リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The innate immune response against RNA viruses in bat cell lines」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The innate immune response against RNA viruses in bat cell lines

Tarigan, Ronald 名古屋大学

2020.10.19

概要

Bats are potential natural hosts of Encephalomyocarditis virus (EMCV), Japanese encephalitis virus (JEV), and Pteropine orthoreovirus (PRV). Bats appear to have some unique features in their innate immune system that can inhibit viral replication causing limited clinical symptoms. Here, kidney epithelial cell lines derived from four bat species (Pteropus dasymallus, Rousettus leschenaultii, Rhinolophus ferrumequinum, and Miniopterus fuliginosus) and two non-bat species (Homo sapiens and Mesocricetus auratus) were infected with EMCV, JEV, and PRV. The viral replication was lower in the bat cell lines derived from R. leschenaultii, R. ferrumequinum, and M. fuliginosus with a higher expression level of pattern recognition receptors (PRRs) and interferon-beta (IFN-b) than that in the non-bat cell lines and a bat cell line derived from P. dasymallus. The knockdown of TLR3, RIG-I, and MDA5 in Rhinolophus bat cell line using antisense RNA oligonucleotide led to decreased IFN-b expression and increased viral replication. These results suggest that TLR3, RIG-I, and MDA5 are important for antiviral response against EMCV, JEV, and PRV in Rhinolophus bats.

この論文で使われている画像

参考文献

1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao G.F, Tan W (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382(8): 727–733.

2. Leroy E.M, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, Délicat A, Paweska J.T, Gonzalez J.P, Swanepoel R (2005) Fruit bats as reservoirs of Ebola virus. Nature 438(7068): 575–576.

3. Hu B, Ge X, Wang L.F, Shi Z (2015) Bat origin of human coronaviruses. Virol J 12(221): 1–10.

4. Pillai V.S, Krishna G, Veettil M.V (2020) Nipah Virus: Past Outbreaks and Future Containment. Viruses 12(4): 465–480.

5. Towner J.S, Amman B.R, Sealy T.K, Carroll S.A.R, Comer J.A, Kemp A, Swanepoel R, Paddock C.D, Balinandi S, Khristova M.L (2009) Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog 5(7): e1000536.

6. Halpin K, Young P.L, Field H.E, Mackenzie J.S (2000) Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. J Gen Virol 81(8): 1927– 1932.

7. Hayman D.T (2016) Bats as viral reservoirs. Annu Rev Virol 3: 77–99.

8. Karlen A (1996) Man and microbes: Disease and Plagues in History and Modern Times. Simon and Schuster Paperbacks.

9. O’Shea T.J, Cryan P.M, Cunningham A.A, Fooks A.R, Hayman D.T, Luis A.D, Peel A.J, Plowright R.K, Wood J.L (2014) Bat flight and zoonotic viruses. Emerg Infect Dis 20(5): 741–745.

10. Field H, McCall B, Barrett J (1999) Australian bat lyssavirus infection in a captive juvenile black flying fox. Emerg Infect Dis 5(3): 438–440.

11. McColl K.A, Chamberlain T, Lunt R.A, Newberry K.M, Middleton D, Westbury H.A (2002) Pathogenesis studies with Australian bat lyssavirus in grey-headed flying foxes (Pteropus poliocephalus). Aust Vet J 80(10): 636–641.

12. Middleton D.J, Morrissy C.J, Van Der Heide B.M, Russell G.M, Braun M.A, Westbury H.A, Halpin K, and Daniels P.W (2007) Experimental Nipah virus infection in pteropid bats (Pteropus poliocephalus). J. Comp. Pathol. 136(4): 266– 272.

13. Munster V. J, Adney D.R, Van Doremalen N, Brown V.R, Miazgowicz K.L, Milne- Price S, Bushmaker T, Rosenke R, Scott D, Hawkinson A (2016) Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis). Sci. Rep. 6(1): 1–10.

14. Paweska J.T, Storm N, Grobbelaar A, Markotter W, Kemp A, Van Vuren P.J (2016) Experimental inoculation of Egyptian fruit bats (Rousettus aegyptiacus) with Ebola virus. Viruses 8(2): 29-40.

