リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Alternative transcription start sites of the enolase-encoding gene enoA are stringently used in glycolytic/gluconeogenic conditions in Aspergillus oryzae」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Alternative transcription start sites of the enolase-encoding gene enoA are stringently used in glycolytic/gluconeogenic conditions in Aspergillus oryzae

Taishi Inoue Hiroki Toji Mizuki Tanaka Mitsuru Takama Sachiko Hasegawa-Shiro Yuichi Yamaki Takahiro Shintani Katsuya Gomi 東北大学 DOI:10.1007/s00294-020-01053-3

2020.02.18

概要

Gene expression by using alternative transcription start sites (TSSs) is an important transcriptional regulatory mechanism for environmental responses in eukaryotes. Here, we identify two alternative TSSs in the enolase-encoding gene (enoA) in Aspergillus oryzae, an industrially important filamentous fungus. TSS use in enoA is strictly dependent on the difference in glycolytic and gluconeogenic carbon sources. Transcription from the upstream TSS (uTSS) or downstream TSS (dTSS) predominantly occurs under gluconeogenic or glycolytic conditions, respectively. In addition to enoA, most glycolytic genes involved in reversible reactions possess alternative TSSs. The fbaA gene, which encodes fructose-bisphosphate aldolase, also shows stringent alternative TSS selection, similar to enoA. Alignment of promoter sequences of enolase-encoding genes in Aspergillus predicted two conserved regions that contain a putative cis-element required for enoA transcription from each TSS. However, uTSS-mediated transcription of the acuN gene, an enoA ortholog in Aspergillus nidulans, is not strictly dependent on carbon source, unlike enoA. Furthermore, enoA transcript levels in glycolytic conditions are higher than in gluconeogenic conditions. Conversely, acuN is more highly transcribed in gluconeogenic conditions. This suggests that the stringent usage of alternative TSSs and higher transcription in glycolytic conditions in enoA may reflect that the A. oryzae evolutionary genetic background was domesticated by exclusive growth in starch-rich environments. These findings provide novel insights into the complexity and diversity of transcriptional regulation of glycolytic/gluconeogenic genes among Aspergilli.

参考文献

Agarwal N, Ansari A (2016) Enhancement of transcription by a splicing-competent intron is dependent on promoter directionality. PLoS Genet 12: 20 doi: 10.1371/journal.pgen.1006047

Akao T, Gomi K, Goto K, Okazaki N, Akita O (2002) Subtractive cloning of cDNA from Aspergillus oryzae differentially regulated between solid-state culture and liquid (submerged) culture. Curr Genet 41: 275−281 doi: 10.1007/s00294-002-0314-y

Akao T, Sano M, Yamada O, Akeno T, Fujii K, Goto K, Ohasi-Kunihiro S, Takase K, Yasukawa-Watanabe M, Yamaguchi K, et al. (2007) Analysis of expressed sequence tags from the fungus Aspergillus oryzae cultured under different conditions. DNA Research 14: 47−57 doi: 10.1093/dnares/dsm008

Andersen MR, Vongsangnak W, Panagiotou G, Salazar MP, Lehmann L, Nielsen J (2008) A trispecies Aspergillus microarray: Comparative transcriptomics of three Aspergillus species. Proc Natl Acad Sci U S A 105: 4387−4392 doi: 10.1073/pnas.0709964105

Armitt S, McCullough W, Roberts CF (1976) Analysis of acetate non-utilizing (acu) mutants in Aspergillus nidulans. J Gen Microbiol 92: 263−282 doi: 10.1099/00221287-92-2-263

Asai T, Tsukada K, Ise S, Shirata N, Hashimoto M, Fujii I, Gomi K, Nakagawara K, Kodama KN, Oshima Y (2015) Use of a biosynthetic intermediate to explore the chemical diversity of pseudo-natural fungal polyketides. Nat Chem 7:737−743 doi: 10.1038/nchem.2308

Ayoubi TAY, VanDeVen WJM (1996) Regulation of gene expression by alternative promoters. FASEB J 10: 453−460 doi: 10.1096/fasebj.10.4.8647344

