リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Antioxidative copper sinter bonding under thermal aging utilizing reduction of cuprous oxide nanoparticles by polyethylene glycol」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Antioxidative copper sinter bonding under thermal aging utilizing reduction of cuprous oxide nanoparticles by polyethylene glycol

Matsuda, Tomoki 大阪大学

2023.10.19

概要

Sinter bonding using metal particles has attracted
growing attention as a promising technology for
manufacturing power modules using semiconductors that operate at temperatures above 150 °C [1].
As sinter materials, Ag and Cu are widely used in
various morphologies, such as sizes ranging from
nanoscale to microscale [2–4], shapes (e.g., particles
and flakes) [4–6], and composites (e.g., mixture and
core–shell structures) [7, 8]. Cu sinter bonding has
been recently studied to obtain sintered joints with
high thermal and migration resistivities compared
to Ag sinter bonding [9–11]. In particular, changes in
the mechanical, electrical, and thermal properties of
sintered joints during thermal aging are important,
as the power modules are subjected to such hightemperature environments.
There are many reports on changes in the microstructure and properties of sintered Cu joints during thermal aging [9, 12, 13]. It is noteworthy that
the oxidation of sintered Cu during thermal aging
generally occurs in a high-temperature environment.
Gao et al. [14] reported that the strength of sintered
Cu joints was improved by the progress of Cu sintering during the thermal aging, whereas the joints
exhibited increased resistivity and insulation with
the formation of Cu oxides. ...

この論文で使われている画像

参考文献

[ 1] Chalker PR (1999) Wide bandgap semiconductor materials for high temperature electronics. Thin Solid Films

343–344:616–622. https://​doi.​org/​10.​1016/​S0040-​6090(98)​

01672-1

[ 2] Ide E, Angata S, Hirose A, Kobayashi KF (2005) Metal–

metal bonding process using Ag metallo-organic nanoparticles. Acta Mater 53:2385–2393. https://​doi.​org/​10.​1016/j.​

actam​at.​2005.​01.​047

[ 3] Bai JG, Lu G-Q (2006) Thermomechanical reliability of

low-temperature sintered silver die attached SiC power

device assembly. IEEE Trans Device Mater Reliab 6:436–

441. https://​doi.​org/​10.​1109/​TDMR.​2006.​882196

[ 4] Li J, Li X, Wang L et al (2018) A novel multiscale silver

paste for die bonding on bare copper by low-temperature

pressure-free sintering in air. Mater Des 140:64–72. https://​

doi.​org/​10.​1016/j.​matdes.​2017.​11.​054

[ 5] Chen C, Suganuma K, Iwashige T et al (2018) High-temperature reliability of sintered microporous Ag on electroplated Ag, Au, and sputtered Ag metallization substrates.

J Mater Sci Mater Electron 29:1785–1797. https://​doi.​org/​

10.​1007/​s10854-​017-​8087-8

[ 6] Roh MH, Nishikawa H, Tsutsumi S et al (2017) Effect of

temperature and substrate on shear strength of the joints

formed by sintering of micro-sized Ag particle paste without pressure. J Mater Sci Mater Electron 28:7292–7301.

https://​doi.​org/​10.​1007/​s10854-​017-​6414-8

[ 7] Hsiao CH, Kung WT, Song JM et al (2017) Development

of Cu–Ag pastes for high temperature sustainable bonding.

