リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ダイズ凖同質遺伝子系統を用いた耐湿性に関与する量的形質遺伝子座の効果に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ダイズ凖同質遺伝子系統を用いた耐湿性に関与する量的形質遺伝子座の効果に関する研究

ダン, ティ, テュ, ヒエン THI, THU, HIEN, DANG 九州大学

2021.03.24

概要

Climate change is predicted to increase the probability of soil waterlogging due to severe rainfa ll, causing significant damage to soybean growth. Recently, quantitative trait loci (QTLs) for waterlogging tolerance at the seedling stage were detected on the chromosome 12 of soybean through the analyses of recombinant inbred lines developed from a cross between a hypoxia-sensitive cultivar, Tachinagaha, and a tolerant landrace, Iyodaizu. This study provides an illustration of the effects of QTLs for waterlogging tolerance of soybean using near-isogenic lines (NILs) selected from Tachinagaha/Iyodaizu BC6F3 population through marker assisted selection. The purpose of this study was to determine the specific morphological, physiological, and anatomical mechanisms of adaptations of soybean under waterlogging condition.

 The yield of soybean and its root development is an important indicator of tolerance. Parents and NIL- 9-4-5 was tested for yield performance under hypoxia exposed to 7-day waterlogging at the seedling stage in two years. Plants were grown in pots filed with soil for 7-day waterlogging (maintained at 2.0 cm above the soil surface) and drained. Results showed that seed yields and root development of Iyodaizu and NIL-9-4-5 were not reduced, whereas those of Tachinagaha were reduced. These indicate that the tested QTLs are able to increase yield by stimulating root development under waterlogging.

 One of the most common anatomical responses of plants to soil hypoxia is the generation of aerenchyma in root tissues for transporting of oxygen from shoots to roots. The aerenchyma formation and the relationship with root development were evaluated. Adaptive response present in NIL 9-4-5 for better performance under waterlogging condition were identify as exhibited similar aerenchyma percentage to Iyodaizu, which was significantly higher compared to Tachinagaha. Results indicated that the QTLs confer rapid root development through the concomitant formation of aerenchyma, thereby enhancing the growth of not only the root system, but also of the total plant body.

 Moreover, whether the candidate QTL region for root development is involved in seed waterlogging tolerance by soaking seeds for 2 days were investigated. Among the examined genotypes, Iyodaizu was classified as waterlogging tolerant at the germination stage, and Tachinagaha was classified as sensitive . Germination rate of NIL-9-4-5 was nearly the same as that of Iyodaizu and was significantly higher than that of Tachinagaha. These results may indicate that the candidate QTL region for root developme nt under hypoxia at the seedling stage located on Chr.12 contributes to the seed waterlogging tolerance of soybean plants at the germination stage.

この論文で使われている画像

参考文献

Abiko, T., Kotula, L., Shiono, K., Malik, A. I., Colmer, T. D. and Nakazono, M. (2012) Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zeanicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays). Plant Cell Environ. 35: 1618 - 1630.

Abiko, T. and Miyasaka, S. C. (2020) Aerenchyma and barrier to radial oxygen loss are formed in roots of Taro (Colocasia esculenta) propagules under flooded conditions. J. Plant Res. 133: 49–56. https://doi.org/10.1007/s10265-019-01150-6.

Al-Ani, A., Bruzau, F., Raymond, P., Saint-Ges, V., Leblac, J. M. and Pradet, A. (1985) Germination, respiration, and adenylate energy charge of seeds at various oxygen partial pressures. Plant Physiol. 79: 885-890.

Araki, H., Hossain, M. A. and Takahashi, T. (2012) Waterlogging and hypoxia have permanent effects on wheat root growth and respiration. J. Agron. Crop Sci. 198: 264-275.

Armstrong, W. (1979) Aeration in higher plants. Adv. Bot. Res. 7: 225-332.

Armstrong, W. and Drew, M. C. (2002) Root growth and metabolism under oxygen deficiency. In: Yoav W, Amram E, Uzi. K. Plant Root: Marcel Dekker Inc., New York, 729-761.