Barbesgaard P, Heldt-Hansen HP, Diderichsen B (1992) On the safety of Aspergillus oryzae: a review. Appl Microbiol Biotechnol 36:569–572. doi:10.1007/bf00183230

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren JY, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37: W202−W208 doi: 10.1093/nar/gkp335

Bicknell AA, Cenik C, Chua HN, Roth FP, Moore MJ (2012) Introns in UTRs: Why we should stop ignoring them. Bioessays 34: 1025-1034 doi: 10.1002/bies.201200073

Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72: 248−254 doi: 10.1006/abio.1976.9999

Brown SH, Bashkirova L, Berka R, Chandler T, Doty T, McCall K, McCulloch M, McFarland S, Thompson S, Yaver D, Berry A (2013) Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid. Appl Microbiol Biotechnol 97: 8903−8912 doi: 10.1007/s00253-013-5132-2

Cheng CK, Au CH, Wilke SK, Stajich JE, Zolan ME, Pukkila PJ, Kwan HS (2013) 5′- Serial Analysis of Gene Expression studies reveal a transcriptomic switch during fruiting body development in Coprinopsis cinerea. BMC Genomics 14: 17 doi: 10.1186/1471-2164-14-195

Davuluri RV, Suzuki Y, Sugano S, Plass C, Huang THM (2008) The functional consequences of alternative promoter use in mammalian genomes. Trends Genet 24: 167−177 doi: 10.1016/j.tig.2008.01.008

Forrest ARR, Kawaji H, Rehli M, Baillie JK, de Hoon MJL, Haberle V, Lassmann T, Kulakovskiy IV, Lizio M, Itoh M, et al. (2014) A promoter-level mammalian expression atlas. Nature 507: 462-+ doi: 10.1038/nature13182

Fujii R, Ugai T, Ichinose H, Hatakeyama M, Kosaki T, Gomi K, Fujii I, Minami A, Oikawa H (2016) Reconstitution of biosynthetic machinery of fungal polyketides: Unexpected oxidations of biosynthetic intermediates by expression host. Biosci Biotechnol Biochem 80:426−431 doi: 10.1080/09168451.2015.1104234

Fujioka T, Mizutani O, Furukawa K, Sato N, Yoshimi A, Yamagata Y, Nakajima T, Abe K (2007) MpkA-dependent and -independent cell wall integrity signaling in Aspergillus nidulans. Eukaryot Cell 6: 1497−1510 doi: 10.1128/ec.00281-06

Gibbons JG, Salichos L, Slot JC, Rinker DC, McGary KL, King JG, Klich MA, Tabb DL, McDonald WH, Rokas A (2012) The evolutionary imprint of domestication on genome variation and function of the filamentous fungus Aspergillus oryzae. Curr Biol 22:1403–1409 doi: 10.1016/j.cub.2012.05.033.

Gibbons JG, Rokas A (2013) The function and evolution of the Aspergillus genome. Trends Microbiol 21: 14–22. doi:10.1016/j.tim.2012.09.005.

Goebels C, Thonn A, Gonzalez-Hilarion S, Rolland O, Moyrand F, Beilharz TH, Janbon G (2013) Introns regulate gene expression in Cryptococcus neoformans in a Pab2p dependent pathway. PLoS Genet 9: 15 doi: 10.1371/journal.pgen.1003686

Gomi K (2019) Regulatory mechanisms for amylolytic gene expression in the koji mold Aspergillus oryzae. Biosci Biotechnol Biochem 83: 1385−1401. doi:10.1080/09168451.2019.1625265

Gomi K, Iimura Y, Hara S (1987) Integrative transformation of Aspergillus oryzae with a plasmid containing the Aspergillus nidulans argB gene. Agric Biol Chem 51: 2549−2555 doi: 10.1271/bbb1961.51.2549.

