リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Theoretical studies on effects of protein-ligand/protein-protein interactions on protein functions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Theoretical studies on effects of protein-ligand/protein-protein interactions on protein functions

山本, 雄大 筑波大学 DOI:10.15068/0002008086

2023.09.04

概要

Purpose of this Chapter
Information processing technology has become an indispensable part of modern society as
computer performance has improved and the fields of use have expanded. The use of computers in
research fields is no exception. Computational analysis methods such as fragment molecular orbital
(FMO) calculations and molecular dynamics (MD) simulations are used in basic and applied
research in a wide range of fields, including physics, chemistry, and pharmacology. The advantage
of computational analysis methods is that they can efficiently analyze molecular-level phenomena
that cannot be obtained by experimental analysis. MD simulations and FMO calculations are very
effective methods for computational analysis of large-scale systems such as proteins, membranes,
and polymeric materials. However, the huge volume of data obtained by these methods often makes
manual analysis difficult. In recent years, the approach to scientific research has begun to shift from
working hypothesis-driven science to data-driven science, and how to extract useful information
from big data has become important. Against this background, M. Sultan et al. reported a case study
of analysis of protein conformational changes using Random Forest,1 a type of machine learning,
and the development of analysis tools using machine learning has attracted attention.
In this doctoral thesis, computational analyses of several proteins were performed to reveal
new scientific knowledge about these proteins and to establish new analytical methods. This chapter
provides basic backgrounds about the study. ...

この論文で使われている画像

参考文献

1.

M. M. Sultan, G. Kiss, D. Shukla and V. S. Pande, J Chem Theory Comput 2014, 10,

5217-5223.

2.

W. Kabsch and C. Sander, Biopolymers 1983, 22, 2577-2637.

3.

T. Masaru, Applied Physics 2005, 74, 1023-1023.

4.

B. S. Everitt, S. Landau, M. Leese and D. Stahl, Cluster Analysis, Wiley, 5th edn.,

2011.

5.

G. E. Hinton and R. R. Salakhutdinov, Science 2006, 313, 504.

6.

D. A. Benson, I. Karsch-Mizrachi, K. Clark, D. J. Lipman, J. Ostell and E. W. Sayers,

Nucleic acids research 2012, 40, D48-D53.

7.

P. Raccuglia, K. C. Elbert, P. D. F. Adler, C. Falk, M. B. Wenny, A. Mollo, M. Zeller, S.

A. Friedler, J. Schrier and A. J. Norquist, Nature 2016, 533, 73.

8.

K. Kitaura, E. Ikeo, T. Asada, T. Nakano and M. Uebayasi, Chemical Physics Letters

1999, 313, 701-706.

9.

X. Qiang, Z. Kou, G. Fang and Y. Wang, Molecules 2018, 23.

10.

M. Karplus and J. A. McCammon, Nature Structural Biology 2002, 9, 646-652.

11.

R. Salomon-Ferrer, D. A. Case and R. C. Walker, WIREs Computational Molecular

Science 2013, 3, 198-210.

12.

W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C.

Spellmeyer, T. Fox, J. W. Caldwell and P. A. Kollman, Journal of the American

Chemical Society 1995, 117, 5179-5197.

13.

M. Karplus and J. A. McCammon, Nature Structural Biology 2002, 9, 646.

14.

G. Zhao, J. R. Perilla, E. L. Yufenyuy, X. Meng, B. Chen, J. Ning, J. Ahn, A. M.

Gronenborn, K. Schulten, C. Aiken and P. Zhang, Nature 2013, 497, 643-646.

15.

J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.

101

D. Skeel, L. Kale and K. Schulten, J Comput Chem 2005, 26, 1781-1802.

16.

C. C. J. Roothaan, Reviews of Modern Physics 1951, 23, 69-89.

17.

A. Szabo and N. S. Ostlund, Modern quantum chemistry: introduction to advanced

electronic structure theory, Courier Corporation, 2012.

18.

D. R. Hartree, Mathematical Proceedings of the Cambridge Philosophical Society

1928, 24, 426-437.

19.

V. Fock, Zeitschrift für Physik 1930, 61, 126-148.

20.

