リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Synthesis and Molecular Docking of Bioactive Natural Products Containing (6H-Dibenzo[b,d]pyran-6-one) Framework.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Synthesis and Molecular Docking of Bioactive Natural Products Containing (6H-Dibenzo[b,d]pyran-6-one) Framework.

Ishtiaq Jeelani 富山大学

2021.09.28

概要

A variety of natural products, which possess the 6H-dibenzo[b,d]pyran-6-one core have attracted our interest because of their unique biological activities. Among them, Hyalodendriol C was isolated from endophytic fungus associated with the hybrid ‘Neva of Populus deltoides’, P. nigra L along with hyalodendriol A and B. A variety of biological activities have been stated for hyalodendriol A-C, but only hyalodendriol C has shown significant antibacterial, larvicidal, and anti-fungal properties as mentioned previously in the literature. The interesting structural feature of this compound is the aromatic ring bearing chlorine atom on it. Natural products comprising a halogen on an olefinic, aromatic, heteroaromatic moieties as a substituent have gained considerable interest because of their multiple biological activities. Conversely, hyalodendriol A and B which do not possess chloro substituent, exhibited weaker activities than hyalodendriol C. Therefore, it was suspected that the presence of a chlorine atom was essential for the cytotoxicity of hyalodendriol C. In addition, urolithin is a metabolite of a class of compounds known as polyphenols which are found in various fruits, including pomegranates, nuts, and strawberries. In recent years, research on urolithins has mainly focused on the first metabolite consisting of Uro-A and Uro-B, but we are interested in the second metabolite of urolithins that can reach systemic tissues. Uro-A glucuronide (Uro-A glur) and Uro-B glucuronide (Uro-B glur) have already been chemically synthesized by Villapharma Research S. L. (Parque Tecnológico de Fuente Alamo, Murcia, Spain). On the other hand, the chemical synthesis of Urolithin C 3-glucuronide (Uro-C 3-glur) has not been achieved, and the bioavailability of Uro-A glur and Uro-B glur is shown to be higher than that of Uro-C 3-glur. Therefore, we decided to synthesize Urolithin C 3-glucuronide, which needs to pursue beneficial health benefits.

Urolithin is a biologically active compound that has anti-inflammatory, antioxidant, and anticancer properties. Urolithins, which are hydroxylated dibenzo[b,d]pyran-6-one derivatives, contain urolithin A (uro-A), urolithin B (uro-B), urolithin C (uro-C) and urolithin D (uro-D) derivatives which are produced in vivo by the gastrointestinal microbiota of humans and different animals upon intaking ellagitannins (ETs), which are high molecular weight polyphenols and ellagic acids (EAs). There are many different phenolic antioxidants such as ETs and EAs in walnuts and pomegranates, which have been linked to potential preventive effects against chronic diseases like diabetes, cancer, cardiovascular diseases, and neurodegenerative diseases.

A palladium-mediated intramolecular aryl-aryl coupling reaction was applied to the total synthesis of the bioactive natural products, Hyalodendriol C, and Urolithin C 3-Glucuronide. Keeping in view, the indispensable biological values of these compounds, we took the advantage of our established strategy to chemically synthesize hyalodendriol C and Urolithin C 3-Glucuronide. The total synthesis of hyalodendriol C got accomplished in 10 steps beginning with the preparation of phenol derivative from the commercially available 5- methylbenzene-1,3-diol and synthesis of the corresponding benzoic acid derivative. On the other hand, the total synthesis of Urolithin C 3-Glucuronide has been accomplished in 11 steps starting from commercially available 3,4-dimethoxybenzaldehyde. Our group has reported several natural product syntheses using the Pd-mediated intramolecular biaryl coupling reaction with phenyl benzoate derivatives for forming the 6H-dibenzo[b,d]pyran-6-one ring system. Utilizing this transformation, we achieved the efficient total syntheses of hyalodendriol C and urolithin C 3-glucuronide. Molecular docking of the synthesized compounds was also performed against CYP1B1 and BCL2 protein.

この論文で使われている画像

参考文献

1 J Lou, L Fu, Y Peng, and Y L Zhou, Molecules, 2013, 18, 5891.

2 T Tanahashi, M Kuroishi, A Kuwahara, N Nagakura, and N Hamada, Chem. Pharm. Bull. 1997, 45,1183.

3 T Tanahashi, Y Takenaka, N Nagakura, and N Hamada, Phytochemistry, 2003, 62, 71.

4 Y Shirataki and S Toda, Nat. Med. 2001, 55, 247.

5 D Bialonska, S.G Kasimsetty, S.I Khan, and D Ferreira, J. Agric. Food Chem., 2009, 57, 10181.

6 R Gonzalez-Barrio, P Truchado, H Ito, J.C Espin, and F.A Tomas-Barberan, J. Agric. Food Chem., 2011, 59, 1152.

7 J Teske and A Deiters, Org. Lett. 2008, 10, 2195.

8 J.P Edwards, S.J West, K.B Marschke, D.E Mais, M.M Gottardis, and T.K Jones, J. Med. Chem., 1998, 41, 303.

9 M.J Coghlan, P Kym, S.W Elmore, A.X Wang, J.R Luly, D Wilcox, M Stashko, C.-W Lin, and J Miner, C. Tyree, et al. J. Med. Chem., 2001, 44, 2879.