Babu, R., Nair, S. K., Prasanna, B. M. and Gupta, H. S. (2004) Integrating marker assisted selection in crop breeding- prospects and challenges. Curr. Sci. 87: 607-619.

Bacanamwo, M. and Purcell, L. C. (1999) Soybean dry matter and N accumulation responses to flooding stress, N sources and hypoxia. J. Exp. Bot. 50: 689-696.

Bailey-Serres, J. and Voesenek, L. A. C. J. (2008) Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol. 59: 313-339.

Blom, C. W. P. M. and Voesenek, L. A. C. J. (1996) Flooding: the survival strategies of plants. Trends Ecol. Evol. 11: 290-295.

Brion, C., Ambroset, C., Delobel, P., Sanchez, I. and Blondin, B. (2014) Deciphering regulatory variation of THI genes in alcoholic fermentation indicate an impact of Thi3p on PDC1 expression. BMC Genomics 15 (1): 1085. DOI:10.1186/1471-2164-15-1085.

Collard, B. C., Mackill, D. J. (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 363(1491):557-572. DOI: 10.1098/rstb.2007.2170.

Colmer, T. D. (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 26: 17-36.

Colmer, T. D. and Voesenek, L. A. C. J. (2009) Flooding tolerance, suites of plant traits in variable environments. Funct. Plant Biol. 36: 665-681.

Cornelious, B. P., Chen, P., Chen, N., deLeon, N., Shannon, J. G. and Wang, D. (2005) Identification of QTLs underlying waterlogging tolerance in soybean. Mol. Breed. 16: 103-112.

Cowie, A. L., Jessop, R. S. and MacLeod, D. A. (2013) Effects of waterlogging on chickpeas I. Influence of timing of waterlogging. Plant Soil. 183: 97-103.

Dang, T. T. H., Nguyen, V. L., Tomomi, A. and Toshihiro, M. (2020) The effects of a QTL for root development under hypoxia on yield of soybean exposed to 7-day waterlogging at seedling stage. Aust. J. Cr. Sci. 14. 10: 1682-1687.

Fausey, N. and McDonald, M. B. Jr. (1985) Emergence of inbred and hybrid corn following flooding. Agron. J. 77: 51-56.

Freixes, S., Thibaud, Mc., Tardieu, F. and Muller, B. (2002) Root Elongation and Branching Is Related to Local Hexose Concentration in Arabidopsis Thaliana Seedlings. Plant Cell Environ. 25: 1357–1366.

Fukao, T., Kennedy, R. A., Yamasue, Y. and Rumph, M. E. (2003) Genetic and biochemical analysis of anaerobically-induced enzymes during seed germination of Echinochloa crusgalli varieties tolerant and intolerant of anoxia. J. Exper. Bot. 54: 1421-1429.

Garcia, A. P., Motes, C. M., Scheible, W. R., Chen, R., Blancaflor, E. B. and Monteros, M. J. (2015) Root traits and phenotyping strategies for plant improvement. Plants 4: 334-355.

Ghulamahdi, M., Chaerunisa, S. R., Lubis, I. and Taylor, P. (2016) Response of five soybean varieties under saturated soil culture and temporary flooding on tidal swamp. Procedia Environ. Sci. 33:87-93.

Githiri, S. M., Wananabe, S., Harada, K. and Takahashi, R. (2006) QTL analysis of flooding tolerance in soybean at an early vegetative growth stage. Plant Breed. 125: 613-618.

Grimoldi, A. A., Insausti, P., Roitman, G. G. and Soriano, A. (1999) Responses to flooding intensity in Leontodon taraxacoides. https://doi.org/10.1046/j.1469-8137.1999.00325.x

Henshaw, T. L., Gilbert, R. A., Scholberg, J. M. S. and Sinclair, T. R. (2007) Soya bean (Glycine max L. Merr.) genotype response to early-season flooding: I. Root and nodule development. J. Agron. Crop Sci. 193: 177-188.

Herzog, M., Gustavo, G. S., Timothy, D. C. and Ole, P. (2016) Mechanisms of Waterlogging Tolerance in Wheat – a Review of Root and Shoot Physiology. https://doi.org/10.1111/pce.12676.

