リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Comb-shaped Sb₂S₃ nanorod arrays on ZnO nanofibers for thin-film photovoltaics」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Comb-shaped Sb₂S₃ nanorod arrays on ZnO nanofibers for thin-film photovoltaics

Zhou, Boyang Sagawa, Takashi 京都大学 DOI:10.1063/5.0124401

2022.11

概要

A hierarchical composite of Sb₂S₃ nanorods grown on zinc oxide (ZnO) nanofiber was prepared, and the formation of comb-shaped Sb₂S₃ nanorod arrays on the ZnO nanofibers was confirmed. It was found that the size of the diameter and the density of the nanorods are regulatable by changing the concentration of polyvinyl pyrrolidone as an additive for the growth of Sb₂S₃ nanorod on ZnO nanofiber. The obtained Sb₂S₃ nanorod arrays were applied as a light absorber for thin-film solar cells composed of glass-fluorine-doped tin oxide/compact ZnO/ZnO nanofibers−ZnS/Sb₂S₃ nanorod arrays/poly(3-hexylthiophene-2, 5-diyl)/MoOx/Ag. The rectification ratio and photocurrent generation efficiency of the comb-shaped Sb₂S₃ nanorod arrays were improved as compared with the heterojunction of randomly stacked Sb₂S₃ nanorods. Smaller series resistance (Rs) of 8.13 Ω cm⁻² and an ideality factor (n) of 2.84 with the comb-shaped Sb₂S₃ nanorod arrays than those of the randomly stacked ones of Rs = 15.01 Ω cm⁻² and n = 3.83 also indicated superior charge extraction property and suppressed recombination of the comb-shaped Sb₂S₃ nanorod arrays at the interface.

参考文献

1 M. Y. Versavel and J. A. Haber, “Structural and optical properties of amorphous and crystalline antimony sulfide thin-films,” Thin Solid Films 515(18), 7171–7176 (2007).

2 R. Kondrotas, C. Chen, and J. Tang, “Sb S solar cells,” Joule 2(5), 857–878

3 J. Han, X. Pu, H. Zhou, Q. Cao, S. Wang, Z. He, B. Gao, T. Li, J. Zhao, and X. Li, “Synergistic effect through the introduction of inorganic zinc halides at the interface of TiO2 and Sb2S3 for high-performance Sb2S3 planar thin-film solar cells,” ACS Appl. Mater. Interfaces 12(39), 44297–44306 (2020).

4 L. Wang, D. Li, K. Li, C. Chen, H. Deng, L. Gao, Y. Zhao, F. Jiang, L. Li, F. Huang, Y. He, H. Song, G. Niu, and J. Tang, “Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer,” Nat. Energy 2(4), 1–9 (2017).

5 X. Wen, C. Chen, S. Lu, K. Li, R. Kondrotas, Y. Zhao, W. Chen, L. Gao, C. Wang, and J. Zhang, “Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency,” Nat. Commun. 9(1), 2179 (2018).

6 H. Deng, Y. Zeng, M. Ishaq, S. Yuan, H. Zhang, X. Yang, M. Hou, U. Farooq, J. Huang, K. Sun, R. Webster, H. Wu, Z. Chen, F. Yi, H. Song, X. Hao, and J. Tang, “Quasiepitaxy strategy for efficient full-inorganic Sb2S3 solar cells,” Adv. Funct. Mater. 29(31), 1901720 (2019).

7 R. Nie, H. S. Yun, M. J. Paik, A. Mehta, B. W. Park, Y. C. Choi, and S. I. Seok, “Efficient solar cells based on light-harvesting antimony sulfoiodide,” Adv. Energy Mater. 8(7), 1701901 (2018).

8 R. Tang, X. Wang, C. Jiang, S. Li, W. Liu, H. Ju, S. Yang, C. Zhu, and T. Chen, “n-type doping of Sb2S3 light-harvesting films enabling high-efficiency planar heterojunction solar cells,” ACS Appl. Mater. Interfaces 10(36), 30314–30321 (2018).

9 Z. Li, X. Liang, G. Li, H. Liu, H. Zhang, J. Guo, J. Chen, K. Shen, X. San, W. Yu, R. Schropp, and Y. Mai, “9.2%-efficient core-shell structured antimony selenide nanorod array solar cells,” Nat. Commun. 10(1), 125 (2019).

10 Y. Zeng, K. Sun, J. Huang, M. P. Nielsen, F. Ji, C. Sha, S. Yuan, X. Zhang, C. Yan, X. Liu, H. Deng, Y. Lai, J. Seidel, N. Ekins-Daukes, F. Liu, H. Song, M. Green, and X. Hao, “Quasi-vertically-orientated antimony sulfide inorganic thin-film solar cells achieved by vapor transport deposition,” ACS Appl. Mater. Interfaces 12(20), 22825–22834 (2020).

