リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Current status of genome‐wide epigenetic profiling of mammalian preimplantation embryos」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Current status of genome‐wide epigenetic profiling of mammalian preimplantation embryos

Ikeda, Shuntaro 京都大学 DOI:10.1002/rmb2.12521

2023.01

概要

[Background] Genome-wide information on epigenetic modifications in mammalian preimplantation embryos was an unexplored sanctuary of valuable research insights protected by the difficulty of its analysis. However, that is no longer the case, and many epigenome maps are now available for sightseeing there. [Methods] This review overviews the current status of genome-wide epigenetic profiling in terms of DNA methylome and histone modifications in mammalian preimplantation embryos. [Main findings] As the sensitivity of methods for analyzing epigenetic modifications increased, pioneering work began to explore the genome-wide epigenetic landscape in the mid-2010s, first for DNA methylation and then for histone modifications. Since then, a huge amount of data has accumulated, revealing typical epigenetic profiles in preimplantation development and, more recently, changes in response to environmental interventions. [Conclusions] These accumulating data may be used to improve the quality of preimplantation embryos, both in terms of their short-term developmental competence and their subsequent long-term health implications.

この論文で使われている画像

参考文献

1. Waddington CH. The basic ideas of biology. In: Waddington CH,

editor. Towards a theoretical biology. Edinburgh: International

Union of Biological Sciences Edinburgh University Press; 1968. p.

1–­32.

2. Wu C, Morris JR. Genes, genetics, and epigenetics: a correspondence. Science. 2001;293(5532):1103–­5.

3. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes

shape. Cell. 2007;128(4):635–­8.

4. Sun C, Velazquez MA, Fleming TP. DOHaD and the periconceptional period, a critical window in time. In: Rosenfeld CS, editor.

The epigenome and developmental origins of health and disease.

Cambridge: Academic Press; 2015. p. 33–­47.

5. Hatada I, Horii T, editorsEpigenomics. New York, NY: Humana;

2023.

6. Beaujean N, Jammes H, Jouneau A, editorsNuclear reprogramming.

New York, NY: Humana; 2015.

7. Ancelin K, Borensztein M, editorsEpigenetic reprogramming during

mouse embryogenesis. New York, NY: Humana; 2021.

8. Margueron R, Holoch D, editorsHistone methyltransferases. New

York, NY: Humana; 2022.

9. Li E, Zhang Y. DNA methylation in mammals. Cold Spring Harb

Perspect Biol. 2014;6(5):a019133.

10. Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Segonds-­

Pichon A, et al. Dynamic CpG Island methylation landscape in oocytes and preimplantation embryos. Nat Genet.

2011;43(8):811–­4.

11. Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, Regev A, et al.

A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature. 2012;484(7394):339–­4 4.

12. Smith ZD, Chan MM, Humm KC, Karnik R, Mekhoubad S, Regev

A, et al. DNA methylation dynamics of the human preimplantation

embryo. Nature. 2014;511(7511):611–­5.

13. Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, et al. The DNA methylation

landscape of human early embryos. Nature. 2014;511(7511):606–­10.

14. Jiang Z, Lin J, Dong H, Zheng X, Marjani SL, Duan J, et al. DNA

methylomes of bovine gametes and in vivo produced preimplantation embryos. Biol Reprod. 2018;99(5):949–­59.

15. Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O,

et al. Contribution of intragenic DNA methylation in mouse gametic

DNA methylomes to establish oocyte-­

specific heritable marks.

PLoS Genet. 2012;8(1):e1002440.

16. Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, et al. Programming

and inheritance of parental DNA methylomes in mammals. Cell.

2014;157(4):979–­91.

17. Li C, Fan Y, Li G, Xu X, Duan J, Li R, et al. DNA methylation reprogramming of functional elements during mammalian embryonic

development. Cell Discov. 2018;4:41.

18. Okae H, Chiba H, Hiura H, Hamada H, Sato A, Utsunomiya T, et al.

Genome-­wide analysis of DNA methylation dynamics during early

human development. PLoS Genet. 2014;10(12):e1004868.

19. Zhu P, Guo H, Ren Y, Hou Y, Dong J, Li R, et al. Single-­cell DNA

methylome sequencing of human preimplantation embryos. Nat

Genet. 2018;50(1):12–­9.

20. Duan JE, Jiang ZC, Alqahtani F, Mandoiu I, Dong H, Zheng X, et al.

Methylome dynamics of bovine gametes and in vivo early embryos.

Front Genet. 2019;10:512.

