リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Chemical effect on muonic atom formation through muon transfer reaction in benzene and cyclohexane samples」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Chemical effect on muonic atom formation through muon transfer reaction in benzene and cyclohexane samples

Inagaki, Makoto Ninomiya, Kazuhiko Nambu, Akihiro Kudo, Takuto Terada, Kentaro Sato, Akira Kawashima, Yoshitaka Tomono, Dai Shinohara, Atsushi 京都大学 DOI:10.1515/ract-2020-0112

2021.04

概要

To investigate the chemical effect on the muon capture process through a muon transfer reaction from a muonic hydrogen atom, the formation rate of muonic carbon atoms is measured for benzene and cyclohexane molecules in liquid samples. The muon transfer rate to carbon atoms of the benzene molecule is higher than that to the carbon atoms of the cyclohexane molecule. Such a deviation has never been observed among those molecules for gas samples. This may be because the transfers occur from the excited states of muonic hydrogen atoms in the liquid system, whereas in the gas system, all the transfers occur from the 1s (ground) state of muon hydrogen atoms. The muonic hydrogen atoms in the excited states have a larger radius than those in the 1s state and are therefore considered to be affected by the steric hindrance of the molecular structure. This indicates that the excited states of muonic hydrogen atoms contribute significantly to the chemical effects on the muon transfer reaction.

この論文で使われている画像

参考文献

1. Kubo M. K. The positive muon as a chemical and magnetic probe

of metal complexes and the negative muon as a unique tool for

elemental analysis. Anal. Sci. 2002, 17, i653.

2. Kubo M. K., Moriyama H., Tsuruoka Y., Sakamoto S., Koseto E.,

Saito T., Nishiyama K. Non-destructive elemental depth-profiling

with muonic X-rays. J. Radioanal. Nucl. Chem. 2008, 278, 777.

3. Ninomiya K., Nagatomo T., Kubo K., Ito T. U., Higemoto W., Kita

M., Shinohara A., Strasser P., Kawamura N., Shimomura K.,

Miyake Y., Saito T. Development of nondestructive and

quantitative elemental analysis method using calibration curve

between muonic X-ray intensity and elemental composition in

bronze. Bull. Chem. Soc. Jpn. 2012, 85, 228.

4. Terada K., Ninomiya K., Osawa T., Tachibana S., Miyake Y., Kubo

M. K., Kawamura N., Higemoto W., Tsuchiyama A., Ebihara M.,

Uesugi M. A new X-ray fluorescence spectroscopy for

extraterrestrial materials using a muon beam. Sci. Rep. 2014, 4,

5072.

5. Ninomiya K., Kubo M. K., Nagatomo T., Higemoto W., Ito T. U.,

Kawamura N., Strasser P., Shimomura K., Miyake Y., Suzuki T.,

Kobayashi Y., Sakamoto S., Shinohara A., Saito T. Nondestructive

elemental depth-profiling analysis by muonic X-ray

measurement. Anal. Chem. 2015, 87, 4597.

6. Ninomiya K., Inagaki M., Kubo M. K., Nagatomo T., Higemoto W.,

Kawamura N., Strasser P., Shimomura K., Miyake Y., Sakamoto

S., Shinohara A., Saito T. Negative muon induced elemental

analysis by muonic X-ray and prompt gamma-ray measurements.

J. Radioanal. Nucl. Chem. 2016, 309, 65.

7. Kubo M. K. Non-destructive elemental analysis using negative

muon. J. Phys. Soc. Jpn. 2016, 85, 091015.

8. Terada K., Sato A., Ninomiya K., Kawashima Y., Shimomura K.,

Yoshida G., Kawai Y., Osawa T., Tachibana S. Non-destructive

elemental analysis of a carbonaceous chondrite with direct

current muon beam at MuSIC. Sci. Rep. 2017, 7, 15478.

9. Ninomiya K., Kudo T., Strasser P., Terada K., Kawai Y., Tampo M.,

Miyake Y., Shinohara A., Kubo K. M. Development of nondestructive isotopic analysis methods using muon beams and

their application to the analysis of lead. J. Radioanal. Nucl. Chem.