15. Blatteis C.M (2003) Fever: pathological or physiological, injurious or beneficial? J Therm Biol 28(1): 1–13.

16. Chionh Y.T, Cui J, Koh J, Mendenhall I.H, Ng J.H, Low D, Itahana K, Irving A.T, Wang L.F (2019) High basal heat-shock protein expression in bats confers resistance to cellular heat/oxidative stress. Cell Stress Chaperones 24(4): 835–849.

17. Baker M.L, Schountz T, Wang L.F (2013) Antiviral immune responses of bats: a review. Zoonoses Public Health 60(1): 104–116.

18. Zhou P, Tachedjian M, Wynne J.W, Boyd V, Cui J, Smith I, Cowled C, Ng J.H, Mok L, Michalski W.P (2016) Contraction of the type I IFN locus and unusual constitutive expression of IFN-α in bats. Proc Natl Acad Sci 113(10): 2696–2701.

19. Reikine S, Nguyen J.B, Modis Y (2014) Pattern recognition and signaling mechanisms of RIG-I and MDA5. Front Immunol 5(342): 1–7.

20. Doysabas K.C.C, Oba M, Furuta M, Iida K, Omatsu T, Furuya T, Okada T, Sutummaporn K, Shimoda H, Wong M.L, Wu C.H, Ohmori Y, Kobayashi R, Hengjan Y, Yonemitsu K, Kuwata R, Kim Y.K, Han S.H, Sohn J.H, Han S.H, Suzuki K, Kimura J, Maeda K, Oh H.S, Endoh D, Mizutani T, Hondo E (2019) Encephalomyocarditis virus is potentially derived from eastern bent-wing bats living in East Asian countries. Virus Res 259: 62–67.

21. Fagre A.C, Kading R.C (2019) Can bats serve as reservoirs for arboviruses? Viruses 11(3): 215–242.

22. Wang J.L, Pan X.L, Zhang H.L, Fu S.H, Wang H.Y, Tang Q, Wang L.F, Liang G.D (2009) Japanese encephalitis viruses from bats in Yunnan, China. Emerg Infect Dis 15(6): 939–942.

23. Takemae H, Basri C, Mayasari N.L.P.I, Tarigan R, Shimoda H, Omatsu T, Pramono D, Cahyadi D.D, Kobayashi R, Iida K, Mizutani T, Maeda K, Agungpriyono S, Hondo E. 2018. Isolation of Pteropine orthoreovirus from Pteropus vampyrus in Garut, Indonesia. Virus Genes 54(6): 823–827.

24. Taniguchi S, Maeda K, Horimoto T, Masangkay J.S, Puentespina R, Alvarez J, Eres E, Cosico E, Nagata N, Egawa K, Singh H, Fukuma A, Yoshikawa T, Tani H, Fukushi S, Tsuchiaka S, Omatsu T, Mizutani T, Une Y, Yoshikawa Y, Shimojima M, Saijo M, Kyuwa S (2017) First isolation and characterization of pteropine orthoreoviruses in fruit bats in the Philippines. Arch Virol 162(6): 1529–1539.

25. Carocci M, Bakkali-Kassimi L (2012) The encephalomyocarditis virus. Virulence 3(4): 351–367.

26. Oberste M.S, Gotuzzo E, Blair P, Nix W.A, Ksiazek T.G, Comer J.A, Rollin P, Goldsmith C.S, Olson J, Kochel T.J (2009) Human febrile illness caused by encephalomyocarditis virus infection, Peru. Emerg Infect Dis 15(4): 640–646.

27. Hirasawa K, Takeda M, Matsuzaki H, Doi K (1991) Encephalomyocarditis (EMC) virus-induced orchitis in Syrian hamsters. Int J Exp Pathol 72(6): 640–646.

28. Shigesato M, Hirasawa K, Takeda M, Doi K (1994) Encephalomyocarditis (EMC) virus-induced testicular lesion in BALB/c mice. Lab Anim 28(4): 330–334.

29. Anirban B, Kallol D (2017) Recent advances in Japanese encephalitis. F1000Research 6(259): 1–9.

30. World Health Organization (2015). Japanese encephalitis. available from https://www.who.int/immunization/diseases/japanese_encephalitis/en/.

31. Campbell G.L, Hills S.L, Fischer M, Jacobson J.A, Hoke C.H, Hombach J.M, Marfin A.A, Solomon T, Tsai T.F, Tsu V.D (2011) Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ 89: 766–774.