Hospital, F. and Charcosset, A. (1997) Marker-assisted introgression of quantitative trait loci. Genet. 147: 1469-1485.

Hossain, M. A. and Uddin, S. N. (2011) Mechanism of waterlogging tolerance in wheat: Morphological and metabolic adaptions under hypoxia or anoxia. Aust. J. Crop Sci. 5: 1094-1101.

Hou, F. F. and Thseng, F. S. (1991) Studies on the Flooding Tolerance of Soybean Seed: Varietal Differences. Euphytica 57 (2): 169–73. https://doi.org/10.1007/BF00023075.

Imene, R. and Mhadhbi, H. (2019) Mechanisms of aerenchyma formation in maize roots. African J. A. R. 14: 680-685. 10.5897/AJAR2016.11259.

Jackson, M. B., Fenning, T. M., Drew, M. C. and Saker, L. R. (1985) Stimulation of ethylene production and gas-space (aerenchyma) formation in adventitious roots of Zea mays L. by small partial pressures of oxygen. Planta 165: 486-492.

Jackson, M. and Colmer, T. (2005) Response and adaptation by plants to flooding stress. Ann. Bot. 96: 501-505.

Jitsuyama, Y. (2015) Morphological Root Responses of Soybean to Rhizosphere Hypoxia Reflect Waterlogging Tolerance. https://doi.org/10.4141/CJPS-2014-370.

Justin, S. H. F. W. and Armstrong, W. (1987) The anatomical characteristics of roots and plant response to soil flooding. New Phytol. 106: 465-495.

Justin, S. and Armstrong, W. (1991) Evidence for the involvement of ethene in aerenchyma formation in adventitious roots of rice (Oryza sativa). New Phytol. 118: 49-62.

Kacprzyk, J., Daly, C. and McCabe, P. (2011) The Botanical Dance of Death. Adv. Bot. Res. 60: 169-261. 10.1016/B978-0-12-385851-1.00004-4.

Kokubun, M. (2013) Genetic and cultural improvement of soybean for waterlogged conditions in Asia. Field Crops Res. 152: 3-7.

Kozlowski, T. T. (1997) Responses of woody plants to flooding and salnity. Tree Physiol. Monograph 1: 1-23.

Laan, P., Tosserams, M., Blom, C. W. P. M. and Veen, B. W. (1990) Internal oxygen transport in Rumex species and its significance for respiration under hypoxic conditions. Plant Soil 122: 39-46.

Lee, K. H., Park, S. W. and Kwon, Y. W. (2003) Enforced early development of adventitious roots increases flooding tolerance in soybean. Jap. J. Crop Sci. 72: 82-88.

Li, M. W., Wang, Zh., Jiang, B., Kaga, A., Wong, F. L., Zhang, G., Han, T., Chung, G., Nguyen, H. and Lam, H. M. (2020) Impacts of genomic research on soybean improvement in East Asia. Theo. Applied Gen. 133:1655–1678. https://doi.org/10.1007/s00122-019-03462-6.

Licausi, F. and Giuntoli, B. (2021) Synthetic biology of hypoxia. New, P. 229: 50-56. DOI:10.1111/nph.16441.

Liem, T. B., Giacomo, N., Lara, L., Cristina, I., Jacopo, R., Antonietta, S., Anna, M., Françoise, C., Beatrice, G., Pierdomenico, P., Mirko, Z. and Francesco, L. (2019) Conservation of ethanol fermentation and its regulation in land plants. J. Exp. Bot. 70: 1815–1827.

Linkemer, G., Board, J. E, and Musgrave, M. E. (1998) Waterlogging effect on growth and yield components of late-planted soybean. Crop Sci. 38: 1576-1584.

Loc, N. V., Binh, V. T., Hoang, D. T., Mochizuki, T. and Long, N. V. (2015) Genotypic variation in morphological and physiological response of soybean to waterlogging at flowering stage. Int. J. Agr. Sci. Res. 4:150- 157.

Malik, A. I., Colmer, D. T. D., Lambers, H. and Schortemeyer, M. (2001) Changes in physiological and morphological traits of roots and shoots of wheat in response to different depth of waterlogging. Aust. J. P. Physiol. 28: 1121-1131.