C. C. J. Roothaan, Reviews of Modern Physics 1960, 32, 179-185.

21.

R. J. Bartlett, Annual review of physical chemistry 1981, 32, 359-401.

22.

S. Saebo and P. Pulay, Annual Review of Physical Chemistry 1993, 44, 213-236.

23.

W. Kohn, Reviews of Modern Physics 1999, 71, 1253-1266.

24.

C. David Sherrill and H. F. Schaefer, in Advances in Quantum Chemistry, eds. P.-O.

Löwdin, J. R. Sabin, M. C. Zerner and E. Brändas, Academic Press, 1999, vol. 34, pp.

143-269.

25.

C. J. Cramer, Essentials of computational chemistry: theories and models, John Wiley

& Sons, 2013.

26.

F. Coester, Nuclear Physics 1958, 7, 421-424.

27.

F. Coester and H. Kümmel, Nuclear Physics 1960, 17, 477-485.

28.

C. Møller and M. S. Plesset, Physical Review 1934, 46, 618-622.

29.

P. Hohenberg and W. Kohn, Physical Review 1964, 136, B864-B871.

30.

W. Kohn and L. J. Sham, Physical Review 1965, 140, A1133-A1138.

31.

A. Heifetz, G. Trani, M. Aldeghi, C. H. MacKinnon, P. A. McEwan, F. A. Brookfield,

E. I. Chudyk, M. Bodkin, Z. Pei, J. D. Burch and D. F. Ortwine, Journal of Medicinal

Chemistry 2016, 59, 4352-4363.

32.

T. Menzies and Y. Hu, Computer 2003, 36, 22-29.

33.

J. D. Hildebrand and P. Soriano, Molecular and Cellular Biology 2002, 22, 5296.

102

34.

L. Breiman, Machine Learning 2001, 45, 5-32.

35.

I. Issemann and S. Green, Nature 1990, 347, 645-650.

36.

Y. Brélivet, N. Rochel and D. Moras, Molecular and Cellular Endocrinology 2012,

348, 466-473.

37.

B. P. Kota, T. H.-W. Huang and B. D. Roufogalis, Pharmacological Research 2005, 51,

85-94.

38.

W. Bourguet, P. Germain and H. Gronemeyer, Trends in Pharmacological Sciences

2000, 21, 381-388.

39.

H. B. Rubins, J. Davenport, V. Babikian, L. M. Brass, D. Collins, L. Wexler, S.

Wagner, V. Papademetriou, G. Rutan and S. J. Robins, Circulation-Hagertown 2001,

103, 2828-2833.

40.

A. L. Catapano, I. Graham, G. De Backer, O. Wiklund, M. J. Chapman, H. Drexel, A.

W. Hoes, C. S. Jennings, U. Landmesser, T. R. Pedersen, Ž. Reiner, G. Riccardi, M.-R.

Taskinen, L. Tokgozoglu, W. M. M. Verschuren, C. Vlachopoulos, D. A. Wood and J.

L. Zamorano, Atherosclerosis 2016, 253, 281-344.

41.

S. Raza-Iqbal, T. Tanaka, M. Anai, T. Inagaki, Y. Matsumura, K. Ikeda, A. Taguchi, F.

J. Gonzalez, J. Sakai and T. Kodama, Journal of Atherosclerosis and Thrombosis 2015,

22, 754-772.

42.

N. Hennuyer, I. Duplan, C. Paquet, J. Vanhoutte, E. Woitrain, V. Touche, S. Colin, E.

Vallez, S. Lestavel, P. Lefebvre and B. Staels, Atherosclerosis 2016, 249, 200-208.

43.

S. Ishibashi, S. Yamashita, H. Arai, E. Araki, K. Yokote, H. Suganami, J.-C. Fruchart

and T. Kodama, Atherosclerosis 2016, 249, 36-43.

44.

J.-C. Fruchart, Cardiovascular Diabetology 2013, 12, 82.

45.

K. Takei, S.-i. Han, Y. Murayama, A. Satoh, F. Oikawa, H. Ohno, Y. Osaki, T.

Matsuzaka, M. Sekiya, H. Iwasaki, S. Yatoh, N. Yahagi, H. Suzuki, N. Yamada, Y.