2019, 320, 801.

10. Kudo T., Ninomiya K., Strasser P., Terada K., Kawai Y., Tampo M.,

Miyake Y., Shinohara A., Kubo K. M. Development of a nondestructive isotopic analysis method by gamma-ray emission

measurement after negative muon irradiation. J. Radioanal. Nucl.

Chem. 2019, 322, 1299.

11. Ninomiya K. Non-destructive, position-selective, and multielemental analysis method involving negative muons. J. Nucl.

Radiochem. Sci. 2019, 19, 8.

12. Umegaki I., Higuchi Y., Kondo Y., Ninomiya K., Takeshita S.,

Tampo M., Nakano H., Oka H., Sugiyama J., Kubo M. K., Miyake Y.

Nondestructive high-sensitivity detections of metallic lithium

deposited on a battery anode using muonic X-rays. Anal. Chem.

2020, 92, 8194.

13. Sekine T., Hashimoto K., Kaji H., Yoshihara K., Imanishi N.,

Yoshimura Y. Pionic X-ray intensity ratios in chromium

compounds. J. Radioanal. Nucl. Chem. 1989, 135, 207.

14. Placci A., Zavattini E., Bertin A., Vitale A. Direct measurement of

the transfer rates of muons from μp muonic atoms to argon,

krypton and xenon atoms. Il Nuovo Cimento A 1969, 64, 1053.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

326

M. Inagaki et al.: Muon transfer reaction in benzene and cyclohexane

15. Baijal J. S., Diaz J. A., Kaplan S. N., Pyle R. V. Atomic capture of

Μ−mesons in chemical compounds. Il Nuovo Cimento 1963, 30,

711.

16. Schneuwly H., Dubler T., Kaeser K., Robert-Tissot B., Schaller

L. A., Schellenberg L. On the influence of the chemical bond on

the relative muonic capture rates in elements of compounds.

Phys. Lett. A 1978, 66, 188.

17. Yoshida G., Ninomiya K., Ito T. U., Higemoto W., Nagatomo T.,

Strasser P., Kawamura N., Shimomura K., Miyake Y., Miura T.,

Kubo K. M., Shinohara A. Muon capture probability of carbon and

oxygen for CO, CO2, and COS under low-pressure gas conditions.

J. Radioanal. Nucl. Chem. 2015, 303, 1277.

18. Ninomiya K., Kitanaka M., Shinohara A., Tampo M., Miyake Y.,

Sakai Y., Kubo M. K. Muonic X-ray measurements on mixtures of

CaO/MgO and Fe3O4/MnO. J. Radioanal. Nucl. Chem. 2018, 316,

1107.

19. Ninomiya K., Ito T. U., Higemoto W., Kawamura N., Strasser

P., Nagatomo T., Shimomura K., Miyake Y., Kita M.,

Shinohara A., Kubo K. M., Miura T. Negative muon capture

ratios for nitrogen oxide molecules. J. Radioanal. Nucl.

Chem. 2019, 319, 767.

20. Yoshida G., Ninomiya K., Inagaki M., Higemoto W., Strasser P.,

Kawamura N., Shimomura K., Miyake Y., Miura T., Kubo K. M.,

Shinohara A. Initial quantum levels of captured muons in CO,

CO2, and COS. J. Radioanal. Nucl. Chem. 2019, 320, 283.

21. Ninomiya K., Kajino M., Inagaki M., Terada K., Sato A., Tomono D.,

Kawashima Y., Shinohara A. Per atom muon capture ratios and

effects of molecular structure on muon capture by γ-Fe2O3 and

Fe3O4. J. Radioanal. Nucl. Chem. 2020, 324, 403.

22. Brandão d’Oliveira A., Daniel H., von Egidy T. Coulomb capture

and x-ray cascades of muons in metal halides. Phys. Rev. A 1976,

13, 1772.

23. Schneuwly H., Boschung M., Kaeser K., Piller G., Rüetschi A.,

Schaller L. A., Schellenberg L. Capture of negative muons in cubic

and hexagonal structures of carbon and boron nitride. Phys. Rev.