32. Pritchard L.I, Chua K.B, Cummins D, Hyatt A, Crameri G, Eaton B.T, Wang L.F (2006) Pulau virus; a new member of the Nelson Bay orthoreovirus species isolated from fruit bats in Malaysia. Arch Virol 151(2): 229–239.

33. Gard G, Compans R.W (1970) Structure and cytopathic effects of Nelson Bay virus. J Virol 6(1): 100–106.

34. Hu T, Qiu W, He B, Zhang Y, Yu J, Liang X, Zhang W, Chen G, Zhang Y, Wang Y (2014) Characterization of a novel orthoreovirus isolated from fruit bat, China. BMC Microbiol 14(1): 293–301.

35. Chua K.B, Crameri G, Hyatt A, Yu M, Tompang M.R, Rosli J, McEachern J, Crameri S, Kumarasamy V, Eaton B.T (2007) A previously unknown reovirus of bat origin is associated with an acute respiratory disease in humans. Proc Natl Acad Sci 104(27): 11424–11429.

36. Voon K, Tan Y.F, Leong P.P, Teng C.L, Gunnasekaran R, Ujang K, Chua K.B, Wang L.F (2015) Pteropine orthoreovirus infection among out-patients with acute upper respiratory tract infection in Malaysia. J Med Virol 87(12): 2149–2153.

37. Singh H, Shimojima M, Ngoc T.C, Quoc Huy N.V, Chuong T.X, Le Van A, Saijo M, Yang M, Sugamata M (2015) Serological evidence of human infection with Pteropine orthoreovirus in Central Vietnam. J Med Virol 87(12): 2145–2148.

38. Uehara A, Tan C.W, Mani S, Chua K.B, Leo Y.S, Anderson D.E, Wang L.F (2019) Serological evidence of human infection by bat orthoreovirus in Singapore. J Med Virol 91(4): 707–710.

39. Yamanaka A, Iwakiri A, Yoshikawa T, Sakai K, Singh H, Himeji D, Kikuchi I, Ueda A, Yamamoto S, Miura M (2014) Imported case of acute respiratory tract infection associated with a member of species nelson bay orthoreovirus. PloS One 9(3): e92777.

40. Cheng P, Lau C, Lai A, Ho E, Leung P, Chan F, Wong A, Lim W (2009) A novel reovirus isolated from a patient with acute respiratory disease. J Clin Virol 45(1): 79–80.

41. Kawagishi T, Kanai Y, Tani H, Shimojima M, Saijo M, Matsuura Y, Kobayashi T (2016) Reverse genetics for fusogenic bat-borne orthoreovirus associated with acute respiratory tract infections in humans: Role of outer capsid protein σC in viral replication and pathogenesis. PLoS Pathog 12(2): e1005455.

42. Pamela C, Kanchwala M, Liang H, Kumar A, Wang L.F, Xing C, Schoggins J.W (2018) The IFN response in bats displays distinctive IFN-stimulated gene expression kinetics with atypical RNASEL induction. J Immunol 200(1): 209–217.

43. Schountz T, Baker M.L, Butler J, Munster V (2017) Immunological control of viral infections in bats and the emergence of viruses highly pathogenic to humans. Front Immunol 8: 1098–1107.

44. Hölzer M, Schoen A, Wulle J, Müller M.A, Drosten C, Marz M, Weber F (2019) Virus-and interferon alpha-induced transcriptomes of cells from the microbat. iScience 19:647–661.

45. Kuzmin I.V, Schwarz T.M, Ilinykh P.A, Jordan I, Ksiazek T.G, Sachidanandam R, Basler C.F, Bukreyev A (2017) Innate immune responses of bat and human cells to filoviruses: commonalities and distinctions. J Virol 91(8): e02471–e02516.

46. Ahn M, Anderson D.E, Zhang Q, Tan C.W, Lim B.L, Luko K, Wen M, Chia W.N, Mani S, Wang L.C (2019) Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nat Microbiol 4(5): 789–799.

47. Banerjee A, Rapin N, Bollinger T, Misra V (2017) Lack of inflammatory gene expression in bats: a unique role for a transcription repressor. Sci Rep 7(1): 1–15.

48. Ghosh D, Basu A (2009) Japanese encephalitis: a pathological and clinical perspective. PLoS Negl Trop Dis 3(9): e437.

