リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Characterization of a bloom-associated alphaproteobacterial lineage, ‘Candidatus Phycosocius’: insights into freshwater algal-bacterial interactions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Characterization of a bloom-associated alphaproteobacterial lineage, ‘Candidatus Phycosocius’: insights into freshwater algal-bacterial interactions

Tanabe, Yuuhiko Yamaguchi, Haruyo Yoshida, Masaki Kai, Atsushi Okazaki, Yusuke 京都大学 DOI:10.1038/s43705-023-00228-6

2023

概要

Marine bacterial lineages associated with algal blooms, such as the Roseobacter clade, have been well characterized in ecological and genomic contexts, yet such lineages have rarely been explored in freshwater blooms. This study performed phenotypic and genomic analyses of an alphaproteobacterial lineage ‘Candidatus Phycosocius’ (denoted the CaP clade), one of the few lineages ubiquitously associated with freshwater algal blooms, and described a novel species: ‘Ca. Phycosocius spiralis.’ Phylogenomic analyses indicated that the CaP clade is a deeply branching lineage in the Caulobacterales. Pangenome analyses revealed characteristic features of the CaP clade: aerobic anoxygenic photosynthesis and essential vitamin B auxotrophy. Genome size varies widely among members of the CaP clade (2.5–3.7 Mb), likely a result of independent genome reductions at each lineage. This includes a loss of tight adherence pilus genes (tad) in ‘Ca. P. spiralis’ that may reflect its adoption of a unique spiral cell shape and corkscrew-like burrowing activity at the algal surface. Notably, quorum sensing (QS) proteins showed incongruent phylogenies, suggesting that horizontal transfers of QS genes and QS-involved interactions with specific algal partners might drive CaP clade diversification. This study elucidates the ecophysiology and evolution of proteobacteria associated with freshwater algal blooms.

この論文で使われている画像

関連論文

参考文献

1. Buchan A, LeCleir GR, Gulvik CA, González JM. Master recyclers: features and

functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol.

2014;12:686–98.

2. Mühlenbruch M, Grossart HP, Eigemann F, Voss M. Mini‐review: phytoplankton‐

derived polysaccharides in the marine environment and their interactions with

heterotrophic bacteria. Environ Microbiol. 2018;20:2671–85.

3. Luo H, Moran MA. Evolutionary ecology of the marine Roseobacter clade.

Microbiol Mol Biol Rev. 2014;78:573–87.

4. Belas R, Horikawa E, Aizawa SI, Suvanasuthi R. Genetic determinants of Silicibacter

sp. TM1040 motility. J Bacteriol. 2009;191:4502–12.

5. Fei C, Ochsenkühn MA, Shibl AA, Isaac A, Wang C, Amin SA. Quorum sensing

regulates ‘swim-or-stick’ lifestyle in the phycosphere. Environ Microbiol.

2020;22:4761–78.

6. Koppenhöfer S, Wang H, Scharfe M, Kaever V, Wagner-Döbler I, Tomasch J.

Integrated transcriptional regulatory network of quorum sensing, replication

control, and SOS response in Dinoroseobacter shibae. Front Microbiol.

2019;10:803.

7. Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM. Cyanobacterial blooms. Nat Rev Microbiol. 2018;16:471–83.

8. Reavie ED, Barbiero RP, Allinger LE, Warren GJ. Phytoplankton trends in the Great

Lakes, 2001–2011. J Gt Lakes Res. 2014;40:618–39.

9. Teng ST, Law K, Hanifah AH, Bojo OB, Idrus FA, Mannaf AH, et al. Bloom of a

freshwater green alga Botryococcus braunii (Botryococcaceae, Trebouxiophyceae)

and the associated mass fish mortality in a man-made lake, Sarawak, Malaysia.

Plankton Benthos Res. 2021;16:59–68.

10. Smith DJ, Tan JY, Powers MA, Lin XN, Davis TW, Dick GJ. Individual Microcystis

colonies harbour distinct bacterial communities that differ by Microcystis oligotype and with time. Environ Microbiol. 2021;23:5652–7.