A 1983, 27, 950.

24. Ponomarev L. I. Molecular structure effects on atomic and nuclear

capture of mesons. Annu. Rev. Nucl. Sci. 1973, 23, 395.

25. Jackson D. F., Lewis C. A., O’Leary K. Pion-capture probabilities in

organic molecules. Phys. Rev. A 1982, 25, 3262.

26. Measday D. F. The nuclear physics of muon capture. Phys. Rep.

2001, 354, 243.

27. Horváth D., Bannikov A. V., Kachalkin A. K., Lévay B., Petrukhin

V. I., Vasilyev V. A., Yutlandov I. A., Strakovsky I. I. Temperature

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

breaking of hydrogen bonds in ammonia studied by π−-meson

capture in hydrogen. Chem. Phys. Lett. 1982, 87, 504.

Horváth D., Measday D. F., Entezami F., Hasinoff M. D., Noble A. J.,

Stanislaus S., Virtue C. J., Clough A. S., Smith J. R. H., Salomon M.,

Aniol K. A. Pion capture and hydrogen bonds in deuterated

methanol. Phys. Rev. A 1991, 44, 1725.

Shinohara A., Muroyama T., Shintai J., Kurachi J., Furukawa M.,

Miura T., Yoshimura Y., Saito T., Ohdaira T., Imanishi N. Negativepion capture process and its chemical effects in some

hydrocarbons. Phys. Rev. A 1996, 53, 130.

Muroyama T., Shinohara A., Saito T., Yokoyama A., Miura T.,

Furukawa M. Intensity patterns of pionic X rays emitted from

some organic compounds. Radiochim. Acta 1998, 80, 31.

Shinohara A., Muroyama T., Miura T., Saito T., Yokoyama A.,

Furukawa M. Behavior of pionic hydrogen atoms in liquid organic

compounds. Hyperfine Interact 1997, 106, 301.

Thalmann Y.-A., Jacot-Guillarmod R., Mulhauser F., Schaller L. A.,

Schellenberg L., Schneuwly H., Tresch S., Werthmüller A. Muon

transfer from excited states of hydrogen and deuterium to

nitrogen, neon, and argon. Phys. Rev. A 1998, 57, 1713.

Yoshida G., Ninomiya K., Inagaki M., Higemoto W., Kawamura N.,

Shimomura K., Miyake Y., Miura T., Kubo M. K., Shinohara A.

Chemical environmental effects on muon transfer process in low

pressure mixture gases; H2+CO and H2+CO2. Radioisotopes 2016,

65, 113.

Inagaki M., Ninomiya K., Yoshida G., Higemoto W., Kawamura N.,

Miyake Y., Miura T., Shinohara A. Muon transfer rates from

muonic hydrogen atoms to gaseous benzene and cyclohexane.

J. Nucl. Radiochem. Sci. 2018, 18, 5.

Hirayama H., Namito Y., Bielajew A. F., Wilderman S. J.,

Nelson W. R. The EGS5 Code System. SLAC-Report-730; Stanford

Linear Accelerator Center: Stanford, USA, 2005.

Muroyama T. Formation and Transfer Process of Pionic Hydrogen

Atoms in Lquid Organic Compounds [Yuki ekitai kagobutsu ni

okeru pai chukanshi suiso genshi no keisei to ten’i katei]. Ph.D.

Thesis; Nagoya University: Nagoya, Japan, 1997.

Jacot-Guillarmod R., Mulhauser F., Piller C., Schaller L. A.,

Schellenberg L., Schneuwly H., Thalmann Y.-A., Tresch S.,

Werthmüller A., Adamczak A. Muon transfer from thermalized

muonic hydrogen isotopes to argon. Phys. Rev. A 1997, 55,

3447.

Pisano V., Puddu G., Quarati P., Sulis L. The use of the master

equation in the cascade of exotic systems in a pure Coulomb field.

Il Nuovo Cimento A 1982, 72, 27.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る