Nakagawa and H. Shimano, Journal of Diabetes Investigation 2017, 8, 446-452.

103

46.

Molecular Operating Environment (MOE), 2013.08 Chemical Computing Group ULC,

1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7.

47.

H. E. Xu, M. H. Lambert, V. G. Montana, K. D. Plunket, L. B. Moore, J. L. Collins, J.

A. Oplinger, S. A. Kliewer, R. T. Gampe Jr and D. D. McKee, Proceedings of the

National Academy of Sciences 2001, 98, 13919-13924.

48.

Y. Li, A. Kovach, K. Suino-Powell, D. Martynowski and H. E. Xu, Journal of

Biological Chemistry 2008, 283, 19132-19139.

49.

J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser and C.

Simmerling, J Chem Theory Comput 2015, 11, 3696-3713.

50.

D. A. Case, V. Babin, J. Berryman, R. Betz, Q. Cai, D. Cerutti, T. Cheatham Iii, T.

Darden, R. Duke, H. Gohlke, A. W. Goetz, S. Gusarov, N. Homeyer, P. Janowski, J.

Kaus, I. Kolossváry, A. Kovalenko, T. S. Lee, S. LeGrand, T. Luchko, R. Luo, B.

Madej, K. M. Merz, F. Paesani, D. R. Roe, A. Roitberg, C. Sagui, R. Salomon-Ferrer,

G. Seabra, C. L. Simmerling, W. Smith, J. Swails, Walker, J. Wang, R. M. Wolf, X.

Wu and P. A. Kollman,

51.

2014.

M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. Van Dam, D.

Wang, J. Nieplocha, E. Apra, T. L. Windus and W. A. de Jong, Computer Physics

Communications 2010, 181, 1477-1489.

52.

T. Ishikawa and K. Kuwata, Chemical Physics Letters 2009, 474, 195-198.

53.

D. E. Bernholdt and R. J. Harrison, Chemical Physics Letters 1996, 250, 477-484.

54.

A. Bernardes, P. C. T. Souza, J. R. C. Muniz, C. G. Ricci, S. D. Ayers, N. M. Parekh, A.

S. Godoy, D. B. B. Trivella, P. Reinach, P. Webb, M. S. Skaf and I. Polikarpov,

Journal of Molecular Biology 2013, 425, 2878-2893.

55.

Y. Yamamoto, K. Takei, S. Arulmozhiraja, V. Sladek, N. Matsuo, S. I. Han, T.

Matsuzaka, M. Sekiya, T. Tokiwa, M. Shoji, Y. Shigeta, Y. Nakagawa, H. Tokiwa and

H. Shimano, Biochem Biophys Res Commun 2018, 499, 239-245.

104

56.

P. Cronet, J. F. W. Petersen, R. Folmer, N. Blomberg, K. Sjöblom, U. Karlsson, E.-L.

Lindstedt and K. Bamberg, Structure 2001, 9, 699-706.

57.

M. Takeda, F. Seki, Y. Yamamoto, N. Nao and H. Tokiwa, Curr Opin Virol 2020, 41,

38-45.

58.

W. Qiu, Y. Zheng, S. Zhang, Q. Fan, H. Liu, F. Zhang, W. Wang, G. Liao and R. Hu,

Emerging infectious diseases 2011, 17, 1541.

59.

Z. Sun, A. Li, H. Ye, Y. Shi, Z. Hu and L. Zeng, Veterinary Microbiology 2010, 141,

374-378.

60.

K. Sakai, N. Nagata, Y. Ami, F. Seki, Y. Suzaki, N. Iwata-Yoshikawa, T. Suzuki, S.

Fukushi, T. Mizutani, T. Yoshikawa, N. Otsuki, I. Kurane, K. Komase, R. Yamaguchi,

H. Hasegawa, M. Saijo, M. Takeda and S. Morikawa, Journal of Virology 2013, 87,

1105.

61.

N. Feng, Y. Liu, J. Wang, W. Xu, T. Li, T. Wang, L. Wang, Y. Yu, H. Wang, Y. Zhao, S.

Yang, Y. Gao, G. Hu and X. Xia, BMC Veterinary Research 2016, 12, 160.