49. Meylan E, Tschopp J (2006) Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses. Mol Cell 22(5): 561–569.

50. Gitlin L, Barchet W, Gilfillan S, Cella M, Beutler B, Flavell R.A, Diamond M.S, Colonna M. 2006. Essential role of MDA-5 in type I IFN responses to polyriboinosinic: polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl. Acad. Sci. 103(22): 8459–8464.

51. Hardarson H.S, Baker J.S, Yang Z, Purevjav E, Huang C.H, Alexopoulou L, Li N, Flavell R.A, Bowles N.E, Vallejo J.G (2007) Toll-like receptor 3 is an essential component of the innate stress response in virus-induced cardiac injury. Am J Physiol-Heart Circ Physiol 292(1): H251–H258.

52. Jiang R, Ye J, Zhu B, Song Y, Chen H, Cao S (2014) Roles of TLR3 and RIG-I in mediating the inflammatory response in mouse microglia following Japanese encephalitis virus infection. J Immunol Res 2014:1–11.

53. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii K.J (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441(7089): 101–105.

54. Mok L, Wynne J.W, Grimley S, Shiell B, Green D, Monaghan P, Pallister J, Bacic A, Michalski W.P (2015) Mouse fibroblast L929 cells are less permissive to infection by Nelson Bay orthoreovirus compared to other mammalian cell lines. J Gen Virol 96(7): 1787–1794.

55. Nazmi A, Dutta K, Basu A (2011) RIG-I mediates innate immune response in mouse neurons following Japanese encephalitis virus infection. PLoS One 6(6): e21761.

56. Li L, Fan H, Song Z, Liu X, Bai J, Jiang P (2019) Encephalomyocarditis virus 2C protein antagonizes interferon-β signaling pathway through interaction with MDA5. Antiviral Res 161: 70–84.

57. Papon L, Oteiza A, Imaizumi T, Kato H, Brocchi E, Lawson T.G, Akira S, Mechti N (2009) The viral RNA recognition sensor RIG-I is degraded during encephalomyocarditis virus (EMCV) infection. Virology 393(2): 311–318.

58. Huang L, Xiong T, Yu H, Zhang Q, Zhang K, Li C, Hu L, Zhang Y, Zhang L, Liu Q (2017) Encephalomyocarditis virus 3C protease attenuates type I interferon production through disrupting the TANK–TBK1–IKKε–IRF3 complex. Biochem J 474(12): 2051–2065.

59. Zhou D, Jia F, Li Q, Zhang L, Chen Z, Zhao Z, Cui M, Song Y, Chen H, Cao S (2018) Japanese Encephalitis Virus NS1′ Protein Antagonizes Interferon Beta Production. Virol Sin 33(6): 515–523.

60. Zhang H.L, Ye H.Q, Liu S.Q, Deng C.L, Li X.D, Shi P.Y, Zhang B (2017) West Nile virus NS1 antagonizes interferon beta production by targeting RIG-I and MDA5. J Virol 91(18): e02396–e02416.

61. Sherry B (2009) Rotavirus and reovirus modulation of the interferon response. J Interferon Cytokine Res 29(9): 559–567

62. Banerjee A, Falzarano D, Rapin N, Lew J, Misra V (2019) Interferon regulatory factor 3-mediated signaling limits Middle-East respiratory syndrome (MERS) coronavirus propagation in cells from an insectivorous bat. Viruses 11(2): 152– 173.

63. Virtue E.R, Marsh G.A, Baker M.L, Wang L.F (2011) Interferon production and signaling pathways are antagonized during henipavirus infection of fruit bat cell lines. PloS One 6(7): e22488.

64. Maeda K, Hondo E, Terakawa J, Kiso Y, Nakaichi N, Endoh D, Sakai K, Morikawa S, Mizutani T. 2008. Isolation of novel adenovirus from fruit bat (Pteropus dasymallus yayeyamae). Emerg. Infect. Dis. 14(2): 347-349.

65. Maruyama J, Miyamoto H, Kajihara M, Ogawa H, Maeda K, Sakoda Y, Yoshida R, Takada A (2014) Characterization of the envelope glycoprotein of a novel filovirus, lloviu virus. J Virol 88(1): 99–109.

66. Nerome R, Tajima S, Takasaki T, Yoshida T, Kotaki A, Lim C.K, Ito M, Sugiyama A, Yamauchi A, Yano T (2007) Molecular epidemiological analyses of Japanese encephalitis virus isolates from swine in Japan from 2002 to 2004. J Gen Virol 88(10): 2762–2768.