11 S.-J. Lee, S.-J. Sung, K.-J. Yang, J.-K. Kang, J. Y. Kim, Y. S. Do, and D.-H. Kim, “Approach to transparent photovoltaics based on wide band gap Sb2S3 absorber layers and optics-based device optimization,” ACS Appl. Energy Mater. 3(12), 12644–12651 (2020).

12 X. Jin, Y. Fang, T. Salim, M. Feng, S. Hadke, S. W. Leow, T. C. Sum, and L. H. Wong, “In situ growth of [hk1]-oriented Sb2S3 for solution-processed planar heterojunction solar cell with 6.4% efficiency,” Adv. Funct. Mater. 30(35), 2002887 (2020).

13 W. Lin, W.-T. Guo, L. Yao, J. Li, L. Lin, J.-M. Zhang, S. Chen, and G. Chen, “Zn(O,S) buffer layer for in situ hydrothermal Sb2S3 planar solar cells,” ACS Appl. Mater. Interfaces 13(38), 45726–45735 (2021).

14 W. Wang, X. Wang, G. Chen, L. Yao, X. Huang, T. Chen, C. Zhu, S. Chen, Z. Huang, and Y. Zhang, “Over 6% certified Sb2(S,Se)3 solar cells fabricated via in situ hydrothermal growth and postselenization,” Adv. Electron. Mater. 5(2), 1800683 (2018). 426–431 (2010).

15 Y. Zhao, S. Wang, C. Jiang, C. Li, P. Xiao, R. Tang, J. Gong, G. Chen, T. Chen, and J. Li, “Regulating energy band alignment via alkaline metal fluoride assisted solution post-treatment enabling Sb2(S,Se)3 solar cells with 10.7% efficiency,” Adv. Energy Mater. 12(1), 2103015 (2022).

16 U. A. Shah, S. Chen, G. M. G. Khalaf, Z. Jin, and H. Song, “Wide bandgap Sb2S3 solar cells,” Adv. Funct. Mater. 31(27), 2100265 (2021).

17 J. A. Christians, D. T. Leighton, and P. V. Kamat, “Rate limiting interfacial hole transfer in Sb2S3 solid-state solar cells,” Energy Environ. Sci. 7(3), 1148–1158 (2014).

18 M. Batmunkh, T. J. Macdonald, C. J. Shearer, M. Bat-Erdene, Y. Wang, M. J. Biggs, I. P. Parkin, T. Nann, and J. G. Shapter, “Carbon nanotubes in TiO2 nanofiber photoelectrodes for high-performance perovskite solar cells,” Adv. Sci. 4(4), 1600504 (2017).

19 L. E. Greene, M. Law, B. D. Yuhas, and P. Yang, “ZnO−TiO2 core−shell nanorod/P3HT solar cells,” J. Phys. Chem. C 111(50), 18451–18456 (2007).

20 Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).

21 Y. Hames, Z. Alpaslan, A. Kösemen, S. E. San, and Y. Yerli, “Electrochemically 2 3 (2018). grown ZnO nanorods for hybrid solar cell applications,” Solar Energy 84(3),

22 D. Y. Son, J. H. Im, H. S. Kim, and N. G. Park, “11% efficient perovskite solar cell based on ZnO nanorods: An effective charge collection system,” J. Phys. Chem. C 118(30), 16567–16573 (2014).

23 E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B 110(33), 16159–16161 (2006).

24 K. Mahmood, A. Khalid, S. W. Ahmad, and M. T. Mehran, “Indium-doped ZnO mesoporous nanofibers as efficient electron transporting materials for perovskite solar cells,” Surf. Coat. Technol. 352, 231–237 (2018).

25 G. S. Han, H. S. Chung, D. H. Kim, B. J. Kim, J.-W. Lee, N.-G. Park, I. S. Cho, J.-K. Lee, S. Lee, and H. S. Jung, “Epitaxial 1D electron transport layers for high- performance perovskite solar cells,” Nanoscale 7(37), 15284–15290 (2015).

26 L. Yang and W. W.-F. Leung, “Application of a bilayer TiO2 nanofiber photoan- ode for optimization of dye-sensitized solar cells,” Adv. Mater. 25(12), 1792–1795 (2013).

27 F. J. Ramos, M. Oliva-Ramirez, M. K. Nazeeruddin, M. Grätzel, A. R. González-Elipe, and S. Ahmad, “Nanocolumnar 1-dimensional TiO2 photoanodes deposited by PVD-OAD for perovskite solar cell fabrication,” J. Mater. Chem. A 3(25), 13291–13298 (2015).

28 L. Yang and W. W.-F. Leung, “Application of a bilayer TiO2 nanofiber photoan- ode for optimization of dye-sensitized solar cells,” Adv. Mater. 23(39), 4559–4562 (2011).

29 C. Ying, F. Guo, Z. Wu, K. Lv, and C. Shi, “Influence of surface modifier molecular structures on the photovoltaic performance of Sb2S3-sensitized TiO2 nanorod array solar cells,” Energy Technol. 8(6), 1901368 (2020).

