リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Dispensable roles of Gsdmd and Ripk3 in sustaining IL-1β production and chronic inflammation in Th17-mediated autoimmune arthritis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Dispensable roles of Gsdmd and Ripk3 in sustaining IL-1β production and chronic inflammation in Th17-mediated autoimmune arthritis

Takeuchi, Yusuke Ohara, Daiya Watanabe, Hitomi Sakaguchi, Noriko Sakaguchi, Shimon Kondoh, Gen Morinobu, Akio Mimori, Tsuneyo Hirota, Keiji 京都大学 DOI:10.1038/s41598-021-98145-y

2021

概要

Programmed necrosis, such as necroptosis and pyroptosis, is a highly pro-inflammatory cellular event that is associated with chronic inflammation. Although there are various triggers of pyroptosis and necroptosis in autoimmune tissue inflammation and subsequent lytic forms of cell death release abundant inflammatory mediators, including damage-associated molecular patterns and IL-1β, capable of amplifying autoimmune Th17 effector functions, it remains largely unclear whether the programs play a crucial role in the pathogenesis of autoimmune arthritis. We herein report that Gasdermin D (Gsdmd) and receptor interacting serine/threonine kinase 3 (Ripk3)—key molecules of pyroptosis and necroptosis, respectively—are upregulated in inflamed synovial tissues, but dispensable for IL-1β production and the development of IL-17-producing T helper (Th17) cell-mediated autoimmune arthritis in SKG mice. Gsdmd⁻/⁻, Ripk3⁻/⁻, or Gsdmd⁻/⁻ Ripk3⁻/⁻ SKG mice showed severe arthritis with expansion of arthritogenic Th17 cells in the draining LNs and inflamed joints, which was comparable to that in wild-type SKG mice. Despite the marked reduction of IL-1β secretion from Gsdmd⁻/⁻ or Ripk3⁻/⁻ bone marrow-derived DCs by canonical stimuli, IL-1β levels in the inflamed synovium were not affected in the absence of Gsdmd or Ripk3. Our results revealed that T cell-mediated autoimmune arthritis proceeds independently of the pyroptosis and necroptosis pathways.

この論文で使われている画像

参考文献

1. Frank, D. & Vince, J. E. Pyroptosis versus necroptosis: Similarities, differences, and crosstalk. Cell Death Differ. 26, 99–114 (2019).

2. Orning, P., Lien, E. & Fitzgerald, K. A. Gasdermins and their role in immunity and inflammation. J. Exp. Med. 216, 2453–2465

(2019).

3. Orzalli, M. H. & Kagan, J. C. Apoptosis and necroptosis as host defense strategies to prevent viral infection. Trends Cell Biol. 27,

800–809 (2017).

4. Khoury, M. K., Gupta, K., Franco, S. R. & Liu, B. Necroptosis in the pathophysiology of disease. Am. J. Pathol. 190, 272–285 (2020).

5. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

6. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

7. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227

(2012).

8. Murphy, J. M. et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39, 443–453

(2013).

9. Xu, B. et al. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice. J. Hepatol.

68, 773–782 (2018).

10. Kanneganti, A. et al. GSD MD is critical for autoinflammatory pathology in a mouse model of familial mediterranean fever. J. Exp.

Med. 215, 1519–1529 (2018).

11. Li, S. et al. Gasdermin D in peripheral myeloid cells drives neuroinflammation in experimental autoimmune encephalomyelitis.

J. Exp. Med. 216, 2562–2581 (2019).

12. He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137, 1100–1111 (2009).

13. Zhang, T. et al. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat. Med.

22, 175–182 (2016).

14. Lau, A. et al. RIPK3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival. Am. J.

Transplant. 13, 2805–2818 (2013).

15. Smolen, J. S., Aletaha, D. & McInnes, I. B. Rheumatoid arthritis. Lancet 388, 2023–2038 (2016).

16. Gregersen, P. K., Silver, J. & Winchester, R. J. The shared epitope hypothesis. Arthritis Rheum. 30, 1205–1212 (1987).