10 N Bradburn, R.D Coker, G Blunden, C.H Turner, and T.A Crabb, Phytochemistry, 1994, 35, 665.

11 H Hussain, K Krohn, Z Ullah, S Draeger, and B Schulz, Biochem. Syst. Ecol., 2007, 35, 898.

12 J.-C Qin, Y.-M Zhang, L Hu, Y.-T Ma, and J.-M Gao, Nat. Prod. Commun., 2009, 4, 1473.

13 S Wu, Y Chen, Z Li, L Yang, S Li, Nat. Prod. Res. Dev., 2011, 23, 850.

14 H.-W Zhang, W.-Y Huang, Y.-C Song, J.-R Chen, R.-X Tan, Helv. Chim. Acta., 2005, 88, 2861.

15 T Matumoto, T Hosoya, and H Shigemori, Heterocycles 2010, 81, 123.

16 W.T.L Sidwell, H Fritz, and C Tamm, Helv. Chim. Acta., 1971, 54, 207.

17 Y.-P Chen, Liu, L.; Zhou, Y.-H.; Wen, J.; Jiang, Y.; Tu, P.-F, J. Chin. Pharm. Sci. 2008, 17, 82.

18 S Fang, Y Gu, H Yu, and S Musadillin, Acta. Bot. Sin., 1989, 31, 382.

19 K Ishiguro, M Yamaki, M Kashihara, S Takagi, and K. A Isoi, Phytochemistry 1990, 29, 1010.

20 M.I Gil, F.A Tomás-Barberán, B Hess-Pierce, D.M Holcroft, and A.A Kader, J. Agric. Food Chem. 2000, 48, 4581.

21 M.A.P Moreno, I.G Alonso, R Martin de Santos, and T.G Lacarra, Nutr., Hosp., 2012, 27, 1772.

22 A.H Aly, R Edrada-Ebel, I.D Indriani, V Wray, W.E.G Muller, F Totzke, U Zirrgiebel, C Schachtele, M.H.G Kubbutat, and W.H Lin, J., Nat., Prod., 2008, 71, 972.

23 F Bensassi, C Gallerne, O Sharaf El Dein, M.R Hajlaoui, H Bacha, C Lemaire, In Vitro 2012, 26, 915.

24 S.-J Jeong, N.-Y Kim, D.-H Kim, T.-H Kang, N.-H Ahn, T Miyamoto, R Higuchi, and Y.- C Kim, Planta. Med., 2000, 66, 76.;.

25 (a) Z Mao, W Sun, L Fu, H Luo, D Lai, and L Zhou, Molecules, 2014, 19, 5088.; (b) Z Mao, D Lai, X Liu, X Fu, J Meng, A Wang, X Wang, W Sun, Z L Liu, L Zhou, and Y Liu, Pest. Manag. Sci., 2017,73, 1478

26 B. I. Alo, A. Kandil, P. A. Patil, M. J. Sharp, M. A. Siddiqui, V Snieckus, and P D Josephy, J. Org. Chem., 1991,56, 3763

27 Y C Song, W Y Huang, C Sun, F W Wang, and R X Tan, Biol., Pharma., Bull., 2005, 28, 506; (c) T Tanahashi, M Kuroishi, A Kuwahara, N Nagakura, and N Hamada, Chem. Pharm. Bull., 1997,45, 1183.

28 (a) W-Y Fang, L Ravindar, K P Rakesh, H M Manukumar, C S Shantharam, N S Alharbi, and H-L Qin, A critical review, Eur., J., Med., Chem., 2019,173, 117; (b) J Tian, X C Liu, Z L Liu, D Lai, and L Zhou, Pest. Manag. Sci., 2016,72, 961.

29 K Mori and K Sato, Tetrahedron, 1982, 38, 1221.

30 W-w Mao, T-t Wang, H-p Zeng, Z-y Wang, J-p Chen, and J-g Shen, Bioorg. Med. Chem. Lett., 19, 2009, 4570.

31 (a) H Abe, T Fukumoto, Y Takeuchi, and T Harayama, Heterocycles, 2007, 74, 265; (b) K Ahmed, S Enumula, A Pangal, I Jeelani, M Rane, G Mahangade, and V Patel, Intl., J., Pharm., Biol., Sci., 2019, 9.