62.

F. Seki, N. Ono, R. Yamaguchi and Y. Yanagi, Journal of Virology 2003, 77,

9943-9950.

63.

M. Bieringer, J. W. Han, S. Kendl, M. Khosravi, P. Plattet and J. Schneider-Schaulies,

PLOS ONE 2013, 8, e57488.

64.

K. Sakai, T. Yoshikawa, F. Seki, S. Fukushi, M. Tahara, N. Nagata, Y. Ami, T.

Mizutani, I. Kurane, R. Yamaguchi, H. Hasegawa, M. Saijo, K. Komase, S. Morikawa

and M. Takeda, Journal of Virology 2013, 87, 7170-7175.

65.

T. Hashiguchi, M. Kajikawa, N. Maita, M. Takeda, K. Kuroki, K. Sasaki, D. Kohda, Y.

Yanagi and K. Maenaka, Proceedings of the National Academy of Sciences 2007, 104,

19535-19540.

66.

T. Hashiguchi, T. Ose, M. Kubota, N. Maita, J. Kamishikiryo, K. Maenaka and Y.

Yanagi, Nature Structural & Molecular Biology 2011, 18, 135-141.

105

67.

C. Santiago, M. L. Celma, T. Stehle and J. M. Casasnovas, Nature Structural &

Molecular Biology 2010, 17, 124-129.

68.

X. Zhang, G. Lu, J. Qi, Y. Li, Y. He, X. Xu, J. Shi, C. W. H. Zhang, J. Yan and G. F.

Gao, Nature Structural & Molecular Biology 2013, 20, 67-72.

69.

H. Tatsuo, N. Ono, K. Tanaka and Y. Yanagi, Nature 2000, 406, 893-897.

70.

F. Kobune, H. Sakata and A. Sugiura, Journal of Virology 1990, 64, 700-705.

71.

F. Seki, Y. Yamamoto, H. Fukuhara, K. Ohishi, T. Maruyama, K. Maenaka, H. Tokiwa

and M. Takeda, Front Microbiol 2020, 11, 1830.

72.

Journal.

73.

A. W. Sousa da Silva and W. F. Vranken, BMC Research Notes 2012, 5, 367.

74.

M.J. Abraham, D. van der Spoel, E. Lindahl and B. Hess, GROMACS User Manual

version 2018, www.gromacs.org.

75.

B. Hess, H. Bekker, H. J. C. Berendsen and J. G. E. M. Fraaije, Journal of

Computational Chemistry 1997, 18, 1463-1472.

76.

S. Nosé, Molecular Physics 1984, 52, 255-268.

77.

W. G. Hoover, Physical Review A 1985, 31, 1695-1697.

78.

M. Parrinello and A. Rahman, Journal of Applied Physics 1981, 52, 7182-7190.

79.

S. Nosé and M. L. Klein, Molecular Physics 1983, 50, 1055-1076.

80.

B. R. Miller, T. D. McGee, J. M. Swails, N. Homeyer, H. Gohlke and A. E. Roitberg,

Journal of Chemical Theory and Computation 2012, 8, 3314-3321.

81.

A. Onufriev, D. Bashford and D. A. Case, The Journal of Physical Chemistry B 2000,

104, 3712-3720.

82.

D. R. Roe and T. E. Cheatham, Journal of Chemical Theory and Computation 2013, 9,

3084-3095.

83.

T. Ishikawa, Paics View, http://www.paics.net/paics_view_e.html.

84.

T. Tokiwa, S. Nakano, Y. Yamamoto, T. Ishikawa, S. Ito, V. Sladek, K. Fukuzawa, Y.

106

Mochizuki, H. Tokiwa, F. Misaizu and Y. Shigeta, Journal of Chemical Information

and Modeling 2018, DOI: 10.1021/acs.jcim.8b00649.

85.

T. Hunter, Current Opinion in Cell Biology 2009, 21, 140-146.

86.

M. T. Brown and J. A. Cooper, Biochimica et Biophysica Acta (BBA) - Reviews on

Cancer 1996, 1287, 121-149.

87.

C. L. Abram and S. A. Courtneidge, Experimental Cell Research 2000, 254, 1-13.

88.