17. Gonzalez-Gay, M. A., Garcia-Porrua, C. & Hajeer, A. H. Influence of human leukocyte antigen-DRB1 on the susceptibility and

severity of rheumatoid arthritis. Semin. Arthritis Rheum. 31, 355–360 (2002).

18. Anderton, H., Wicks, I. P. & Silke, J. Cell death in chronic inflammation: Breaking the cycle to treat rheumatic disease. Nat. Rev.

Rheumatol. 16, 496–513 (2020).

19. Sakaguchi, N. et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice.

Nature 426, 454–460 (2003).

20. Hirota, K. et al. T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17+ Th cells that cause autoimmune arthritis. J. Exp. Med. 204, 41–47 (2007).

21. Hirota, K. et al. Autoimmune Th17 cells induced synovial stromal and innate lymphoid cell secretion of the cytokine GM-CSF to

initiate and augment autoimmune arthritis. Immunity 48, 1220-1232.e5 (2018).

22. Lee, S. H., Kwon, J. Y., Kim, S. Y., Jung, K. A. & Cho, M. L. Interferon-gamma regulates inflammatory cell death by targeting

necroptosis in experimental autoimmune arthritis. Sci. Rep. 7, 2–10 (2017).

23. Moriwaki, K., Bertin, J., Gough, P. J. & Chan, F.K.-M. A RIPK3-caspase 8 complex mediates atypical Pro-IL-1β Processing. J.

Immunol. 194, 1938–1944 (2015).

24. Gutierrez, K. D. et al. MLKL activation triggers NLRP3-mediated processing and release of IL-1β independently of gasdermin-D.

J. Immunol. 198, 2156–2164 (2017).

25. Conos, S. A. et al. Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc. Natl. Acad. Sci. USA 114,

E961–E969 (2017).

26. Doerflinger, M. et al. Flexible usage and interconnectivity of diverse cell death pathways protect against intracellular infection.

Immunity 53, 533-547.e7 (2020).

27. Hata, H. et al. Distinct contribution of IL-6, TNF-α, IL-1, and IL-10 to T cell-mediated spontaneous autoimmune arthritis in mice.

J. Clin. Invest. 114, 582–588 (2004).

28. Conos, S. A., Lawlor, K. E., Vaux, D. L., Vince, J. E. & Lindqvist, L. M. Cell death is not essential for caspase-1-mediated

interleukin-1β activation and secretion. Cell Death Differ. 23, 1827–1838 (2016).

29. Rashidi, M. et al. The pyroptotic cell death effector gasdermin D is activated by gout-associated uric acid crystals but is dispensable

for cell death and IL-1β release. J. Immunol. 203, 736–748 (2019).

30. Hashimoto, M. et al. Complement drives Th17 cell differentiation and triggers autoimmune arthritis. J. Exp. Med. 207, 1135–1143

(2010).

Acknowledgements

This work was supported by a JSPS Grant-in-Aid for Scientific Research (19H01026 to KH), the Takeda Science

Foundation (KH), the Mochida Memorial Foundation for Medical and Pharmaceutical Research (KH), and the

Uehara Memorial Foundation (KH).

Author contributions

Y.T. and K.H. designed the study. Y.T., D.O., H.W., G.K., and K.H. performed the experiments. N.S., S.S., A.M.,

and T.M. provided intellectual input. Y.T. and K.H. wrote the manuscript. K.H. supervised the project. All authors

reviewed the manuscript.

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://​doi.​org/​

10.​1038/​s41598-​021-​98145-y.

Correspondence and requests for materials should be addressed to K.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Scientific Reports |

Vol:.(1234567890)

(2021) 11:18679 |

https://doi.org/10.1038/s41598-021-98145-y

10

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

Scientific Reports |

(2021) 11:18679 |

https://doi.org/10.1038/s41598-021-98145-y

11

Vol.:(0123456789)

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る