67. Subramanya S, Kim S.S, Abraham S, Yao J, Kumar M, Kumar P, Haridas V, Lee S.K, Shultz L.D, Greiner D (2010) Targeted delivery of small interfering RNA to human dendritic cells to suppress dengue virus infection and associated proinflammatory cytokine production. J Virol 84(5): 2490–2501.

68. Höbel S, Aigner A (2010) Polyethylenimine (PEI)/siRNA-mediated gene knockdown in vitro and in vivo. In: RNA Interf. Springer, pp 283–297.

69. Liu W.J, Wang X.J, Clark D.C, Lobigs M, Hall R.A, Khromykh A.A (2006) A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice. J Virol 80(5): 2396–2404.

70. Hemann E.A, Gale J.M, Savan R (2017) Interferon lambda genetics and biology in regulation of viral control. Front Immunol 8: 1–12.

71. Adachi M, Amsterdam D, Brooks S.E, Volk B.W (1975) Ultrastructural alterations of tissue cultures from human fetal brain infected with the E variant of EMC virus. Acta Neuropathol (Berl) 32(2): 133–142.

72. Wellmann K.F, Amsterdam D, Volk B.W (1975) EMC virus and cultured human fetal pancreatic cells. Ultrastructural observations. Arch Pathol 99(8): 424–429.

73. Sandekian V, Lim D, Prud’homme P, Lemay G (2013) Transient high level mammalian reovirus replication in a bat epithelial cell line occurs without cytopathic effect. Virus Res 173(2): 327–335.

74. Lee G.C.Y, Grayston J.T, Kenny G.E (1965) Growth of Japanese encephalitis virus in cell culture. J Infect Dis 115(4): 321–329.

75. Lee C.J, Liao C.L, Lin Y.L (2005) Flavivirus activates phosphatidylinositol 3-kinase signaling to block caspase-dependent apoptotic cell death at the early stage of virus infection. J Virol 79(13): 8388–8399.

76. Okamoto T, Suzuki T, Kusakabe S, Tokunaga M, Hirano J, Miyata Y, Matsuura Y (2017) Regulation of apoptosis during flavivirus infection. Viruses 9(9) :243–255.

77. Omatsu T, Watanabe S, Akashi H, Yoshikawa Y (2007) Biological characters of bats in relation to natural reservoir of emerging viruses. Comp Immunol Microbiol Infect Dis 30(5-6): 357–374.

78. Cui J, Counor D, Shen D, Sun G, He H, Deubel V, Zhang S (2008) Detection of Japanese encephalitis virus antibodies in bats in Southern China. Am J Trop Med Hyg 78(6): 1007–1011.

79. Van den Hurk A.F, Smith C.S, Field H.E, Smith I.L, Northill J.A, Taylor C.T, Jansen C.C, Smith G.A, Mackenzie J.S (2009) Transmission of Japanese encephalitis virus from the black flying fox, Pteropus alecto, to Culex annulirostris mosquitoes, despite the absence of detectable viremia. Am. J. Trop. Med. Hyg. 81(3): 457–462.

80. Lorusso A, Teodori L, Leone A, Marcacci M, Mangone I, Orsini M, Capobianco- Dondona A, Monaco F, Savini G (2015) A new member of the Pteropine Orthoreovirus species isolated from fruit bats imported to Italy. Infect Genet Evol 30: 55–58.

81. Iha K, Omatsu T, Watanabe S, Ueda N, Taniguchi S, Fujii H, Ishii Y, Kyuwa S, Akashi H, Yoshikawa Y (2010) Molecular cloning and expression analysis of bat toll-like receptors 3, 7 and 9. J Vet Med Sci 72(2): 217–220.

82. Li J, Zhang G, Cheng D, Ren H, Qian M, Du B (2015) Molecular characterization of RIG-I, STAT-1 and IFN-beta in the horseshoe bat. Gene 561(1) :115–123.

83. Sarkis S, Lise M.C, Darcissac E, Dabo S, Falk M, Chaulet L, Neuveut C, Meurs E.F, Lavergne A, Lacoste V (2018) Development of molecular and cellular tools to decipher the type I IFN pathway of the common vampire bat. Dev Comp Immunol 81: 1–7.