R. Garcia, T. L. Bowman, G. Niu, H. Yu, S. Minton, C. A. Muro-Cacho, C. E. Cox, R.

Falcone, R. Fairclough, S. Parsons, A. Laudano, A. Gazit, A. Levitzki, A. Kraker and

R. Jove, Oncogene 2001, 20, 2499-2513.

89.

R. Roskoski, Pharmacological Research 2015, 94, 9-25.

90.

Z. Yao, K. Darowski, N. St-Denis, V. Wong, F. Offensperger, A. Villedieu, S. Amin, R.

Malty, H. Aoki, H. Guo, Y. Xu, C. Iorio, M. Kotlyar, A. Emili, I. Jurisica, B. G. Neel,

M. Babu, A.-C. Gingras and I. Stagljar, Molecular cell 2017, 65, 347-360.

91.

J. Rivera-Torres and E. San José, Frontiers in Pharmacology 2019, 10.

92.

W. Xu, A. Doshi, M. Lei, M. J. Eck and S. C. Harrison, Molecular Cell 1999, 3,

629-638.

93.

D. Shukla, Y. Meng, B. Roux and V. S. Pande, Nat Commun 2014, 5, 3397.

94.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss and V. Dubourg, the Journal of machine Learning research

2011, 12, 2825-2830.

95.

Robert T. McGibbon, Kyle A. Beauchamp, Matthew P. Harrigan, C. Klein, Jason M.

Swails, Carlos X. Hernández, Christian R. Schwantes, L.-P. Wang, Thomas J. Lane

and Vijay S. Pande, Biophysical Journal 2015, 109, 1528-1532.

96.

L. C. Freeman, Sociometry 1977, 40, 35-41.

97.

N. R. Taylor, Computational and Structural Biotechnology Journal 2013, 5,

e201302006.

107

98.

S. W. Cowan-Jacob, G. Fendrich, P. W. Manley, W. Jahnke, D. Fabbro, J. Liebetanz

and T. Meyer, Structure 2005, 13, 861-871.

99.

J. J. Pavelites, J. Gao, P. A. Bash and A. D. Mackerell Jr, Journal of Computational

Chemistry 1997, 18, 221-239.

100.

R. C. Walker, M. M. de Souza, I. P. Mercer, I. R. Gould and D. R. Klug, The Journal

of Physical Chemistry B 2002, 106, 11658-11665.

101.

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, The

Journal of Chemical Physics 1983, 79, 926-935.

102.

G. Bussi, F. L. Gervasio, A. Laio and M. Parrinello, J Am Chem Soc 2006, 128,

13435-13441.

103.

T. Darden, D. York and L. Pedersen, The Journal of Chemical Physics 1993, 98,

10089-10092.

104.

D. G. Fedorov and K. Kitaura, The Journal of Chemical Physics 2004, 120,

6832-6840.

105.

M. Gaus, Q. Cui and M. Elstner, Wiley Interdisciplinary Reviews: Computational

Molecular Science 2014, 4, 49-61.

106. M. Gaus, A. Goez and M. Elstner, Journal of Chemical Theory and Computation 2013,

9, 338-354.

107.

M. Gaus, X. Lu, M. Elstner and Q. Cui, Journal of Chemical Theory and Computation

2014, 10, 1518-1537.

108.

H. Li, D. G. Fedorov, T. Nagata, K. Kitaura, J. H. Jensen and M. S. Gordon, Journal of

Computational Chemistry 2010, 31, 778-790.

109. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, The Journal of Chemical Physics 2010,

132, 154104.

110.

S. Grimme, S. Ehrlich and L. Goerigk, Journal of Computational Chemistry 2011, 32,

1456-1465.

108

111.

E. Ozkirimli and C. B. Post, Protein Sci 2006, 15, 1051-1062.

112.

M. Shoji, T. Murakawa, S. Nakanishi, M. Boero, Y. Shigeta, H. Hayashi and T.

Okajima, Chemical Science 2022, 13, 10923-10938.

113.

T. R. Stankiewicz, J. J. Gray, A. N. Winter and D. A. Linseman, Biomolecular

Concepts 2014, 5, 489-511.

114.