11. Jankowiak JG, Gobler CJ. The composition and function of microbiomes within

Microcystis colonies are significantly different than native bacterial assemblages

in two North American lakes. Front Microbiol. 2020;11:1016.

12. Cook KV, Li C, Cai H, Krumholz LR, Hambright KD, Paerl HW, et al. The global

Microcystis interactome. Limnol Oceanogr. 2020;65:S194–S207.

13. Pérez-Carrascal OM, Tromas N, Terrat Y, Moreno E, Giani A, Corrêa Braga Marques

L, et al. Single-colony sequencing reveals microbe-by-microbiome phylosymbiosis between the cyanobacterium Microcystis and its associated bacteria.

Microbiome. 2021;9:1–21.

14. Blifernez-Klassen O, Klassen V, Wibberg D, Cebeci E, Henke C, Rückert C, et al.

Phytoplankton consortia as a blueprint for mutually beneficial eukaryote-bacteria

ecosystems based on the biocoenosis of Botryococcus consortia. Sci Rep.

2021;11:1726.

15. Tanabe Y, Okazaki Y, Yoshida M, Matsuura H, Kai A, Shiratori T, et al. A novel

alphaproteobacterial ectosymbiont promotes the growth of the hydrocarbonrich green alga Botryococcus braunii. Sci Rep. 2015;5:10467.

16. Jackrel SL, White JD, Evans JT, Buffin K, Hayden K, Sarnelle O, et al. Genome

evolution and host-microbiome shifts correspond with intraspecific niche

divergence within harmful algal bloom-forming Microcystis aeruginosa. Mol Ecol.

2019;28:3994–4011.

ISME Communications

Y. Tanabe et al.

17. Tanabe Y, Yamaguchi H, Watanabe MM. Draft genome sequence of “Candidatus

Phycosocius bacilliformis,” an alphaproteobacterial ectosymbiont of the

hydrocarbon-producing green alga Botryococcus braunii. Genome Announc.

2018;6:e00396–18.

18. Kasai F, Kawachi M, Erata M, Watanabe MM. NIES-Collection, List of strains,

microalgae and protozoa. 7th ed. National Institute for Environmental Studies,

Tsukuba, Japan, 2004.

19. Takahashi Y, Yoshida M, Inouye I, Watanabe MM. Fibrophrys columna gen. nov.,

sp. nov: A member of the family Amphifilidae. Eur J Protistol. 2016;56:41–50.

20. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al.

SPAdes: a new genome assembly algorithm and its applications to single-cell

sequencing. J Comput Biol. 2012;19:455–77.

21. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an

integrated tool for comprehensive microbial variant detection and genome

assembly improvement. PLoS One. 2014;9:e112963.

22. Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome

annotation pipeline for faster genome publication. Bioinformatics.

2018;34:1037–9.

23. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing

the quality of microbial genomes recovered from isolates, single cells, and

metagenomes. Genome Res. 2015;25:1043–55.

24. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for

specialized analyses of microbial genomes and metagenomes. PeerJ Preprints.

2016;4:e1900v1.

25. Asnicar F, Thomas AM, Beghini F, Mengoni C, Manara S, Manghi P, et al. Precise

phylogenetic analysis of microbial isolates and genomes from metagenomes

using PhyloPhlAn 3.0. Nat Commun. 2020;11:1–10.

26. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method

for improved phylogenetic and taxonomic placement of microbes. Nat Commun.

2013;4:1–11.

27. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H,

et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8.

28. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable

and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–5.

29. Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. ModelTest-NG: a

new and scalable tool for the selection of DNA and protein evolutionary models.

Mol Biol Evol. 2020;37:291–4.

30. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package

for scalable and robust microbial pangenome analysis. Appl Environ Microbiol.

2013;79:7696–701.

31. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOGmapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021;38:5825–9.

32. Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein

sequences. Protein Sci. 2020;29:28–35.

33. Cai H, Shi Y, Wang Y, Cui H, Jiang H. Aquidulcibacter paucihalophilus gen. nov., sp.

nov., a novel member of family Caulobacteraceae isolated from cyanobacterial

aggregates in a eutrophic lake. Antonie Van Leeuwenhoek. 2017;110:1169–77.

