSPS), for which we are thankful.

Scientific Reports |

Vol:.(1234567890)

(2022) 12:4448 |

https://doi.org/10.1038/s41598-022-08505-5

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Author contributions

N.S. and M.F. designed the research and performed all the experiments. K.E. supervised the XRD measurements.

T.S. provided his constructive advice on the study. T.H. directed the research. The paper is written by N.S. and

T.H., and all authors commented on the paper.

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://​doi.​org/​

10.​1038/​s41598-​022-​08505-5.

Correspondence and requests for materials should be addressed to N.S. or T.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

Scientific Reports |

(2022) 12:4448 |

https://doi.org/10.1038/s41598-022-08505-5

Vol.:(0123456789)

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る