30 Z. Sun, Z. Peng, Z. Liu, J. Chen, W. Li, W. Qiu, and J. Chen, “Band energy modulation on Cu-doped Sb2S3-based photoelectrodes for charge generation and transfer property of quantum dot–sensitized solar cells,” J. Nanoparticle Res. 22(9), 1–9 (2020).

31 R. Parize, A. Katerski, I. Gromyko, L. Rapenne, H. Roussel, E. Kärber, E. Appert, M. Krunks, and V. Consonni, “ZnO/TiO2/Sb2S3 core–shell nanowire heterostruc- ture for extremely thin absorber solar cells,” J. Phys. Chem. C 121(18), 9672–9680 (2017).

32 Y. Li, Y. Wei, K. Feng, Y. Hao, J. Pei, and B. Sun, “Preparation of Sb2S3 nanocrystals modified TiO2 dendritic structure with nanotubes for hybrid solar cell,” Mater. Res. Express 5(6), 065903 (2018).

33 Y. Li, Y. Wei, K. Feng, Y. Hao, J. Pei, Y. Zhang, and B. Sun, “Introduction of PCPDTBT in P3HT: Spiro-OMeTAD blending system for solid-state hybrid solar cells with dendritic TiO2/Sb2S3 nanorods composite film,” J. Solid State Chem. 276, 278–284 (2019).

34 B. Zhou, T. Hayashi, K. Hachiya, and T. Sagawa, “Preparation of Sb2S3 nanorod arrays by hydrothermal method as light absorbing layer for Sb2S3-based solar cells,” Thin Solid Films 757, 139389 (2022).

35 R. Chen, J. Cao, Y. Duan, Y. Hui, T. T. Chuong, D. Ou, F. Han, F. Cheng, X. Huang, B. Wu, and N. Zheng, “High-efficiency, hysteresis-less, UV-stable per- ovskite solar cells with cascade ZnO–ZnS electron transport layer,” J. Am. Chem. Soc. 141(1), 541–547 (2019).

36 S. Messina, M. T. S. Nair, and P. K. Nair, “All-chemically deposited solar cells with antimony sulfide-selenide/lead sulfide thin film absorbers,” MRS Online Proc. Libr. 1012, 413–418 (2007).

37 Q. Han, L. Chen, M. Wang, X. Yang, L. Lu, and X. Wang, “Low-temperature synthesis of uniform Sb2S3 nanorods and its visible-light-driven photocatalytic activities,” Mater. Sci. Eng., B 166(1), 118–121 (2010).

38 B. Jia and L. Gao, “Growth of well-defined cubic hematite single crystals: Ori- ented aggregation and Ostwald ripening,” Cryst. Growth Des. 8(4), 1372–1376 (2008).

39 I. A. Safo, M. Werheid, C. Dosche, and M. Oezaslan, “The role of polyvinyl- pyrrolidone (PVP) as a capping and structure-directing agent in the formation of Pt nanocubes,” Nanoscale Adv. 1(8), 3095–3106 (2019).

40 G.-X. Liang, Z.-H. Zheng, P. Fan, J.-T. Luo, J.-G. Hu, X.-H. Zhang, H.-L. Ma, B. Fan, Z.-K. Luo, and D.-P. Zhang, “Thermally induced structural evolution and performance of Sb2Se3 films and nanorods prepared by an easy sputtering method,” Sol. Energy Mater. Sol. Cells 174, 263–270 (2018).

41 Q. Wang, Z. Chen, J. Wang, Y. Xu, Y. Wei, Y. Wei, L. Qiu, H. Lu, Y. Ding, and J. Zhu, “Sb2S3 solar cells: Functional layer preparation and device performance,” Inorg. Chem. Front. 6(12), 3381–3397 (2019).

42 T. J. Whittles, T. D. Veal, C. N. Savory, A. W. Welch, F. W. de Souza Lucas, J. T. Gibbon, M. Birkett, R. J. Potter, D. O. Scanlon, A. Zakutayev, and V. R. Dhanak, “Core levels, band alignments, and valence-band states in CuSbS2 for solar cell applications,” ACS Appl. Mater. Interfaces 9(48), 41916–41926 (2017).

43 P. Büttner, F. Scheler, C. Pointer, D. Döhler, M. K. S. Barr, A. Koroleva, D. Pankin, R. Hatada, S. Flege, A. Manshina, E. R. Young, I. Mínguez-Bacho, and J. Bachmann, “Adjusting interfacial chemistry and electronic properties of photovoltaics based on a highly pure Sb2S3 absorber by atomic layer deposition,” ACS Appl. Energy Mater. 2(12), 8747–8756 (2019).

44 Z. Deng, D. Chen, F. Tang, J. Ren, and A. J. Muscat, “Synthesis and purple-blue emission of antimony trioxide single-crystalline nanobelts with elliptical cross section,” Nano Res. 2(2), 151–160 (2009).

45 W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).

46 Y. Qi, Y. Li, and Q. Lin, “Engineering the charge extraction and trap states of Sb2S3 solar cells,” Appl. Phys. Lett. 120(22), 221102 (2022).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る