34. Driscoll CB, Otten TG, Brown NM, Dreher TW. Towards long-read metagenomics:

complete assembly of three novel genomes from bacteria dependent on a diazotrophic cyanobacterium in a freshwater lake co-culture. Stand Genom. Sci.

2017;12:1–6.

35. Asem MD, Salam N, Zheng W, Liao LH, Zhang XT, Han MX, et al. Vitreimonas

flagellata gen. nov., sp. nov., a novel member of the family Hyphomonadaceae

isolated from an activated sludge sample. Int J Syst Evol Microbiol.

2020;70:2632–9.

36. Vieira S, Pascual J, Boedeker C, Geppert A, Riedel T, Rohde M, et al. Terricaulis

silvestris gen. nov., sp. nov., a novel prosthecate, budding member of the family

Caulobacteraceae isolated from forest soil. Int J Syst Evol Microbiol.

2020;70:4966–77.

37. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, Thompson FL.

Microbial genomic taxonomy. BMC Genomics 2013. 2013;14:913.

38. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput

ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat

Commun. 2018;9:1–8.

39. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH, Emerson D. A genus

definition for Bacteria and Archaea based on a standard genome relatedness

index. mBio. 2020;11:e02475–19.

40. Poindexter JS Caulobacter. In: Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer

P, Rainey FA, et al. (eds.) Bergey’s Manual of Systematics of Archaea and Bacteria.

2015; https://doi.org/10.1002/9781118960608.gbm00792.

41. Drew GC, Stevens EJ, King KC. Microbial evolution and transitions along the

parasite–mutualist continuum. Nat Rev Microbiol. 2021;19:623–38.

ISME Communications

42. Foster RA, Zehr JP. Diversity, genomics, and distribution of phytoplanktoncyanobacterium single-cell symbiotic associations. Annu Rev Microbiol.

2019;73:435–56.

43. Kopejtka K, Tomasch J, Zeng Y, Tichý M, Sorokin DY, Koblížek M. Genomic analysis of the evolution of phototrophy among haloalkaliphilic Rhodobacterales.

Genome Biol Evol. 2017;9:1950–62.

44. Kovács AT, Rákhely G, Kovács KL. Genes involved in the biosynthesis of photosynthetic pigments in the purple sulfur photosynthetic bacterium Thiocapsa

roseopersicina. Appl Environ Microbiol. 2003;69:3093–102.

45. Imhoff JF, Rahn T, Künzel S, Neulinger SC. Photosynthesis is widely distributed

among Proteobacteria as demonstrated by the phylogeny of PufLM reaction

center proteins. Front Microbiol. 2018;8:2679.

46. Koblížek M. Ecology of aerobic anoxygenic phototrophs in aquatic environments.

FEMS Microbiol Rev. 2015;39:854–70.

47. Zervas A, Zeng Y, Madsen AM, Hansen LH. Genomics of aerobic photoheterotrophs in wheat phyllosphere reveals divergent evolutionary patterns of

photosynthetic genes in Methylobacterium spp. Genome Biol. Evol.

2019;11:2895–908.

48. Kiley PJ, Donohue TJ, Havelka WA, Kaplan S. DNA sequence and in vitro

expression of the B875 light-harvesting polypeptides of Rhodobacter sphaeroides.

J Bacteriol. 1987;169:742–50.

49. Pinta V, Picaud M, Reiss-Husson F, Astier C. Rubrivivax gelatinosus acsF (previously

orf358) codes for a conserved, putative binuclear-iron-cluster-containing protein

involved in aerobic oxidative cyclization of Mg-protoporphyrin IX monomethylester. J Bacteriol. 2002;184:746–53.

50. Zeilstra-Ryalls JH, Schornberg KL. Analysis of hemF gene function and expression

in Rhodobacter sphaeroides 2.4. 1. J. Bacteriol. 2006;188:801–4.

51. Tang KH, Tang YJ, Blankenship RE. Carbon metabolic pathways in phototrophic

bacteria and their broader evolutionary implications. Front Microbiol. 2011;2:165.

52. Lee YW, Lee KH, Lee SY, Im WT. Brevundimonas fluminis sp. nov., isolated from a

river. Int J Syst Evol Microbiol. 2020;70:204–10.