21. Gao F, Niu Y, Sun YE, Lu H, Chen Y, Li S, et al. De novo DNA methylation during monkey pre-­implantation embryogenesis. Cell Res.

2017;27(4):526–­39.

22. Zhang Z, Xu J, Lyu S, Xin X, Shi Q, Huang Y, et al. Whole-­genome

DNA methylation dynamics of sheep preimplantation embryo investigated by single-­cell DNA Methylome sequencing. Front Genet.

2021;12:753144.

23. Ivanova E, Canovas S, Garcia-­Martinez S, Romar R, Lopes JS, Rizos

D, et al. DNA methylation changes during preimplantation development reveal inter-­species differences and reprogramming events at

imprinted genes. Clin Epigenetics. 2020;12(1):64.

24. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-­

Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature.

2009;462(7271):315–­2 2.

25. Lu X, Zhang Y, Wang L, Wang L, Wang H, Xu Q, et al. Evolutionary

epigenomic analyses in mammalian early embryos reveal species-­

specific innovations and conserved principles of imprinting. Sci

Adv. 2021;7(48):eabi6178.

26. Yu B, Smith TH, Battle SL, Ferrell S, Hawkins RD. Superovulation alters global DNA methylation in early mouse embryo development.

Epigenetics. 2019;14(8):780–­90.

27. Olcha M, Dong X, Feil H, Hao X, Lee M, Jindal S, et al. A workflow

for simultaneous DNA copy number and methylome analysis of

inner cell mass and trophectoderm cells from human blastocysts.

Fertil Steril. 2021;115(6):1533–­4 0.

28. Yang M, Tao X, Scott K, Zhan Y, Scott RT, Seli E. Evaluation

of genome-­

wide DNA methylation profile of human embryos

with different developmental competences. Hum Reprod.

2021;36(6):1682–­90.

29. Li G, Yu Y, Fan Y, Li C, Xu X, Duan J, et al. Genome wide abnormal DNA methylome of human blastocyst in assisted reproductive

technology. J Genet Genomics. 2017;44(10):475–­81.

3 0. Kouzarides T. Chromatin modifications and their function. Cell.

2007;128(4):693–­705.

31. Dahl JA, Jung I, Aanes H, Greggains GD, Manaf A, Lerdrup M,

et al. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-­to-­z ygotic transition. Nature. 2016;537(7621):​

548–­52.

32. Liu X, Wang C, Liu W, Li J, Li C, Kou X, et al. Distinct features of

H3K4me3 and H3K27me3 chromatin domains in pre-­implantation

embryos. Nature. 2016;537(7621):558–­62.

33. Zhang B, Zheng H, Huang B, Li W, Xiang Y, Peng X, et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature. 2016;537(7621):553–­7.

3 4. Santos-­Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE,

Emre NC, et al. Active genes are tri-­methylated at K4 of histone H3.

Nature. 2002;419(6905):407–­11.

35. Hodl M, Basler K. Transcription in the absence of histone H3.2 and

H3K4 methylation. Curr Biol. 2012;22(23):2253–­7.

36. Douillet D, Sze CC, Ryan C, Piunti A, Shah AP, Ugarenko M, et al.

Uncoupling histone H3K4 trimethylation from developmental gene

14470578, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/rmb2.12521 by Cochrane Japan, Wiley Online Library on [23/01/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

8 of 10 37. 38. 39. 4 0. 41. 42. 43. 4 4. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. expression via an equilibrium of COMPASS, Polycomb and DNA

methylation. Nat Genet. 2020;52(6):615–­25.

Yancoskie MN, Maritz C, van Eijk P, Reed SH, Naegeli H. To incise

or not and where: SET-­domain methyltransferases know. Trends

Biochem Sci. 2022;48:321–­3 0.

Xia W, Xu J, Yu G, Yao G, Xu K, Ma X, et al. Resetting histone modifications during human parental-­to-­z ygotic transition. Science.

2019;365(6451):353–­60.

Blackledge NP, Klose RJ. The molecular principles of gene regulation by polycomb repressive complexes. Nat Rev Mol Cell Biol.

2021;22(12):815–­33.

Laugesen A, Hojfeldt JW, Helin K. Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. Mol Cell.

2019;74(1):8–­18.

Zheng H, Huang B, Zhang B, Xiang Y, Du Z, Xu Q, et al. Resetting

epigenetic memory by reprogramming of histone modifications in

mammals. Mol Cell. 2016;63(6):1066–­79.