Malik, A. I., Timothy, D. C., Hans, L., Timothy, L. S. and Marcus, S. (2002) Short-Term Waterlogging Has Long-Term Effects on the Growth and Physiology of Wheat. New P. 4: 225–36.

Mano, Y. and Omori, F. (2007) Breeding for flooding tolerant maize using “teosinte” as a germplasm resource. Plant R. 1: 17-21.

Mano, Y., Omori, F., Takamizo, T., Kindiger, B., Bird, R., Loaisiga, M. C. K. and Takahashi, C. H. H. (2007) QTL mapping of root aerenchyma formation in seedlings of a maize × rare teosinte “Zeanicaraguensis” cross. Plant Soil 295: 103-113.

McNamara, S. T. and Mitchell, C. A. (1990) Adaptive stem and adventitious root responses of two tomato genotypes to flooding. Hort. Sci. 25: 100- 103.

Mochizuki, T., Takahashi, U., Shimamura, S. and Fukuyama, M. (2000) Secondary aerenchyma formation in hypocotyls in summer leguminous crops. Jpn. J. Crop Sci. 69: 69-73. (In Japanese with English abstract).

Mohammed, U., Caine, R. S. and Atkinson, J. A. (2019) Rice plants overexpressing OsEPF1 show reduced stomatal density and increased root cortical aerenchyma formation. Sci. Rep. 9: 5584. https://doi.org/10.1038/s41598-019-41922-7.

Naidoo, G. and Mundree, S. G. (1993) Relationship between morphological and physiological responses to waterlogging and salinity in Sporobolus virginicus (L.) Kunth. Oecologia. 93(3):360-366. DOI: 10.1007/BF00317879. P. M. I. D: 28313436.

Nakajima, T., Seino, A., Nakamura, T., Goto, Y. and Kokubun, Y. (2015) Does pre-germination flooding-tolerant soybean cultivar germinate better under hypoxia conditions?. Plant Prod. Sci. 18: 146-153.

Nakazono, M., Tsuji, H., Li, Y., Saisho, D., Arimura, S., Tsutsumi, N. and Hirai, A. (2000) Expression of a gene encoding mitochondrial aldehyde dehydrogenase in rice increases under submerged conditions. Plant Physiol. 24: 587-598.

Nanjo, Y., Jang, H. Y., Kim, H. S., Hiraga, S., Woo, S. W. and Komatsu, S. (2014) Analyses of flooding tolerance of soybean varieties at emergence and varietal differences in their proteomes. Phytochemistry 106: 25-36.

Naz, A. A., Arifuzzaman, M., Muzammil, S., Pillen, K. and Léon, J. (2014) Wild barley introgression lines revealed novel QTL alleles for root and related shoot traits in the cultivated barley (Hordeum vulgare L.). BMC Genet. 15: 107. DOI: 10.1186/s12863-014-0107-6.

Naz, A. A., Ehl, A., Pillen, K. and Léon, J. (2012) Validation for root-related quantitative trait locus effects of wild origin in the cultivated background of barley (Hordeum vulgare L.). Plant Breed. 3: 392-398.

Nazemi, G., Valli, F., Ferroni, L., Speranza, M., Maccaferri, M., Tuberosa, R. and Salvi, S. (2016) Genetic variation for aerenchyma and other root anatomical traits in durum wheat (Triticum durum Desf.). Genetic R. C. E. Vol. 63. No. 5. 771-779. 10.1007/s10722-015-0279-6.

Nguyen, L. V., Takahashi, R., Githiri, S. M., Rodriguez, T.O., Tsutsumi, N., Kajihara, S., Sayama, T., Ishimoto, M., Harada, K., Suematsu, K., Abiko, T, and Mochizuki, T. (2017) Mapping quantitative trait loci for root development under hypoxia conditions in soybean (Glycine max [L.] Merr.). Theor. A. G. DOI: 10.1007/s00122-016-2847-3.