32 (a) H Mikula, P Skrinjar, B Sohr, D Ellmer, C Hametner, and J Fröhlich, Tetrahedron, 2013, 69, 10322; (b) M Node, T Kajimoto, K Nishide, E Fujita, and K Fuji, Bull. Inst. Chem. 1992,70, 308.

33 M Tanaka, Y Ikeya, H Mitsuhashi, M Maruno, and T Wakamatsu, Tetrahedron, 1995, 51, 11703.

34 H Abe, T Fukumoto, Y Horino, T Harayama, and Y Takeuchi, Heterocycles, 2010, 82, 851.

35 (a) T Harayama, H Yasuda, T Akiyama, Y Takeuchi, and H Abe, Chem., Pharm., Bull., 48, 2000, 861; (b) S Takeda, H Abe, Y Takeuchi, and T Harayama, Tetrahedron, 2007,63, 396; (c) H Abe, K Nishioka, S Takeda, M Arai, Y Takeuchi, and T Harayama, Tetrahedron Lett., 2005,46, 3197; (d) H Abe, S Takeda, T Fujita, K Nishioka, Y Takeuchi, and T Harayama, Tetrahedron Lett., 2004,45, 2327; (e) H Abe, Y Sahara, Y Matsuzaki, Y Takeuchi, and T Harayama, Tetrahedron Lett., 2008,49, 605; (f) H Abe and T Harayama, Heterocycles, 75, 2008, 1305; (g) H Abe, M Arai, K Nishioka, T Kida, K Shioe, Y Takeuchi, and T Harayama, Heterocycles, 2008,76, 291; (h) K Shioe, Y Takeuchi, T Harayama, and H Abe, Chem. Pharm. Bull., 2010,58, 435; (i) H Abe, M Arai, Y Takeuchi, and T Harayama, Heterocycles, 2009,77, 1409; (j) K Itaya, I Jeelani, and H Abe, Total synthesis of Urolithin Glucuronide C Heterocycles, 2021,103.

36 D M W Anderson and G M Cree, Carbohydr. Res., 1966, 2, 162.

37 H Miyazaki, N Nakamura, T Ito, T Sada, T Oshima, and H Koike, Chem. Pharm. Bull., 37, 1989, 2391.

38 A Lavecchia, C Di Giovanni, Curr. Med. Chem., 2013, 20, 2839.

39 H Matter, C Sotriffer, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2011-319.

40 JA Erickson, M Jalaie, DH Robertson, RA Lewis, M Vieth, J., Med. Chem., 2004, 47, 55.

41 E Freire, Drug Discov. Today, 2008,13, 874.

42 HM Kumalo, S Bhakat, ME Soliman, Molecules, 2015, 20, 2000.

43 M Wang, Y Yu, C Liang, A Lu, G Zhang, Int. J. Mol. Sci., 2016, 17, 779.

44 J Blaney, J. Comput. Aided Mol. Des., 2012, 26,14.

45 S Mandal, M.N Moudgil, S.K Mandal, Eur. J. Pharmacol, 2009, 625, 100.

46 S Urwyler, Pharmacol. Rev., 2011, 63, 126.

47 G.L Wilson, M.A Lill, Future Med. Chem., 2011, 3, 750.

48 Y Fang, Expert Opin. Drug Discov., 2012, 7, 988.

49 A.W Kahsai, K Xiao, S Rajagopal, S Ahn, A.K Shukla, J Sun, T G Oas, Lefkowitz, R.J. Nat. Chem. Biol., 2011, 7, 700

50 B.R Chandrika, J Subramanian, S.D Sharma, Drug Discov. Today, 2009, 14, 400.

51 J.D Durrant, J.A McCammon, Curr. Opin. Pharmacol, 2010, 10, 774.

52 N Foloppe, R Hubbard, Curr. Med. Chem., 2006, 13, 3608.

53 A.N Jain, Curr. Protein Pept. Sci., 2006, 7, 420

54 M.W Gonzalez, M.G Kann, PLoS Comput. Biol., 2012, 8, e1002819.

55 M.R Arkin, J.A Wells, Nat. Rev. Drug Discov., 2004, 3, 317.

56 I.S Moreira, P.A Fernandes, M.J Ramos, Protein-protein docking dealing with the unknown. J. Comput. Chem., 2010, 31, 342.

57 P. P Jakub, S. Iwona, G.Sebastian, S. Joanna, K. K Anna, Drug Metab. Dispos. 2017, 45, 665.

58 B.Cerdá, R. Llorach, J. J Cerón, J. C Espín, and F. A. Tomás-Barberán, Eur. J. Nutr., 2003, 42, 28.

59 B. Cerdá, J. C. Espín, S. Parra, P. Martínez, and F. A. Tomás-Barberán, Eur. J. Nutr., 2004, 43, 220.

60 N. P. Seeram, S. M. Henning, Y. Zhang, M.Suchard, Z. Li, and D. Heber, J. Nutr., 2006, 136, 2485.

61 B. Cerda, F. A. Tomás-Barberán, and Espín, J. Agric. Food Chem., 2005, 53, 235.

62 J. A. Giménez-Bastida, A. González-Sarrías, M. Larrosa, F Tomás-Barberán, J. C Espín, García-, and M. T. Conesa Mol. Nutr. Food Res., 2012, 56, 796.