Inoue A, Jiang L, Lu F, Zhang Y. Genomic imprinting of Xist by maternal H3K27me3. Genes Dev. 2017;31(19):1927–­32.

Inoue A, Jiang L, Lu F, Suzuki T, Zhang Y. Maternal H3K27me3

controls DNA methylation-­

independent imprinting. Nature.

2017;547(7664):419–­24.

Inoue A, Chen Z, Yin Q, Zhang Y. Maternal Eed knockout causes

loss of H3K27me3 imprinting and random X inactivation in the extraembryonic cells. Genes Dev. 2018;32(23–­24):1525–­36.

Becker JS, Nicetto D, Zaret KS. H3K9me3-­dependent heterochromatin: barrier to cell fate changes. Trends Genet. 2016;32(1):​

29–­41.

Wang C, Liu X, Gao Y, Yang L, Li C, Liu W, et al. Reprogramming of

H3K9me3-­dependent heterochromatin during mammalian embryo

development. Nat Cell Biol. 2018;20(5):620–­31.

Liu W, Liu X, Wang C, Gao Y, Gao R, Kou X, et al. Identification of

key factors conquering developmental arrest of somatic cell cloned

embryos by combining embryo biopsy and single-­cell sequencing.

Cell Discov. 2016;2:16010.

Sankar A, Lerdrup M, Manaf A, Johansen JV, Gonzalez JM, Borup

R, et al. KDM4A regulates the maternal-­to-­z ygotic transition by

protecting broad H3K4me3 domains from H3K9me3 invasion in

oocytes. Nat Cell Biol. 2020;22(4):380–­8.

Yu H, Chen M, Hu Y, Ou S, Yu X, Liang S, et al. Dynamic reprogramming of H3K9me3 at hominoid-­specific retrotransposons

during human preimplantation development. Cell Stem Cell.

2022;29(7):1031–­50.e12.

Xu Q, Xiang Y, Wang Q, Wang L, Brind'Amour J, Bogutz AB, et al.

SETD2 regulates the maternal epigenome, genomic imprinting and

embryonic development. Nat Genet. 2019;51(5):844–­56.

Li J, Zhang J, Hou W, Yang X, Liu X, Zhang Y, et al. Metabolic

control of histone acetylation for precise and timely regulation of minor ZGA in early mammalian embryos. Cell Discov.

2022;8(1):96.

Wang M, Chen Z, Zhang Y. CBP/p300 and HDAC activities regulate H3K27 acetylation dynamics and zygotic genome activation in mouse preimplantation embryos. EMBO J. 2022;41(22):​

e112012.

Xiao L, Dang Y, Hu B, Luo L, Zhao P, Wang S, et al. Overlapping

functions of RBBP4 and RBBP7 in regulating cell proliferation and

histone H3.3 deposition during mouse preimplantation development. Epigenetics. 2022;17(10):1205–­18.

Dang Y, Li S, Zhao P, Xiao L, Wang L, Shi Y, et al. The lysine deacetylase activity of histone deacetylases 1 and 2 is required to safeguard zygotic genome activation in mice and cattle. Development.

2022;149(11):dev200854.

Yang G, Zhang L, Liu W, Qiao Z, Shen S, Zhu Q, et al. Dux-­mediated

corrections of aberrant H3K9ac during 2-­cell genome activation

56. 57. 58. 59. 60. 61. 62. 63. 6 4. 65. 66. 67. 68. 69. 70. 71. 72. optimize efficiency of somatic cell nuclear transfer. Cell Stem Cell.

2021;28(1):150–­63.e5.

Meng TG, Zhou Q, Ma XS, Liu XY, Meng QR, Huang XJ, et al. PRC2

and EHMT1 regulate H3K27me2 and H3K27me3 establishment

across the zygote genome. Nat Commun. 2020;11(1):6354.

Mei H, Kozuka C, Hayashi R, Kumon M, Koseki H, Inoue A.

H2AK119ub1 guides maternal inheritance and zygotic deposition of H3K27me3 in mouse embryos. Nat Genet. 2021;53(4):​

539–­5 0.

Rong Y, Zhu YZ, Yu JL, Wu YW, Ji SY, Zhou Y, et al. USP16-­mediated

histone H2A lysine-­119 deubiquitination during oocyte maturation

is a prerequisite for zygotic genome activation. Nucleic Acids Res.

2022;50(10):5599–­616.