Nguyen, L. V., Tri, M. L., Phuong, D., Vien, T., Giang, H. T., Mbaraka, S. R., Hanh, T. T. and Long, V. N. (2020) Variation in Root Growth Responses of Sweet Potato to Hypoxia and Waterlogging. Vegetos. 33 (2): 367–75. https://doi.org/10.1007/s42535-020-00117-6.

Nguyen, V. L., Dang, T. T. H., Chu, H. D., Nakamura, T., Abiko, T., and Mochizuki, T. (2021) Near-isogenic lines of soybean confirm a QTL for seed waterlogging tolerance at different temperatures. Euphytica, 217(1), [16]. https://doi.org/10.1007/s10681-020-02736-1.

Oosterhuis, D. M., Scott, H. D., Hampton, R. E. and Wullschleger, S. D. (1990) Physiological responses of two soybean [Glycine max (L.) Merr] cultivars to short-term flooding. Environ. Exp. Bot. 30: 85-92.

Parsons, R. and Day, D. A. (1990) Mechanism of soybean nodule adaptation to different oxygen pressures. Plant Cell Environ. 13: 501-512.

Pedó, T., Koch, F., Martinazzo, E. G., Villela, F. A. and Aumonde, T. Z. (2015) Physiological attributes, growth and expression of vigor in soybean seeds under soil waterlogging. Afr. J. Agr. Res. 10: 3791-3797.

Pires, J. L. F., Soprano, E. and Cassol, B. (2002) Morphophysiological changes of soybean in flooded soils. Pesquisa. A. B. 37: 41–50.

Potocka, I. and Szymanowska, P. J. (2018) Morphological responses of plant roots to mechanical stress. Ann. Bot. 122(5):711-723. DOI:10.1093/aob/mcy010.

Prince, S., Nakini, T., Kanda, D., Mackensie, M., Babu, V., Guilherme, N. D. and Henry, T. N. (2018) The Plant Ph. J. 1–15. https://doi.org/10.2135/tppj2018.04.0003.

Reyna, N., Cornelious, B., Shannon, J. G. and Sneller, C. H. (2003) Evaluation of a QTL for waterlogging tolerance in southern soybean germplasm. Crop Sci. 43:2077-2082.

Rich, S., Ludwig, M. and Colmer, T. (2012) Aquatic adventitious root development in partially and completely submerged wetland plants Cotula coronopifolia and Meionectes brownii. Ann. Bot. 110: 405-414.

Rocha, M., Licausi, L., Araújo, W. L., Nunes, N. A., Sodek, L., Fernie, A. R., and Van, D. J. T. (2010) Glycolysis and the TCA-cycle are linked by alanine amino transferase during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiol. 152: 1501-1513.

Sakazono, S., Takafumi, N., Rika, M., Sayuri, K., Masao, W., Masao, I., Satoshi, S., Kyuya, H., Ryoji, T. and Toshihiro, M. (2014) Variation in Root Development Response to Flooding among 92 Soybean Lines during Early Growth Stages. Plant Prod. Sci. 17: 228–36. https://doi.org/10.1626/pps.17.228.

Sallam, A. and Scott, H. D. (1987) Effects of prolonged flooding on soybeans during early vegetative growth. Soil Sci. 144: 61-66.

Sauter, M. (2013) Root responses to flooding. Curr. Opin. Plant Bol. 16: 282–286. DOI: 10.1016/j.pbi.2013.03.013.

Sayama, T., Nakazaki, T., Ishikawa, G., Yagasaki, K., Yamada, N., Hirota, N., Hirat, K., Yoshikawa, T., Saito, H., Teraishi, M., Okumoto, Y., Tsukiyama, T. and Tanisaka, T. (2009) QTL analysis of seed-flooding tolerance in soybean (Glycine max [L.] Merr.). Plant Sci. 176: 514-521.

Scott, H. D., DeAngulo, J., Daniels, M. B. and Wood, L. S. (1989) Flood duration effects on soybean growth and yield. Agro. J. 81: 631-636.

Seago, J. L., Marsh, L. C., Stevens, K. J., Soukup, A., Vortubová, O. and Enstone, D. E. (2005) A reexamination of the root cortex in wetland flowering plants with respect to aerenchyma. Ann. Bot. 96: 565-579.