53. Brinkmann H, Göker M, Koblížek M, Wagner-Döbler I, Petersen J. Horizontal

operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae. ISME J. 2018;2:1994–2010.

54. Klingner A, Bartsch A, Dogs M, Wagner-Döbler I, Jahn D, Simon M, et al. LargeScale 13C flux profiling reveals conservation of the Entner-Doudoroff pathway as

a glycolytic strategy among marine bacteria that use glucose. Appl Environ

Microbiol. 2015;81:2408–22.

55. Jyoti P, Shree M, Joshi C, Prakash T, Ray SK, Satapathy SS, et al. The EntnerDoudoroff and nonoxidative pentose phosphate pathways bypass glycolysis and

the oxidative pentose phosphate pathway in Ralstonia solanacearum. mSystems.

2020;5:e00091–20.

56. Hauruseu D, Koblížek M. Influence of light on carbon utilization in aerobic

anoxygenic phototrophs. Appl Environ Microbiol. 2012;78:7414–9.

57. Watzlawick H, Morabbi Heravi K, Altenbuchner J. Role of the ganSPQAB operon in

degradation of galactan by Bacillus subtilis. J. Bacteriol. 2016;198:2887–96.

58. Weiss TL, Roth R, Goodson C, Vitha S, Black I, Azadi P, et al. Colony organization in

the green alga Botryococcus braunii (Race B) is specified by a complex extracellular matrix. Eukaryot Cell. 2012;11:1424–40.

59. Cooper MB, Kazamia E, Helliwell KE, Kudahl UJ, Sayer A, Wheeler GL, et al. Crossexchange of B-vitamins underpins a mutualistic interaction between Ostreococcus tauri and Dinoroseobacter shibae. ISME J. 2019;13:334–45.

60. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. Algae acquire

vitamin B12 through a symbiotic relationship with bacteria. Nature.

2005;438:90–3.

61. Wang R, Gallant É, Seyedsayamdost MR. Investigation of the genetics and biochemistry of roseobacticide production in the Roseobacter clade bacterium

Phaeobacter inhibens. mBio. 2016;7:e02118–15.

62. Martens T, Gram L, Grossart HP, Kessler D, Müller R, Simon M, et al. Bacteria of the

Roseobacter clade show potential for secondary metabolite production. Microb

Ecol. 2007;54:31–42.

63. Wagner-Döbler I, Ballhausen B, Berger M, Brinkhoff T, Buchholz I, Bunk B, et al.

The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a

hitchhiker’s guide to life in the sea. ISME J. 2010;4:61–77.

64. Cude WN, Mooney J, Tavanaei AA, Hadden MK, Frank AM, Gulvik CA, et al. Production of the antimicrobial secondary metabolite indigoidine contributes to

competitive surface colonization by the marine roseobacter Phaeobacter sp.

strain Y4I. Appl Environ Microbiol. 2012;7814:4771–80.

65. Bullock HA, Luo H, Whitman WB. Evolution of dimethylsulfoniopropionate

metabolism in marine phytoplankton and bacteria. Front Microbiol. 2017;8:637.

66. Ginzburg B, Chalifa I, Gun J, Dor I, Hadas O, Lev O. DMS formation by dimethylsulfoniopropionate route in freshwater. Environ Sci Technol. 1998;2:2130–6.

67. Giordano M, Norici A, Hell R. Sulfur and phytoplankton: acquisition, metabolism

and impact on the environment. New Phytol. 2005;166:371–82.

Y. Tanabe et al.

10

68. Case R, Labbate M, Kjelleberg S. AHL-driven quorum-sensing circuits: their frequency and function among the Proteobacteria. ISME J. 2008;2:345–9.

69. Cude WN, Buchan A. Acyl-homoserine lactone-based quorum sensing in the

Roseobacter clade: complex cell-to-cell communication controls multiple physiologies. Front Microbiol. 2013;4:336.

70. Stock F, Bilcke G, De Decker S, Osuna-Cruz CM, Van den Berge K, Vancaester E,

et al. Distinctive growth and transcriptional changes of the diatom Seminavis

robusta in response to quorum sensing related compounds. Front Microbiol.