Mater Sci Eng A 684:500–509. https://​doi.​org/​10.​1016/j.​

msea.​2016.​12.​084

[ 8] Jia Q, Zou G, Wang W et al (2020) Sintering mechanism of

a supersaturated Ag–Cu nanoalloy film for power electronic

packaging. ACS Appl Mater Interfaces 12:16743–16752.

https://​doi.​org/​10.​1021/​acsami.​9b207​31

[ 9] Chen TF, Siow KS (2021) Comparing the mechanical and

thermal-electrical properties of sintered copper (Cu) and

sintered silver (Ag) joints. J Alloys Compd 866:158783.

https://​doi.​org/​10.​1016/j.​jallc​om.​2021.​158783

[ 10] Gao Y, Takata S, Chen C et al (2019) Reliability analysis

of sintered Cu joints for SiC power devices under thermal

shock condition. Microelectron Reliab 100–101:113456.

https://​doi.​org/​10.​1016/j.​micro​rel.​2019.​113456

[ 11] Lee CJ, Kang DG, Hwang BU et al (2021) Fabrication of an

IPL-sintered Cu circuit and its electrochemical migration

behavior. J Alloys Compd 863:158726. https://​doi.​org/​10.​

1016/j.​jallc​om.​2021.​158726

[ 12] Xie J, Shen J, Deng J, Chen X (2020) Inf luence

of aging atmosphere on the thermal stability of

15631

low-temperature rapidly sintered Cu nanoparticle paste

joint. J Electron Mater 49:2669–2676. https://​doi.​org/​10.​

1007/​s11664-​020-​07951-z

[ 13] Koga S, Nishikawa H, Saito M, Mizuno J (2020) Fabrication of nanoporous Cu sheet and application to bonding for

high-temperature applications. J Electron Mater 49:2151–

2158. https://​doi.​org/​10.​1007/​s11664-​019-​07916-x

[ 14] Gao Y, Jiu J, Chen C et al (2022) Oxidation-enhanced

bonding strength of Cu sinter joints during thermal storage test. J Mater Sci Technol 115:251–255. https://​doi.​org/​

10.​1016/j.​jmst.​2021.​10.​047

[ 15] Lin SK, Nagao S, Yokoi E et al (2016) Nano-volcanic eruption of silver. Sci Rep 6:34769. https://​doi.​org/​10.​1038/​

srep3​4769

[ 16] Gao R, He S, Li J et al (2020) Interfacial transformation of preoxidized Cu microparticles in a formic-acid

atmosphere for pressureless Cu–Cu bonding. J Mater Sci

Mater Electron 31:14635–14644. https://​doi.​org/​10.​1007/​

s10854-​020-​04026-x

[ 17] Huang HJ, Wu X, Zhou MB, Zhang XP (2021) Superior

strength and strengthening mechanism of die attachment

joints by using bimodal-sized Cu nanoparticle paste capable of low-temperature pressureless sintering. J Mater Sci

Mater Electron 32:3391–3401. https://​d oi.​o rg/​1 0.​1 007/​

s10854-​020-​05086-9

[ 18] Datta KKR, Kulkarni C, Eswaramoorthy M (2010) Aminoclay: a permselective matrix to stabilize copper nanoparticles. Chem Commun 46:616–618. https://​doi.​org/​10.​1039/​

b9194​21e

[ 19] Jin M, Zhang H, Wang J et al (2012) Copper can still be

epitaxially deposited on palladium nanocrystals to generate

core–shell nanocubes despite their large lattice mismatch.

ACS Nano 6:2566–2573. https://​d oi.​o rg/​1 0.​1 021/​n n205​

0278

[ 20] Shi L, Wang R, Zhai H et al (2015) A long-term oxidation barrier for copper nanowires: graphene says yes. Phys

Chem Chem Phys 17:4231–4236. https://​doi.​org/​10.​1039/​

c4cp0​5187d

[ 21] Chu CR, Lee C, Koo J, Lee HM (2016) Fabrication of

sintering-free flexible copper nanowire/polymer composite transparent electrodes with enhanced chemical and

mechanical stability. Nano Res 9:2162–2173. https://​doi.​

org/​10.​1007/​s12274-​016-​1105-y

[ 22] Lian L, Dong D, Wang H, He G (2019) Highly reliable copper nanowire electrode with enhanced transmittance and