Shimamura, S., Mochizuki, T., Nada, Y. and Fukuyama, M. (2003) Formation and function of secondary aerenchyma in hypocotyl, roots and nodules of soybean (Glycine max [L.] Merr.) under flooded conditions. Plant Soil 251:351-359.

Shimamura, S., Yamamoto, R., Nakamura, T., Shimada, S. and Komatsu, S. (2010) Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil. Ann. Bot. 106: 277-284.

Shimamura, S., Nishimura, T., Koshiba, T., Yamamoto, R., Hiraga, S., Nakamura, T. and Komatsu, S. (2016) Effects of anti-auxins on secondary aerenchyma formation in flooded soybean hypocotyls, Plant P. S. 19:1. 154-160. DOI: 10.1080/1343943X.2015.1128101

Steele, K. A., Price, A. H., Shashidhar, H. E. and Witcombe, J. R. (2006) Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor A. G. 112: 208-221.

Striker, G. G., Insausti, P., Grimoldi, A. A., Ploschuk, E. L. and Vasellati, V. (2005) Physiological and anatomical basis of differential tolerance to soil flooding of Lotus corniculatus L. and Lotus glaber. Mill. Plant Soil 276: 301-311.

Suematsu, K., Abiko, T., Nguyen, L.V. and Mochizuki, T. (2017) Phenotypic variation in root development of 162 soybean accessions under hypoxia condition at the seedling stage. Plant Prod. Sci. 20: 323-335.

Sung, F. J. M. (1993) Waterlogging effect on nodule nitrogenase and leaf nitrate reductase activities in soybean. Field Crops. Res. 35: 183-189.

Tagliavini, M. L. J. V. and Looney, N. E. (1993) Measuring Root Surface Area and Mean Root Diameter of Peach Seedlings by Digital Image Analysis. Hort. Sc. 28 (11): 1129–1130.

Takahashi, H., Yamauchi, T., Colmer, T. and Nakazono, M. (2014) Aerenchyma Formation in Plants. In J. T. van Dongen., and F. Licausi (Eds.), Low-Oxygen Stress in Plants, Oxygen Sensing and Adaptive Responses to Hypoxia (1 ed., Vol. 21: 247 - 265). Plant Cell Monographs. Springer. https://doi.org/10.1007/978-3-7091-1254-0_13.

Tamang, B. G., Magliozzi, J. O., Maroof, M. A. S. and Fukao, T. (2014) Physiological and transcriptomic characterization of submergence and reoxygenation responses in soybean seedlings. Plant Cell Environ. 37: 2350-2365.

Tareq, Z., Mohammad, S., Alam, S., Muhammad, D. and Hossain, S. (2020) Waterlogging Stress Adversely Affects Growth and Development of Tomato Waterlogging Stress Adversely Affects Growth and Development of Tomato. https://doi.org/10.18801/ajcsp.020120.07.

Tavares, E. Q. P., De, S. A. P. and Romim, G. H. (2019) The control of endopolygalacturonase expression by the sugarcane RAV transcription DOI:10.1093/jxb/ery362.

Thomas, A. L., Guerreiro, S. M. C. and Sodek, L. (2005) Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. Ann. Bot. 96: 1191-1198.

Tian, L., Li, J., Bi, W., Zuo, S., Li, L., Li, W. and Sun, L. (2019) Effects of waterlogging stress at different growth stages on the photosynthetic characteristics and grain yield of spring maize (Zea mays L.) under field conditions. Agricul. Water Manag. 218: 250-258.

Tian, X. and Arihara, J. (1998) Influence of low oxygen concentration stress on germination and growth of crops. Nissaku Kanto Shihou. 13: 48-49 (in Japanese).

Tsuji, H., Tsutsumi, N., Sasaki, T., Hirai, A. and Nakazono, M. (2003) Organ- specific expressions and chromosomal locations of two mitochondrial aldehyde dehydrogenase genes from rice (Oryza sativa L.), ALDH2a and ALDH2b. Genetics 305: 195-204.

Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., Kitomi, Y., Inukai, Y., Ono, K., Kanno, N., Inoue, H., Takehisa, H., Motoyama, R., Nagamura, Y., Wu, J., Matsumoto, T., Takai, T., Okuno, K. and Yano, M. (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 45: 1097-1102.

VanToai, T. T., Martin, S. K. St., Chase, K., Boru, G., Schnipke, V., Schmitthennr, A. F. and Lark, K. G. (2001) Identification of a QTL associated with tolerance of soybean to soil waterlogging. Crop Sci. 41: 1247-1252. DOI: 10.2135/cropsci2001.4141247x.

Voesenek, L. A. C. J. and Julia, B. S. (2015.) Flood Adaptive Traits and Processes: An Overview. New P. 206. 1. https://doi.org/10.1111/nph.13209.

Wang, X., Deng, Z., Zhang, W., Meng, Z., Chang, X. and Muchao, L. (2017) Effect of waterlogging duration at different growth stages on the growth, yield and quality of cotton. PLoS ONE 12: e0169029.

Wiengweera, A., Greenway, H. and Thomson, C. J. (1997) The use of agar nutrient solution to simulate lack of convection in waterlogging soils. Ann. Bot. 80: 115-123.

Wu, Q. (2016) Relationships between Root Diameter, Root Length and Root Branching along Lateral Roots in Adult, Field-Grown Maize. 379–90. https://doi.org/10.1093/aob/mcv185.

Wuebker, E. F., Mullen, R. E. and Koehler, K. (2001) Flooding and temperature effects on soybean germination. Crop Sci. 4: 1857-1861.

Yamauchi, T., Shimamura, S., Nakazono, M, and Mochizuki, T. (2013) Aerenchyma formation in crop species: A review. Field Crops. Res. 152: 8-16.

Yamauchi, T., Watanabe, K., Fukazawa, A., Mori, H., Abe, F., Kawaguchi, K., Oyanagi, A. and Nakozono, M. (2014) Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions. J. Exp. Bot. 65: 261-273.

Yamauchi, T., Akihiro, T., Hiroki, I., Naoko, K. N., Nobuhiro, T., Yoshiaki, I. and Mikio, N. (2019) Fine Control of Aerenchyma and Lateral Root Development through AUX / IAA- and ARF-Dependent Auxin Signaling. P. N. A. S. https://doi.org/10.1073/pnas.1907181116.

Yin, D., Chen, S., Chen, F. and Jiang, J. (2013) Ethylene promotes induction of aerenchyma formation and ethanolic fermentation in waterlogged roots of Dendranthema spp. Mol. Biol. Rep. 40, 4581–4590. https://doi.org/10.1007/s11033-013-2550-2.

Youn, J. T., Van, K. J., Lee, J. E., Kim, W. H., Yun, H. T., Kwon, Y. U., Ryu, Y. H. and Lee, S. H. (2008) Waterlogging effects on nitrogen accumulation and N2 fixation of supernodulating soybean mutants. J. Crop Sci. Bio. 11: 111-118.

Yu, Z., Chang, F., Lv, W., Sharmin, R. A., Wang, Z., Kong, J., Bhat, J. A. and Zhao, T. (2019) Identification of QTN and candidate gene for seed- flooding tolerance in soybean [Glycine max (L.) Merr.] using genome- wide association study (GWAS). Genes. 10: 957.

Zabalza, A., Van, D. J. T., Froehlich, A., Oliver, S. N., Faix, B., Gupta, K. J., Schmazlin, E., Igal, M., Orcaray, L., Royuela, M. and Geigenberger, P (2009) Regulation of respiration and fermentation to control the plant internal oxygen concentration. Plant Physiol. 149: 1087-1098.

Zaidi, P. H., Rafique, S. and Singh, N. N. (2003) Response of maize (Zea mays L.) genotypes to excess soil moisture stress: Morpho- physiological effects and basis of tolerance. Eur. J. Agron.19: 383-399.

Zhao, T. J., Aleem, M. and Sharmin, R. A. (2018) Adaptation to Water Stress in Soybean: Morphology to Genetics. 10.5772/intechopen.72229.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る