2020;11:1240.

71. Raina JB, Fernandez V, Lambert B, Stocker R, Seymour JR. The role of microbial

motility and chemotaxis in symbiosis. Nat Rev Microbiol. 2019;17:284–94.

72. Webre DJ, Wolanin PM, Stock JB. Bacterial chemotaxis. Curr Biol. 2003;13:R47–49.

73. van Teeseling MCF, Thanbichler M. Generating asymmetry in a changing environment: cell cycle regulation in dimorphic alphaproteobacteria. Biol Chem.

2020;401:1349–63.

74. Morris MM, Kimbrel JA, Geng H, Tran-Gyamfi MB, Yu ET, Sale KL, et al. Bacterial

community assembly, succession, and metabolic function during outdoor cultivation of Microchloropsis salina. mSphere. 2022;22:e00231–22.

75. Tomich M, Planet PJ, Figurski DH. The tad locus: postcards from the widespread

colonization island. Nat. Rev. Microbiol. 2007;5:363–75.

76. Sangermani M, Hug I, Sauter N, Pfohl T, Jenal U. Tad pili play a dynamic role in

Caulobacter crescentus surface colonization. mBio. 2019;10:e01237–19.

77. Isaac A, Francis B, Amann RI, Amin SA. Tight adherence (Tad) pilus genes indicate

putative niche differentiation in phytoplankton bloom associated Rhodobacterales. Front Microbiol. 2021;2:718297.

78. Li Q, Lin F, Yang C, Wang J, Lin Y, Shen M, et al. A large-scale comparative

metagenomic study reveals the functional interactions in six bloom-forming

Microcystis-epibiont communities. Front Microbiol. 2018;9:746.

79. Cepáková Z, Hrouzek P, Žišková E, Nuyanzina-Boldareva E, Šorf M, KozlíkováZapomělová E, et al. High turnover rates of aerobic anoxygenic phototrophs in

European freshwater lakes. Environ Microbiol. 2016;18:5063–71.

80. Piwosz K, Vrdoljak A, Frenken T, González-Olalla JM, Šantić D, McKay R, et al. Light

and primary production shape bacterial activity and community composition of

aerobic anoxygenic phototrophic bacteria in a microcosm experiment. mSphere.

2020;5:e00354–20.

81. Mujakić I, Andrei AŞ, Shabarova T, Fecskeová LK, Salcher MM, Piwosz K, et al.

Common presence of phototrophic Gemmatimonadota in temperate freshwater

lakes. mSystems. 2021;6:e01241–20.

82. Kumagai Y, Yoshizawa S, Nakajima Y, Watanabe M, Fukunaga T, Ogura Y, et al.

Solar-panel and parasol strategies shape the proteorhodopsin distribution pattern in marine Flavobacteriia. ISME J. 2018;12:1329–43.

83. Buchan A, González JM, Moran MA. Overview of the marine roseobacter lineage.

Appl Environ Microbiol. 2005;71:5665–77.

Iwane Suzuki and Makoto M. Watanabe for the use of their laboratory facilities. We

also thank Katherine Cook and David Hambright for providing the raw data of their

work on worldwide Microcystis blooms. This work is partly supported by Nextgeneration Energies for Tohoku recovery (NET) from Reconstruction Agency.

AUTHOR CONTRIBUTIONS

YT designed the research, YT performed isolation, culture, light microscopy, pigment,

whole genome, and bioinformatics analyses, HY performed NGS, MY and AK

performed electron microscopy, YO performed CARD-FISH and 16S amplicon

analyses, YT and YO wrote the paper. All authors read and approved the final

manuscript.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s43705-023-00228-6.

Correspondence and requests for materials should be addressed to Yuuhiko Tanabe.

Reprints and permission information is available at http://www.nature.com/

reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims

in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this license, visit http://

creativecommons.org/licenses/by/4.0/.

ACKNOWLEDGEMENTS

We thank Nanda Kyaw Thu for the isolation of BOTRYCO-1, Mina Nomizu for the

guidance of TEM sample preparation, Masahiro Koide for taking video images, and

© The Author(s) 2023, corrected publication 2023

ISME Communications

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る