Matoba S, Wang H, Jiang L, Lu F, Iwabuchi KA, Wu X, et al. Loss

of H3K27me3 imprinting in somatic cell nuclear transfer embryos disrupts post-­implantation development. Cell Stem Cell.

2018;23(3):343–­54 e5.

Bai D, Sun J, Chen C, Jia Y, Li Y, Liu K, et al. Aberrant H3K4me3

modification of epiblast genes of extraembryonic tissue causes placental defects and implantation failure in mouse IVF embryos. Cell

Rep. 2022;39(5):110784.

Susami K, Ikeda S, Hoshino Y, Honda S, Minami N. Genome-­wide

profiling of histone H3K4me3 and H3K27me3 modifications in

individual blastocysts by CUT&tag without a solid support (NON-­

TiE-­UP CUT&tag). Sci Rep. 2022;12(1):11727.

Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander

ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol.

2011;29(1):24–­6.

Gao R, Wang C, Gao Y, Xiu W, Chen J, Kou X, et al. Inhibition of

aberrant DNA Re-­methylation improves post-­implantation development of somatic cell nuclear transfer embryos. Cell Stem Cell.

2018;23(3):426–­35.e5.

Au Yeung WK, Brind'Amour J, Hatano Y, Yamagata K, Feil R,

Lorincz MC, et al. Histone H3K9 Methyltransferase G9a in oocytes is essential for preimplantation development but dispensable for CG methylation protection. Cell Rep. 2019;27(1):282–­93.

e4.

Wang Y, Yuan P, Yan Z, Yang M, Huo Y, Nie Y, et al. Single-­cell multiomics sequencing reveals the functional regulatory landscape of

early embryos. Nat Commun. 2021;12(1):1247.

Leng L, Sun J, Huang J, Gong F, Yang L, Zhang S, et al. Single-­cell

transcriptome analysis of uniparental embryos reveals parent-­of-­

origin effects on human preimplantation development. Cell Stem

Cell. 2019;25(5):697–­712.e6.

Li J, Huang J, Han W, Shen X, Gao Y, Huang G. Comparing transcriptome profiles of human embryo cultured in closed and standard incubators. PeerJ. 2020;8:e9738.

Wu J, Huang B, Chen H, Yin Q, Liu Y, Xiang Y, et al. The landscape

of accessible chromatin in mammalian preimplantation embryos.

Nature. 2016;534(7609):652–­7.

Chen Z, Yin Q, Inoue A, Zhang C, Zhang Y. Allelic H3K27me3 to

allelic DNA methylation switch maintains noncanonical imprinting

in extraembryonic cells. Sci Adv. 2019;5(12):eaay7246.

Liu X, Zhang J, Zhou J, Bu G, Zhu W, He H, et al. Hierarchical accumulation of histone variant H2A.Z regulates transcriptional states

and histone modifications in early mammalian embryos. Adv Sci.

2022;9(23):e2200057.

Zhang W, Chen Z, Yin Q, Zhang D, Racowsky C, Zhang Y. Maternal-­

biased H3K27me3 correlates with paternal-­specific gene expression in the human morula. Genes Dev. 2019;33(7–­8):382–­7.

Org T, Hensen K, Kreevan R, Mark E, Sarv O, Andreson R, et al.

Genome-­wide histone modification profiling of inner cell mass and

trophectoderm of bovine blastocysts by RAT-­ChIP. PLoS One.

2019;14(11):e0225801.

14470578, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/rmb2.12521 by Cochrane Japan, Wiley Online Library on [23/01/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

9 of 10

IKEDA

73. Ishibashi M, Ikeda S, Minami N. Comparative analysis of histone

H3K4me3 modifications between blastocysts and somatic tissues

in cattle. Sci Rep. 2021;11(1):8253.

74. Yamazaki S, Ikeda S, Minami N. Comparative analysis of histone

H3K27me3 modifications between blastocysts and somatic tissues

in cattle. Anim Sci J. 2022;93(1):e13684.

75. Bu G, Zhu W, Liu X, Zhang J, Yu L, Zhou K, et al. Coordination of zygotic genome activation entry and exit by H3K4me3 and H3K27me3

in porcine early embryos. Genome Res. 2022;32(8):1487–­501.

IKEDA

How to cite this article: Ikeda S. Current status of genome-­

wide epigenetic profiling of mammalian preimplantation

embryos. Reprod Med Biol. 2023;22:e12521. https://doi.

org/10.1002/rmb2.12521

14470578, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/rmb2.12521 by Cochrane Japan, Wiley Online Library on [23/01/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

10 of 10 ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る