リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「非観血式血圧測定方式(直線加圧方式と減圧方式)の違いによるパルスオキシメーターアラーム発生頻度の比較」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

非観血式血圧測定方式(直線加圧方式と減圧方式)の違いによるパルスオキシメーターアラーム発生頻度の比較

北本, 憲永 KITAMOTO, Norihisa キタモト, ノリヒサ 九州大学

2020.03.23

概要

Background: Noninvasive blood-pressure measurement device and pulse oximeter are important for patient monitoring. When these are placed on the same side, cuff inflation sometimes causes measurement failure by pulse oximeter.

Objective: The present study aimed to compare the pulse oximeter alarm frequency and pulse-wave disappearance duration between noninvasive bloodpressure measurement using the deflation method and that using the linear inflation method.

Methods: The study included 10 healthy subjects. The cuff for automatic sphygmomanometer was wrapped on one side of the upper arm and for pulse oximeter was attached to the thumb of the same side of upper limbs.

Results: The alarm frequency was 0 and 26% using the linear inflation and the deflation methods, respectively. Additionally, the pulse-wave disappearance duration was significantly longer using the deflation method than that using the linear inflation method (10.0 ± 1.5 vs 1.7 ± 0.8 s). With the linear inflation method, this duration was or less 3 s. In the deflation method, an excess pressure of 40 mmHg was used, which caused the alarm to turn on. Additionally, the heart rate was found to influence the alarm occurrence during measurement using the deflation method.

Conclusion: Heart rate may influence alarm occurrence during blood-pressure measurement using the step deflation method. Using the linear inflation method, the risks of alarm occurrence and measurement failure are low, even when the pulse oximeter and blood-pressure measurement cuffs are installed on the same side, suggesting that this method is suitable for clinical use.

この論文で使われている画像

参考文献

1 Mendelson Y. Pulse oximetry: theory and applications for noninvasive moni- toring. Clin Chem 1992; 38:1601–1607.

2 Weiss BM, Pasch T. Measurement of systemic arterial pressure. Curr Opin Anaesthesiol 1997; 10:459–466.

3 Sinex JE. Pulse oximetry: principles and limitations. Am J Emerg Med 1999; 17:59–67.

4 DeMeulenaere S. Pulse oximetry: uses and limitations. J Nurse Pract 2007; 3:312–317.

5 Lansdowne K, Strauss DG, Scully CG. Retrospective analysis of pulse oximeter alarm settings in an intensive care unit patient population. BMC Nurs 2016; 15:36.

6 Onodera J, Kotake Y, Fukuda M, Yasumura R, Oda F, Sato N, et al. Validation of inflationary non-invasive blood pressure monitoring in adult surgical patients. J Anesth 2011; 25:127–130.

7 Sasaki J, Kikuchi Y, Usuda T, Hori S. Validation of inflationary noninvasive blood pressure monitoring in the emergency room. Blood Press Monit 2015; 20:325–329.

8 Zheng D, Pan F, Murray A. In response: confirmation of the need to evaluate devices that measure bloodpressure during cuff inflation with manual meas- urements during normal deflation. Blood Press Monit 2013; 18:265–271.

9 Drzewiecki G, Hood R, Apple H. Theory of the oscillometric maximum and the systolic and diastolic detection ratios. Ann Biomed Eng 1994; 22:88–96.

10 Forster FK, Turney D. Oscillometric determination of diastolic, mean and systolic blood pressure–a numerical model. J Biomech Eng 1986; 108:359–364.

11 Ng KG, Small CF. Changes in oscillometric pulse amplitude envelope with cuff size: implications for blood pressure measurement criteria and cuff size selection. J Biomed Eng 1993; 15:279–282.

12 International Organization for Standard. ISO9919, Medical electrical equipment - Particular requirements for the basic safety and essential per- formance of pulse oximeter equipment for medical use. Second edition. Geneva: International Organization for Standard; 2005.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る