Guo N, Qian Y, Zhang QQ, Chen XX, Zeng GH, Zhang X, Mi WB, Xu C, Leger RJS, Fang WG (2017) Alternative transcription start site selection in Mr-OPY2 controls lifestyle transitions in the fungus Metarhizium robertsii. Nat Commun 8: 13 doi: 10.1038/s41467-017-01756-1

Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557−580 doi: 10.1016/s0022-2836(83)80284-8

Hashimoto S, Suzuki Y, Kasai Y, Morohoshi K, Yamada T, Sese J, Morishita S, Sugano S, Matsushima K (2004) 5′-end SAGE for the analysis of transcriptional start sites. Nat Biotechnol 22: 1146−1149 doi: 10.1038/nbt998

Holland MJ, Holland JP (1978) Isolation and identification of yeast messenger ribonucleic acids coding for enolase, glyceraldehyde-3-phosphate dehydrogenase, and phosphoglycerate kinase. Biochemistry 17: 4900−4907 doi:10.1021/bi00616a007

Hunter AJ, Jin B, Kelly JM (2011) Independent duplications of α-amylase in different strains of Aspergillus oryzae. Fungal Genet Biol 48:438–444 doi: 10.1016/j.fgb.2011.01.006.

Hynes MJ, Szewczyk E, Murray SL, Suzuki Y, Davis MA, Lewis HMS (2007) Transcriptional control of gluconeogenesis in Aspergillus nidulans. Genetics 176: 139−150 doi: 10.1534/genetics.107.070904

Inoue H, Nojima H, Okayama H (1990) High-efficiency transformation of Escherichia coli with plasmids. Gene 96: 23−28 doi: 10.1016/0378-1119(90)90336-p

Jefferson RA (1989) The GUS reporter gene system. Nature 342: 837−838 doi: 10.1038/342837a0

Kaur JN, Panepinto JC (2016) Morphotype-specific effector functions of Cryptococcus neoformans PUM1. Sci Rep 6: 9 doi: 10.1038/srep23638

Li H, Hou JY, Bai L, Hu CS, Tong P, Kang YN, Zhao XD, Shao ZF (2015) Genome-wide analysis of core promoter structures in Schizosaccharomyces pombe with DeepCAGE. RNA Biol 12: 525−537 doi: 10.1080/15476286.2015.1022704

Liu C, Tagami K, Minami A, Matsumoto T, Frisvad JC, Suzuki H, Ishikawa J, Gomi K, Oikawa H (2015) Reconstitution of biosynthetic machinery for the synthesis of the highly elaborated indole diterpene penitrem. Angew Chem Int Ed 54:5748−5752 doi: 10.1002/anie.201501072

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real- time quantitative PCR and the 2−ΔΔCT method. Methods 25: 402−408 doi: 10.1006/meth.2001.1262

Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto KI, Arima T, Akita O, Kashiwagi Y, et al. (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438: 1157−1161 doi: 10.1038/nature04300

Machida M, Chang YC, Manabe M, Yasukawa M, Kunihiro S, Jigami Y (1996) Molecular cloning of a cDNA encoding enolase from the filamentous fungus, Aspergillus oryzae. Curr Genet 30: 423−431 doi: 10.1007/s002940050152

Machida M, Yamada O, Gomi K (2008) Genomics of Aspergillus oryzae: Learning from the history of koji mold and exploration of its future. DNA Res 15: 173−183 doi: 10.1093/dnares/dsn020

Maeda H, Sano M, Maruyama Y, Tanno T, Akao T, Totsuka Y, Endo M, Sakurada R, Yamagata Y, Machida M, et al. (2004) Transcriptional analysis of genes for energy catabolism and hydrolytic enzymes in the filamentous fungus Aspergillus oryzae using cDNA microarrays and expressed sequence tags. Appl Microbiol Biotechnol 65: 74−83 doi: 10.1007/s00253-004-1608-4

Minetoki T, Nunokawa Y, Gomi K, Kitamoto K, Kumagai C, Tamura G (1996) Deletion analysis of promoter elements of the Aspergillus oryzae agdA encoding α- glucosidase. Curr Genet 30: 432-438 doi: 10.1007/s002940050153