84. Cowled C, Baker M.L, Zhou P, Tachedjian M, Wang L.F (2012) Molecular characterisation of RIG-I-like helicases in the black flying fox, Pteropus alecto. Dev. Comp. Immunol. 36(4): 657–664.

85. Cowled C, Baker M.L, Tachedjian M, Zhou P, Bulach D, and Wang L.F (2011) Molecular characterisation of Toll-like receptors in the black flying fox Pteropus alecto. Dev. Comp. Immunol. 35: 7–18.

86. Taniguchi T, Takaoka A (2001) A weak signal for strong responses: interferon- alpha/beta revisited. Nat Rev Mol Cell Biol 2(5): 378–386.

87. Ramakrishnan P, de Jesus T, Shukla S (2018) NF-kB c-Rel Dictates the Inflammatory Threshold by Acting as a Transcriptional Repressor. Iscience 23:1-18.

88. Farone A.L, O’Brien P.C, Cox D.C (1993) Tumor necrosis factor-α induction by reovirus serotype 3. J Leukoc Biol 53(2): 133–137.

89. Shwetank O.S, Kim K.S, Manjunath R (2013) Infection of human endothelial cells by Japanese encephalitis virus: increased expression and release of soluble HLA-E. PLoS One 8(11): e79197.

90. Schwarz E.M, Badorff C, Hiura T.S, Wessely R, Badorff A, Verma I.M, Knowlton K.U (1998) NF-κB-mediated inhibition of apoptosis is required for encephalomyocarditis virus virulence: a mechanism of resistance in p50 knockout mice. J Virol 72(7): 5654–5660.

91. Mok L, Wynne J.W, Tachedjian M, Shiell B, Ford K, Matthews D.A, Bacic A, Michalski W.P (2017) Proteomics informed by transcriptomics for characterising differential cellular susceptibility to Nelson Bay orthoreovirus infection. BMC Genomics 18(1): 1–17.

92. Lee A.K, Kulcsar K.A, Elliott O, Khiabanian H, Nagle E.R, Jones M.E, Amman B.R, Sanchez-Lockhart M, Towner J.S, Palacios G (2015) De novo transcriptome reconstruction and annotation of the Egyptian rousette bat. BMC Genomics 16(1): 1–11.

93. Papenfuss A.T, Baker M.L, Feng Z.P, Tachedjian M, Crameri G, Cowled C, Ng J, Janardhana V, Field H.E, Wang L.F (2012) The immune gene repertoire of an important viral reservoir, the Australian black flying fox. BMC Genomics 13(1): 1–17.

94. Shaw T.I, Srivastava A, Chou W.C, Liu L, Hawkinson A, Glenn T.C, Adams R, Schountz T (2012) Transcriptome sequencing and annotation for the Jamaican fruit bat (Artibeus jamaicensis). PloS One 7(11): e48472.

95. Banerjee A, Baker M.L, Kulcsar K, Misra V, Plowright R, Mossman K (2020) Novel insights into immune systems of bats. Front Immunol 11: 1–15.

96. Chua K.B, Koh C.L, Hooi P.S, Wee K.F, Khong J.H, Chua B.H, Chan Y.P, Lim M.E, Lam S.K (2002) Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes Infect 4(2): 145–151.

97. Banyard A.C, Evans J.S, Luo T.R, Fooks A.R (2014) Lyssaviruses and bats: emergence and zoonotic threat. Viruses 6(8): 2974–2990.

98. Bean A.G, Baker M.L, Stewart C.R, Cowled C, Deffrasnes C, Wang L.F, Lowenthal J.W (2013) Studying immunity to zoonotic diseases in the natural host: keeping it real. Nat Rev Immunol 13(12): 851–861.

99. Ahn M, Cui J, Irving A.T, Wang L.F (2016) Unique loss of the PYHIN gene family in bats amongst mammals: implications for inflammasome sensing. Sci Rep 6(1): 1–7.

100. Xie J, Li Y, Shen X, Goh G, Zhu Y, Cui J, Wang L.F, Shi Z.L, Zhou P (2018) Dampened STING-dependent interferon activation in bats. Cell Host Microbe 23(3): 297–301.

101. Franz K.M, Neidermyer W.J, Tan Y.J, Whelan S.P, Kagan J.C (2018) STING- dependent translation inhibition restricts RNA virus replication. Proc Natl Acad Sci 115(9): E2058–E2067.

