リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Positron trapping at the effective open volume in FeCr alloy containing hydrogen/helium atoms」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Positron trapping at the effective open volume in FeCr alloy containing hydrogen/helium atoms

Zhu, Te Wang, Baoyi Lian, Xiangyu Liu, Xiaoshuang Liu, Yongli Yu, Runsheng Zhang, Peng Cao, Xingzhong Xu, Qiu 京都大学 DOI:10.56646/jjapcp.9.0_011001

2023

概要

Positron annihilation spectroscopy (PAS) is a sensitive probe of the shallow traps of light charged particles such as He/H embedded in solids. The nature of the shallow traps that attract positrons–i.e., whether the properties of the light charged particles or the number of particles contained in the traps affects the probability of positron capture–has so far remained unresolved. Here, the shallow traps of positron in FeCr alloy, namely (H, He)–V nano-clusters with open volume, have been investigated by first-principles calculations and a multi-grid based program package for electronic structure calculations. Various defect structures were modeled, including vacancies, interstitial helium atoms, and helium or hydrogen atoms occupying Fe vacancy sites. We calculated the charge density distribution at the (H, He)–V nano-clusters, and the results show that the charge density at the He/H–V clusters is significantly lower than around the neighboring Fe/Cr sites. The calculated lifetimes of positrons confined in the shallow traps are consistent with the effective open volume of the (H, He)–V complexes. These results suggest that a helium atom forms a more repulsive ion core than a hydrogen atom when it occupies the vacancy, resulting in a decrease in positron lifetime.

この論文で使われている画像

参考文献

[1] T. Troev, N. Nancov, L. Petrov, and E. Popov, Rep. Lett. Phys. 1, 746892 (2008).

[2] X.-Z. Cao, T. Zhu, S.-X. Jin, P. Kuang, P. Zhang, E.-Y. Lu, Y.-H. Gong, L.-P. Guo, and B.-Y. Wang,

Appl. Phys. A, 123, 177 (2017).

[3] T. Zhu, S.-X. Jin, P. Zhang, L.-G. Song, X.-Z. Cao, and B.-Y. Wang, J. Nucl. Mater. 505, 69 (2018).

[4] Q. Xu, T. Ishizaki, K. Sato, T. Yoshiie, and S. Nagata, Mater. Trans. 47, 2885 (2006).

[5] T. Zhu, S.-X. Jin, L.-P. Guo, Y.-C. Hu, E.-Y. Lu, J.-P. Wu, B.-Y. Wang, L. Wei, and X.-Z. Cao, Philos.

Mag. 96(3), 253 (2016).

[6] T. Zhu, X. Z. Cao, S. X. Jin, J. P. Wu, Y. H. Gong, E. Y. Lu, B. Y. Wang, R. S. Yu, and L. Wei, J. Nucl.

Mater. 466, 522 (2015).

[7] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

[8] G. Kresse and J. Furthm¨uller, Phys. Rev. B 54, 11169 (1996).

[9] G. Kresse and J. Furthm¨uller, Comput. Mater. Sci. 6, 15 (1996).

[10] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

[11] P. E. Bl¨ochl, Phys. Rev. B 50, 17953 (1994).

[12] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais,

Phys. Rev. B 46, 6671 (1992).

[13] T. Torsti, M. Heiskanen, M. J. Puska, and R. M. Nieminen, Int. J. Quantum Chem. 91, 171 (2003).

[14] E. Boronski and R. M. Nieminen, Phys. Rev. B 34, 3820 (1986).

[15] C. C. Fu and F. Willaime, Phys. Rev. B 72(6), 064117 (2005).

[16] T. Ishizaki, Q. Xu, T. Yoshiie, S. Nagata, and T. Troev, J. Nucl. Mater. 307–311, 961 (2002).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る