robustness for organic light emitting diodes. Org Electron

65:70–76. https://​doi.​org/​10.​1016/j.​orgel.​2018.​11.​002

[ 23] Zhang T, Daneshvar F, Wang S, Sue HJ (2019) Synthesis of oxidation-resistant electrochemical-active copper

nanowires using phenylenediamine isomers. Mater Des

15632

162:154–161. https://​d oi.​o rg/​1 0.​1 016/j.​m atdes.​2 018.​1 1.​

043

[ 24] Taher A, Kim DW, Lee IM (2017) Highly efficient metal

organic framework (MOF)-based copper catalysts for the

base-free aerobic oxidation of various alcohols. RSC Adv

7:17806–17812. https://​doi.​org/​10.​1039/​c6ra2​8743c

[ 25] Liu J, Chen H, Ji H, Li M (2016) Highly conductive Cu–

Cu joint formation by low-temperature sintering of formic

acid-treated Cu nanoparticles. ACS Appl Mater Interfaces

8:33289–33298. https://​doi.​org/​10.​1021/​acsami.​6b102​80

[ 26] Gao Y, Li W, Chen C et al (2018) Novel copper particle

paste with self-reduction and self-protection characteristics

for die attachment of power semiconductor under a nitrogen

atmosphere. Mater Des 160:1265–1272. https://​doi.​org/​10.​

1016/j.​matdes.​2018.​11.​003

[ 27] Hirose A, Tatsumi H, Takeda N et al (2009) A novel metalto-metal bonding process through in-situ formation of Ag

nanoparticles using A

­ g2O microparticles. J Phys Conf Ser

165:012074. https://​doi.​org/​10.​1088/​1742-​6596/​165/1/​012074

[ 28] Asama K, Matsuda T, Ogura T et al (2017) Materials science

and engineering a low-temperature metal-to-alumina direct

bonding process utilizing redox reaction between silver oxide

and organic agent. Mater Sci Eng A 702:398–405. https://​doi.​

org/​10.​1016/j.​msea.​2017.​07.​034

[ 29] Motoyama K, Matsuda T, Sano T, Hirose A (2018) AlN-tometal direct bonding process utilizing sintering of Ag nanoparticles derived from the reduction of ­Ag2O. J Electron Mater

47:5780–5787. https://​doi.​org/​10.​1007/​s11664-​018-​6504-2

[ 30] Matsuda T, Inami K, Motoyama K et al (2018) Silver

oxide decomposition mediated direct bonding of siliconbased materials. Sci Rep 8:10472. https://​doi.​org/​10.​1038/​

s41598-​018-​28788-x

[ 31] Yao T, Matsuda T, Sano T et al (2018) In situ study of reduction

process of CuO paste and its effect on bondability of Cu-to-Cu

joints. J Electron Mater 47:2193–2197. https://​doi.​org/​10.​1007/​

s11664-​017-​6049-9

[ 32] Yonezawa T, Tsukamoto H, Matsubara M (2015) Low-temperature nanoredox two-step sintering of gelatin nanoskin-stabilized

submicrometer-sized copper fine particles for preparing highly

conductive layers. RSC Adv 5:61290–61297. https://​doi.​org/​10.​

1039/​c5ra0​6599b

[ 33] Yamagiwa D, Matsuda T, Furusawa H et al (2021) Pressureless

sinter joining of bare Cu substrates under forming gas atmosphere by surface-oxidized submicron Cu particles. J Mater

Sci Mater Electron 32:19031–19041. https://​doi.​org/​10.​1007/​

s10854-​021-​06418-z

[ 34] Unutulmazsoy Y, Cancellieri C, Lin L, Jeurgens LPH (2022)

Reduction of thermally grown single-phase CuO and ­Cu2O thin

films by in-situ time-resolved XRD. Appl Surf Sci 588:152896.