102. Kim M.J, Hwang S.Y, Imaizumi T, Yoo J.Y (2008) Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation. J Virol 82(3): 1474–1483.

103. Takahashi T, Ui T.K (2020) Mutual Regulation of RNA Silencing and the IFN Response as an Antiviral Defense System in Mammalian Cells. Int J Mol Sci 21(4): 1348–1362.

104. Kepler T.B, Sample C, Hudak K, Roach J, Haines A, Walsh A, Ramsburg E.A (2010) Chiropteran types I and II interferon genes inferred from genome sequencing traces by a statistical gene-family assembler. BMC Genomics 11(1): 444–456.

105. Pavlovich S.S, Lovett S.P, Koroleva G, Guito J.C, Arnold C.E, Nagle E.R, Kulcsar K, Lee A, Thibaud-Nissen F, Hume A.J (2018) The Egyptian rousette genome reveals unexpected features of bat antiviral immunity. Cell 173(5): 1098–1110.

106. Wu Z, Yang L, Ren X, He G, Zhang J, Yang J, Qian Z, Dong J, Sun L, Zhu Y (2016) Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME J 10(3): 609– 620.

107. Plowright R.K, Peel A.J, Streicker D.G, Gilbert A.T, McCallum H, Wood J, Baker M.L, Restif O (2016) Transmission or within-host dynamics driving pulses of zoonotic viruses in reservoir–host populations. PLoS Negl Trop Dis 10(8): e0004796.

108. Subudhi S, Rapin N, Misra V (2019) Immune system modulation and viral persistence in bats: Understanding viral spillover. Viruses 11(2): 192–203.

109. Plowright R.K, Eby P, Hudson P.J, Smith I.L, Westcott D, Bryden W.L, Middleton D, Reid P.A, McFarlane R.A, Martin G (2015) Ecological dynamics of emerging bat virus spillover. Proc R Soc B Biol Sci 282(1798): 1–9.

110. Hengjan Y, Sae K.N, Phichitrasilp T, Ohmori Y, Fujinami H, Hondo E (2018) Seasonal variation in the number of deaths in Pteropus lylei at Wat Pho Bang Khla temple, Thailand. J Vet Med Sci 80(8): 1364–1367.

111. Plowright R.K, Field H.E, Smith C, Divljan A, Palmer C, Tabor G, Daszak P, Foley J.E (2008) Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proc R Soc B Biol Sci 275(1636): 861–869.

112. Breed A.C, Breed M.F, Meers J, Field H.E (2011) Evidence of endemic Hendra virus infection in flying-foxes (Pteropus conspicillatus): implications for disease risk management. PLoS One 6(12): e28816.

113. Plowright R.K, Foley P, Field H.E, Dobson A.P, Foley J.E, Eby P, Daszak P (2011) Urban habituation, ecological connectivity and epidemic dampening: the emergence of Hendra virus from flying foxes (Pteropus spp.). Proc R Soc B Biol Sci 278(1725): 3703–3712.

114. Rahman SA, Hassan L, Epstein J.H, Mamat Z.C, Yatim A.M, Hassan S.S, Field H.E, Hughes T, Westrum J, Naim M.S (2013) Risk factors for Nipah virus infection among pteropid bats, Peninsular Malaysia. Emerg Infect Dis 19(1): 51–60.

115. Pourrut X, Delicat A, Rollin P.E, Ksiazek T.G, Gonzalez J.P, Leroy E.M (2007) Spatial and temporal patterns of Zaire ebolavirus antibody prevalence in the possible reservoir bat species. J Infect Dis 196: S176–S183.

116. Sohayati A.R, Hassan L, Sharifah S.H, Lazarus K, Zaini C.M, Epstein J.H, Naim N.S, Field H.E, Arshad S.S, Aziz J.A (2011) Evidence for Nipah virus recrudescence and serological patterns of captive Pteropus vampyrus. Epidemiol. Infect. 139(10): 1570–1579.

117. Luis A.D, Hayman D.T, O’Shea T.J, Cryan P.M, Gilbert A.T, Pulliam J.R, Mills J.N, Timonin M.E, Willis C.K, Cunningham A.A (2013) A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc R Soc B Biol Sci 280(1756): 1-9.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る