Miura F, Kawaguchi N, Sese J, Toyoda A, Hattori M, Morishita S, Ito T (2006) A large- scale full-length cDNA analysis to explore the budding yeast transcriptome. Proc Natl Acad Sci U S A 103: 17846−17851 doi: 10.1073/pnas.0605645103

Mizutani O, Kudo Y, Saito A, Matsuura T, Inoue H, Abe K, Gomi K (2008) A defect of ligD (human lig4 homolog) for nonhomologous end joining significantly improves efficiency of gene-targeting in Aspergillus oryzae. Fungal Genet Biol 45: 878−889 doi: 10.1016/j.fgb.2007.12.010

Morris DR, Geballe AP (2000) Upstream open reading frames as regulators of mRNA translation. Mol Cell Biol 20: 8635−8642 doi: 10.1128/mcb.20.23.8635- 8642.2000

Nakajima K, Kunihiro S, Sano M, Zhang Y, Eto S, Chang YC, Suzuki T, Jigami Y, Machida M (2000) Comprehensive cloning and expression analysis of glycolytic genes from the filamentous fungus, Aspergillus oryzae. Curr Genet 37: 322−327 doi: 10.1007/s002940050534

Oda K, Kakizono D, Yamada O, Iefuji H, Akita O, Iwashita K (2006) Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions. Appl Environ Microbiol 72: 3448−3457 doi: 10.1128/aem.72.5.3448-3457.2006

Payne GA, Nierman WC, Wortman JR, Pritchard BL, Brown D, Dean RA, Bhatnagar D, Cleveland TE, Machida M, Yu J (2006) Whole genome comparison of Aspergillus flavus and A. oryzae. Med Mycol 44:S9–S11 doi: 10.1080/13693780600835716.

Prade RA, Timberlake WE (1993) The Aspergillus nidulans brlA regulatory locus consists of overlapping transcription units that are individually required for conidiophore development. EMBO J 12: 2439−2447 doi: 10.1002/j.1460- 2075.1993.tb05898.x

Rojas-Duran MF, Gilbert WV (2012) Alternative transcription start site selection leads to large differences in translation activity in yeast. RNA 18: 2299−2305 doi: 10.1261/rna.035865.112

Rose AB, Emami S, Bradnam K, Korf I (2011) Evidence for a DNA-based mechanism of intron-mediated enhancement. Front Plant Sci 2: 9 doi: 10.3389/fpls.2011.00098

Roumelioti K, Vangelatos I, Sophianopoulou V (2010) A cryptic role of a glycolytic- gluconeogenic enzyme (aldolase) in amino acid transporter turnover in Aspergillus nidulans. Fungal Genet Biol 47: 254−267 doi: 10.1016/j.fgb.2009.12.004

Sakai K, Kinoshita H, Nihira T (2012) Heterologous expression system in Aspergillus oryzae for fungal biosynthetic gene clusters of secondary metabolites. Appl Microbiol Biotechnol 93: 2011−2022 doi: 10.1007/s00253-011-3657-9

Sato A, Oshima K, Noguchi H, Ogawa M, Takahashi T, Oguma T, Koyama Y, Itoh T, Hattori M, Hanya Y (2011) Draft genome sequencing and comparative analysis of Aspergillus sojae NBRC4239. DNA Res 18:165–176 doi: 10.1093/dnares/dsr009.

Shiraki T, Kondo S, Katayama S, Waki K, Kasukawa T, Kawaji H, Kodzius R, Watahiki A, Nakamura M, Arakawa T, et al. (2003) Cap analysis gene expression for high- throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci U S A 100: 15776−15781 doi: 10.1073/pnas.2136655100

Sibthorp C, Wu HH, Cowley G, Wong PWH, Palaima P, Morozov IY, Weedall GD, Caddick MX (2013) Transcriptome analysis of the filamentous fungus Aspergillus nidulans directed to the global identification of promoters. BMC Genomics 14: 18 doi: 10.1186/1471-2164-14-847

Suzuki Y, Murray SL, Wong KH, Davis MA, Hynes MJ (2012) Reprogramming of carbon metabolism by the transcriptional activators AcuK and AcuM in Aspergillus nidulans. Mol Microbiol 84: 942−964 doi: 10.1111/j.1365-2958.2012.08067.x