https://​doi.​org/​10.​1016/j.​apsusc.​2022.​152896

J Mater Sci (2023) 58:15617–15633

[ 35] Matsuda T, Yamada S, Takeuchi A et al (2021) Fracture behavior of thermally aged Ag–Cu composite sinter joint through

microscale tensile test coupled with nano X-ray computed

tomography. Mater Des 206:109818. https://​doi.​org/​10.​1016/j.​

matdes.​2021.​109818

[ 36] Matsuda T, Seo R, Hirose A (2023) Highly strong interface in

Ag/Si sintered joints obtained through ­Ag2O–Ag composite

paste. Mater Sci Eng A 865:144647. https://​doi.​org/​10.​1016/j.​

msea.​2023.​144647

[ 37] Watanabe T, Takesue M, Matsuda T et al (2020) Thermal stability and characteristic properties of pressureless sintered Ag

layers formed with Ag nanoparticles for power device applications. J Mater Sci Mater Electron 31:17173–17182. https://​doi.​

org/​10.​1007/​s10854-​020-​04265-y

[ 38] Choudhary S, Sarma JVN, Pande S et al (2018) Oxidation

mechanism of thin Cu films: a gateway towards the formation of single oxide phase. AIP Adv. https://​doi.​org/​10.​1063/1.​

50284​07

[ 39] Wang X, Zhang Z, Feng Y, Xiao F (2022) Anti-oxidative copper nanoparticle paste for Cu–Cu bonding at low temperature

in air. J Mater Sci Mater Electron 33:817–827. https://​doi.​org/​

10.​1007/​s10854-​021-​07352-w

[ 40] Mou Y, Liu J, Cheng H et al (2019) Facile preparation of

self-reducible Cu nanoparticle paste for low temperature Cu–

Cu bonding. JOM 71:3076–3083. https://​doi.​org/​10.​1007/​

s11837-​019-​03517-5

[ 41] Zuo Y, Shen J, Hu Y, Gao R (2018) Improvement of oxidation resistance and bonding strength of Cu nanoparticles solder

joints of Cu–Cu bonding by phosphating the nanoparticle. J

Mater Process Technol 253:27–33. https://​doi.​org/​10.​1016/j.​

jmatp​rotec.​2017.​11.​001

[ 42] Kim D, Lee S, Chen C et al (2021) Fracture mechanism of

microporous Ag-sintered joint in a GaN power device with

Ti/Ag and Ni/Ti/Ag metallization layer at different thermomechanical stresses. J Mater Sci 56:9852–9870. https://​doi.​

org/​10.​1007/​s10853-​021-​05924-z

[ 43] Hong KT, Imadojemu H, Webb RL (1994) Effects of oxidation

and surface roughness on contact angle. Exp Therm Fluid Sci

8:279–285. https://​doi.​org/​10.​1016/​0894-​1777(94)​90058-2

[ 44] Nam Y, Ju YS (2013) A comparative study of the morphology and wetting characteristics of micro/nanostructured Cu

surfaces for phase change heat transfer applications. J Adhes

Sci Technol 27:2163–2176. https://​doi.​org/​10.​1080/​01694​243.​

2012.​697783

[ 45] Shi JL (1999) Thermodynamics and densification kinetics in

solid-state sintering of ceramics. J Mater Res 14:1398–1408.

https://​doi.​org/​10.​1557/​JMR.​1999.​0190

[ 46] Abdeljawad F, Bolintineanu DS, Cook A et al (2019) Sintering processes in direct ink write additive manufacturing: a

J Mater Sci (2023) 58:15617–15633 mesoscopic modeling approach. Acta Mater 169:60–75. https://​

doi.​org/​10.​1016/j.​actam​at.​2019.​01.​011

[ 47] Hussein O, Alghalayini M, Dillon SJ, Abdeljawad F (2021)

Unraveling the role of grain boundary anisotropy in sintering:

implications for nanoscale manufacturing. ACS Appl Nano

Mater 4:8039–8049. https://​doi.​org/​10.​1021/​acsanm.​1c013​22

15633

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る