J. Turner and M. Crossley, BioEssays 2001, 23, 683-690.

115.

V. Kumar, J. E. Carlson, K. A. Ohgi, T. A. Edwards, D. W. Rose, C. R. Escalante, M.

G. Rosenfeld and A. K. Aggarwal, Molecular Cell 2002, 10, 857-869.

116.

T. Aoyagi, R. Yoshino, Y. Mitsuta, R. Morita, R. Harada and Y. Shigeta, Chemistry

Letters 2021, 51, 1-4.

117.

M. R. Shirts, C. Klein, J. M. Swails, J. Yin, M. K. Gilson, D. L. Mobley, D. A. Case

and E. D. Zhong, Journal of Computer-Aided Molecular Design 2017, 31, 147-161.

118.

J.-P. Ryckaert, G. Ciccotti and H. J. C. Berendsen, Journal of Computational Physics

1977, 23, 327-341.

119.

S. Miyamoto and P. A. Kollman, Journal of Computational Chemistry 1992, 13,

952-962.

120.

W. G. Hoover, K. Aoki, C. G. Hoover and S. V. De Groot, Physica D: Nonlinear

Phenomena 2004, 187, 253-267.

121.

Y. Yamamoto, S. Nakano and Y. Shigeta, Bulletin of the Chemical Society of Japan

2022, submitted.

109

Acknowledgements

I would like to take this opportunity to express my best gratitude to Professor Yasuteru

Shigeta and Associate professor Ryuhei Harada for their assistance throughout my doctoral

studies. I also acknowledge the collaborators, Prof. Hiroaki Tokiwa, Prof. Makoto Takeda,

Prof. Hitoshi Shimano, Associate Prof. Shogo Nakano, Associate Prof. Takashi Ikawa and Dr.

Vladimir Sladek for their assistance throughout my doctoral studies.

110

Publication List

◎: Doctoral thesis’s paper, 〇: First author.

・Konishi, H.; Matsubara, M.; Mori, K.; Tokiwa, T.; Arulmozhiraja, S.; Yamamoto, Y.;

Ishikawa, Y.; Hashimoto, H.; Shigeta, Y.; Tokiwa, H.; Manabe, K., Mechanistic Insight into

Weak Base-Catalyzed Generation of Carbon Monoxide from Phenyl Formate and Its

Application to Catalytic Carbonylation at Room Temperature without Use of External Carbon

Monoxide Gas. Advanced Synthesis & Catalysis 2017, 359 (20), 3592-3601.

・Motoyama, T.; Nakano, S.; Yamamoto, Y.; Tokiwa, H.; Asano, Y.; Ito, S., Product Release

Mechanism Associated with Structural Changes in Monomeric l-Threonine 3-Dehydrogenase.

Biochemistry 2017, 56 (43), 5758-5770.

・ Akai, S.; Ikawa, T.; Kaneko, H.; Yamamoto, Y.; Arulmozhiraja, S.; Tokiwa, H.,

3-(Triflyloxy)benzynes Enable the Regiocontrolled Cycloaddition of Cyclic Ureas to

Synthesize 1,4-Benzodiazepine Derivatives. Synlett 2018, 29 (07), 943-948.

◎ Yamamoto, Y.; Takei, K.; Arulmozhiraja, S.; Sladek, V.; Matsuo, N.; Han, S. I.; Matsuzaka,

T.; Sekiya, M.; Tokiwa, T.; Shoji, M.; Shigeta, Y.; Nakagawa, Y.; Tokiwa, H.; Shimano, H.,

Molecular association model of PPARalpha and its new specific and efficient ligand,

pemafibrate: Structural basis for SPPARMalpha. Biochem Biophys Res Commun 2018, 499

(2), 239-245.

・Tokiwa, T.; Nakano, S.; Yamamoto, Y.; Ishikawa, T.; Ito, S.; Sladek, V.; Fukuzawa, K.;

Mochizuki, Y.; Tokiwa, H.; Misaizu, F.; Shigeta, Y., Development of an Analysis Toolkit,

AnalysisFMO, to Visualize Interaction Energies Generated by Fragment Molecular Orbital

Calculations. Journal of Chemical Information and Modeling 2018, 59(1), 25-30.