Tada S, Gomi K, Kitamoto K, Takahashi K, Tamura G, Hara S (1991) Construction of a fusion gene comprising the Taka-amylase A promoter and the Escherichia coli β- glucuronidase gene and analysis of its expression in Aspergillus oryzae. Mol Gen Genet 229: 301−306 doi: 10.1007/bf00272170

Tagami K, Liu C, Minami A, Noike M, Isaka T, Fueki S, Shichijo Y, Toshima H, Gomi K, Dairi T, Oikawa H (2013) Reconstitution of biosynthetic machinery for indole- diterpene paxilline in Aspergillus oryzae. J Am Chem Soc 135:1260−1263 doi: 10.1021/ja3116636.

Taggart J, MacDiarmid CW, Haws S, Eide DJ (2017) Zap1-dependent transcription from an alternative upstream promoter controls translation of RTC4 mRNA in zinc- deficient Saccharomyces cerevisiae. Mol Microbiol 106: 678−689 doi: 10.1111/mmi.13851

Tanaka M, Gomi K (2013) Strategies for increasing the production level of heterologous proteins in Aspergillus oryzae. In Anazawa H, Shimizu S (ed) Microbial production: From genome design to cell engineering, Springer Japan, Tokyo, pp.149−164 doi: 10.1007/978-4-431-54607-8_14

Tanaka M, Tokuoka M, Shintani T, Gomi K (2012) Transcripts of a heterologous gene encoding mite allergen Der f 7 are stabilized by codon optimization in Aspergillus oryzae. Appl Microbiol Biotechnol 96: 1275−1282 doi: 10.1007/s00253-012- 4169-y

Toda T, Sano M, Honda M, Rimoldi O, Yang Y, Yamamoto M, Takase K, Hirozumi K, Kitamoto K, Minetoki T, et al. (2001) Deletion analysis of the enolase gene (enoA) promoter from the filamentous fungus Aspergillus oryzae. Curr Genet 40: 260−267 doi: 10.1007/s00294-001-0258-7

Tresenrider A, Ünal E (2018) One-two punch mechanism of gene repression: a fresh perspective on gene regulation. Curr Genet 64: 581−588 doi: 10.1007/s00294- 017-0793-5.

Tsuboi H, Koda A, Toda T, Minetoki T, Hirotsune M, Machida M (2005) Improvement of the Aspergillus oryzae enolase promoter (P-enoA) by the introduction of cis- element repeats. Biosci Biotechnol Biochem 69: 206−208 doi: 10.1271/bbb.69.206

Wakai S, Yoshie T, Asai-Nakashima N, Yamada R, Ogino C, Tsutsumi H, Hata Y, Kondo A (2014) L-lactic acid production from starch by simultaneous saccharification and fermentation in a genetically engineered Aspergillus oryzae pure culture. Bioresour Technol 173: 376–383. doi: 10.1016/j.biortech.2014.09.094

Villar D, Berthelot C, Aldridge S, Rayner TF, Lukk M, Pignatelli M, Park TJ, Deaville R, Erichsen JT, Jasinska AJ, et al. (2015) Enhancer evolution across 20 mammalian species. Cell 160: 554−566 doi: 10.1016/j.cell.2015.01.006

Yamada O, Lee BR, Gomi K (1997) Transformation system for Aspergillus oryzae with double auxotrophic mutations, niaD and sC. Biosci Biotechnol Biochem 61: 1367−1369 doi: 10.1271/bbb.61.1367

Yang L, Lubeck M, Lubeck PS (2017) Aspergillus as a versatile cell factory for organic acid production. Fungal Biol Rev 31: 33−49 doi: 10.1016/j.fbr.2016.11.001

Yoshimi A, Yamaguchi S, Fujioka T, Kawai K, Gomi K, Machida M, Abe K (2018) Heterologous production of a novel cyclic peptide compound, KK-1, in Aspergillus oryzae. Front Microbiol 9: 12 doi: 10.3389/fmicb.2018.00690

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る