63 J. C. Espín, R. González-Barrio, B. Cerdá, C. López-Bote, A. I. Rey, and F. A Tomás- Barberán, J. Agric. Food. Chem., 2007, 55, 10485.

64 J. C. Espín, M. Larrosa, M. T. García-Conesa, and F. Tomás-Barberán, Evid. Based Complement. Alternat. Med., 2013, 15.

65 N. P. Seeram, R. N. Schulman, and D. Heber, pomegranates Ancient Roots to Modern Medicine, CRC Press, Boca Raton, FL, USA, 2006.

66 M. Á. Ávila-Gálvez, J. C. Espín, and A. González-Sarrías, J. Agric. Food Chem., 2018, 66, 8555.

67 M. García-Conesa, M. V. Selma, J. C. Espín, F. A. Tomás-Barberán, J. Agric. Food. Chem., 2019, 67, 11107.

68 R. García-Villalba, J. C. Espín, and F. A Tomás-Barberán, J. Chromatogr. A., 2016, 1428, 175.

69 R. Lucas, D. Alcantara, and J. C Morales, Carbohydr. Res., 2009, 344, 1346.

70 A. González-Sarrías, V. Miguel, G. Merino, R. Lucas, J. C. Morales, F. Tomás-Barberán, A. I. Álvarez, and J. C. Espín, J. Agric. Food Chem., 2013, 61, 4359.

71 T. Harayama, H. Yasuda, T. Akiyana, Y. Takeuchi, and H. Abe, Chem. Pharm. Bull., 2000, 48, 864.

72 H. Abe, T. Fukumoto, Y. Horino, T. Harayama, and Y. Takeuchi, Heterocycles 2010, 82, 855.

73 K. Tahara, H. Yamaga, E. Ghijsens, K. Inukai, J. Adisoejoso, M. O. Blunt, S. D. Feyter, and Y. Tobe, Nature Chem., 2011, 3, 719.

74 W-J. Jiang, K. Ishiuchi, M. Furukawa, Takamiya, T. Kitanaka, and S. Iijima, Bioorg. Med. Chem., 2015, 23, 6929.

75 H. Mikula, P. Skrinjar, B. Sohr, D. Ellmer, C. Hametner, and J. Fröhlich, Tetrahedron, 2013, 69, 10322.

76 R. Frlan, S. Gobec, and D. Kikelj, Tetrahedron, 2007, 63, 10698

77 S. Balamurugan, P. Kannaa, P. Yadupati, and A. Roy, J. Mol. Struct., 2011, 1001, 124.

78 M. Kitamura, S. Takahashi, and T Okauchi, J. Org. Chem., 2015, 80, 8416.

79 S. Chang-Xiao, M. Jean-Francois, C. Chih-Chia, T. Hou-Jen, and H. Ling-Yih, Chem. Pharm. Bull., 2006, 54, 686.

80 K. Maeda, T. Matsukihira, S. Saga, Y. Takeuchi, T. Harayama, Y. Horino, and H. Abe, Heterocycles, 2014, 88, 628

81 L. C. Campeau, M. Parisien, A. Jean, K. Fagnou, J. Am. Chem. Soc., 2006, 128, 590.

82 C. D. Garcia, M. de Mendoza, A. A. C. Braga, and A. M. Echavarren, J. Org. Chem., 2007, 129, 6886.

83 W. Pilgrim and P. V. Murphy, J. Org. Chem., 2010, 75, 6755.

84 X.; Lin, Z. San-Yong, S. Xiao-Qiu, H. Li-Li, and Y. Jin-Song, J. Org. Chem., 2010, 75, 5767.

85 Beatriz, S. P J Garcia, G. C. Roser, H. Jordi, A. Ramon, N. Fernando, S. Josep, B. Felix, R. M. Daniel, Mater. Interfaces, 2014, 6, 17625.

86 M. Hrast, M. Anderluh, D. Kenz, C. P. Randall, H. Barreteau, A. J. O’Neill, D. Blanot, S. Gobec, Eur., Jou., of Med., Chem., 2014, 73, 96.

87 H. Miyazaki, N. Nakamura, T. Ito, T. Sada, T. Oshima, and H. Koike, Chem. Pharm. Bull., 1989, 37, 2397.

88 M. Bednarski and S. Danishefsky, J. Am. Chem. Soc. 1986, 108, 7067.

参考文献をもっと見る