・Matsuzaka, T.; Kuba, M.; Koyasu, S.; Yamamoto, Y.; Motomura, K.; Arulmozhiraja, S.;

Ohno, H.; Sharma, R.; Shimura, T.; Okajima, Y.; Han, S.-i.; Aita, Y.; Mizunoe, Y.; Osaki, Y.;

111

Iwasaki, H.; Yatoh, S.; Suzuki, H.; Sone, H.; Takeuchi, Y.; Yahagi, N.; Miyamoto, T.; Sekiya,

M.; Nakagawa, Y.; Ema, M.; Takahashi, S.; Tokiwa, H.; Shimano, H., Hepatocyte Elovl6

determines ceramide acyl-chain length and hepatic insulin sensitivity in mice. Hepatology

2019, doi.org/10.1002/hep.30953.

・Kawasaki, M.; Kambe, A.; Yamamoto, Y.; Arulmozhiraja, S.; Ito, S.; Nakagawa, Y.; Tokiwa,

H.; Nakano, S.; Shimano, H., Elucidation of Molecular Mechanism of a Selective PPARalpha

Modulator, Pemafibrate, through Combinational Approaches of X-ray Crystallography,

Thermodynamic Analysis, and First-Principle Calculations. Int J Mol Sci 2020, 21 (1).

・Takeda, M.; Seki, F.; Yamamoto, Y.; Nao, N.; Tokiwa, H., Animal morbilliviruses and their

cross-species transmission potential. Curr Opin Virol 2020, 41, 38-45.

・Seki, F.; Yamamoto, Y.; Fukuhara, H.; Ohishi, K.; Maruyama, T.; Maenaka, K.; Tokiwa, H.;

Takeda, M., Measles Virus Hemagglutinin Protein Establishes a Specific Interaction With the

Extreme N-Terminal Region of Human Signaling Lymphocytic Activation Molecule to

Enhance Infection. Front Microbiol 2020, 11, 1830.

◎ Yamamoto, Y.; Nakano, S.; Seki, F.; Shigeta, Y.; Ito, S.; Tokiwa, H.; Takeda, M.,

Computational Analysis Reveals a Critical Point Mutation in the N-Terminal Region of the

Signaling Lymphocytic Activation Molecule Responsible for the Cross-Species Infection with

Canine Distemper Virus. Molecules 2021, 26 (5), 1262.

〇 Ikawa, T.; Yamamoto, Y.; Heguri, A.; Fukumoto, Y.; Murakami, T.; Takagi, A.; Masuda,

Y.; Yahata, K.; Aoyama, H.; Shigeta, Y.; Tokiwa, H.; Akai, S., Could London Dispersion

Force Control Regioselective (2 + 2) Cyclodimerizations of Benzynes? YES: Application to

the Synthesis of Helical Biphenylenes. Journal of the American Chemical Society 2021, 143

(29), 10853-10859.

・Sladek, V.; Yamamoto, Y.; Harada, R.; Shoji, M.; Shigeta, Y.; Sladek, V., pyProGA—A

PyMOL plugin for protein residue network analysis. PLOS ONE 2021, 16 (7), e0255167.

〇 Yuta Yamamoto, Tomoharu Motoyama, Chiharu Ishida, Fumihito Hasebe, Yasuteru

112

Shigeta, Sohei Ito and Shogo Nakano, Biochemical and structural analysis of bona fide

ancestral L-Lys a-oxidase to predict molecular evolution of substrate specificity. ACS Omega

2022, 7 (48), 44407-44419.

◎ Yuta Yamamoto, Shogo Nakano and Yasuteru Shigeta, Dynamical interaction analysis of

proteins by a random forest-fragment molecular orbital (RF-FMO) method and application to

Src

tyrosine

kinase.

Bulletin

of

the

Chemical

Society

of

Japan

2023,

doi.org/10.1246/bcsj.20220304.

◎ Yuta Yamamoto and Yasuteru Shigeta, Theoretical Study on the Regulating Mechanism of

the Transition Between the Open-closed State of hCtBP2: A Combined Molecular Dynamics

and Quantum Mechanical Interaction Analysis. Chemistry Letters 2023, Accepted.

113

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る