リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「金属および酸化物薄膜の成長、ゆがみ、安定性の研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

金属および酸化物薄膜の成長、ゆがみ、安定性の研究

ディマン, バニク DHIMAN, BANIK 九州大学

2023.09.25

概要

九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Growth, strain, and stability of metal and
oxide thin films
ディマン, バニク

https://hdl.handle.net/2324/7157372
出版情報:Kyushu University, 2023, 博士(理学), 課程博士
バージョン:
権利関係:

(様式3)Form 3



名 :Dhiman Banik

Name

論 文 名 :Growth, strain, and stability of metal and oxide thin films
(金属および酸化物薄膜の成長、ゆがみ、安定性の研究)

Title



分 :甲

Category

論 文 内 容 の 要 旨
Thesis Summary

Strains in metal and oxide thin films, which comes from lattice mismatch with the substrate lattice,
results in unique crystal structures and chemical reactivity. Novel two-dimensional materials derived
from these distortions have been explored and their physical properties have been investigated. In this
thesis, the growth, structure, and electronic properties of thin tin films on molybdenum and tungsten
surfaces and iron and iron oxide on ruthenium surfaces are mainly revealed using low energy electron
diffraction and ab-initio DFT calculations.
In Chapter 1, the background of this study is outlined. The crystal structures, electronic structures, and
chemical reactivity of tin, iron, and iron oxide thin films grown on metal surfaces are described.
Chapter 2 describes principles of crystal structures, thin film growth, and gas adsorption in solid
surface science.
Chapter 3 describes the properties of the elements used in this study and experimental techniques
such as slow electron diffraction and molecular beam epitaxy.
Chapter 4 describes tin thin films on molybdenum(110) and tungsten(110). Since both molybdenum
and tungsten have a body-centered cubic structure and the difference in lattice constants is only 0.8%, it
is known that thin films on molybdenum and tungsten surfaces have similar structures. As the coverage
of tin increases on molybdenum(110), the Sn films exhibit 3x1, 1x3, and 1x4 structures, where 1x3 is
considered as an elongated β-tin structure and 1x4 as a tin monolayer structure very close to β-tin. The
3x1 structure with the lowest coverage is found to be a tin-molybdenum surface alloy. On the other hand,
tin thin films on tungsten(110) show 1x3 and 1x4 structures with increasing tin coverage, similar to
molybdenum, but the 3x1 surface alloy structure does not appear even at high temperatures.
Furthermore, the 1x3 structure is newly found to undergo a temperature-reversible phase transition
below a room temperature. This finding indicates that the tin-tungsten interface is very stable and that
tin on tungsten is useful as a new two-dimensional material.

Chapter 5 describes iron films on ruthenium surfaces and their initial oxidation processes. The
structure of the iron film on the ruthenium surface is strained by +6.3% compared to that of the bulk.
The structure of this strained iron film is determined with high precision by low electron energy
diffraction. In the initial oxidation process from metallic iron to iron oxide, it is experimentally shown
that the p(2x2) and c(4x2) superstructures coexist at room temperature with an oxygen coverage of 0.25.
First-principles DFT calculation reveals that the energies of the p(2x2) and c(4x2) superstructures are
very similar. The adsorbed oxygen on the strained iron film is also close to the substrate ruthenium with
a high coordination number and the adsorption structure is particularly stable at low oxygen coverage.
Chapter 6 summarizes all the findings of this study and gives general conclusions.

この論文で使われている画像

参考文献

[1]

W. Wulfhekel, F. Zavaliche, F. Porrati, H. P. Oepen, and J. Kirschner, “Nano-patterning

of magnetic anisotropy by controlled strain relief,” Europhys. Lett., vol. 49, no. 5, p. 651,

Mar. 2000, doi: 10.1209/EPL/I2000-00200-6.

[2]

H. L. Meyerheim, D. Sander, R. Popescu, J. Kirschner, P. Steadman, and S. Ferrer,

“Surface structure and stress in Fe monolayers on W(110),” Phys. Rev. B, vol. 64, no. 4, p.

045414, Jul. 2001, doi: 10.1103/PhysRevB.64.045414.

[3]

O. Nishikawa, M. Wada, and M. Konishi, “FIM observations of W, Ga and Sn structures

on W and Mo {001} surfaces,” Surf. Sci., vol. 97, no. 1, pp. 16–24, Jul. 1980, doi:

10.1016/0039-6028(80)90100-4.

[4]

S. Chakraborty and K. S. R. Menon, “Growth, structural evolution and electronic

properties of ultrathin films of Sn on W(110),” Surf. Sci., vol. 674, pp. 79–86, Aug. 2018,

doi: 10.1016/J.SUSC.2018.04.004.

[5]

K. Reshöft, C. Jensen, and U. Köhler, “Atomistics of the epitaxial growth of Cu on

W(110),” Surf. Sci., vol. 421, no. 3, pp. 320–336, Feb. 1999, doi: 10.1016/S00396028(98)00859-0.

[6]

H. Knoppe and E. Bauer, “Electronic structure of ultrathin cobalt films on W(110),” Phys.

Rev. B, vol. 48, no. 3, pp. 1794–1805, Jul. 1993, doi: 10.1103/PhysRevB.48.1794.

[7]

M. L. Hildner, K. E. Johnson, and R. J. Wilson, “The role of stress in the heteroepitaxy of

Au on W(110),” Surf. Sci., vol. 388, no. 1–3, pp. 110–120, 1997, doi: 10.1016/S00396028(97)00382-8.

[8]

M. Stöhr, R. Podloucky, M. Gabl, N. Memmel, and E. Bertel, “Combined ab initio and

LEED I/V study of submonolayer adsorption of in on W(110),” Phys. Rev. B - Condens.

Matter Mater. Phys., vol. 76, no. 19, p. 195449, Nov. 2007, doi:

10.1103/PHYSREVB.76.195449.

[9]

"Chemistry of the Elements (Second Edition)", N.N. Greenwood and A. Earnshaw,

Elsevier, pp. 1070-1112, 1997. doi: 10.1016/B978-0-7506-3365-9.50031-6.Chem. Elem.,

Page | 109

pp. 1070–1112, Jan. 1997, doi: 10.1016/B978-0-7506-3365-9.50031-6.

[10]

J. Kolaczkiewicz and E. Bauer, “Growth and thermal stability of ultrathin films of Fe, Ni,

Rh and Pd on the Ru(0001) surface,” Surf. Sci., vol. 423, no. 2–3, pp. 292–302, Mar. 1999,

doi: 10.1016/S0039-6028(98)00925-X.

[11]

Y. Xu et al., “Large-gap quantum spin hall insulators in tin films,” Phys. Rev. Lett., vol.

111, no. 13, p. 136804, Sep. 2013, doi: 10.1103/PHYSREVLETT.111.136804.

[12]

F. F. Zhu et al., “Epitaxial growth of two-dimensional stanene,” Nat. Mater. 2015 1410,

vol. 14, no. 10, pp. 1020–1025, Aug. 2015, doi: 10.1038/nmat4384.

[13] W. Pang et al., “Epitaxial growth of honeycomb-like stanene on Au(111),” Appl. Surf. Sci.,

vol. 517, p. 146224, Jul. 2020, doi: 10.1016/J.APSUSC.2020.146224.

[14]

J. Yuhara et al., “Large area planar stanene epitaxially grown on Ag(1 1 1),” 2D Mater.,

vol. 5, no. 2, 2018, doi: 10.1088/2053-1583/aa9ea0.

[15]

R. Ahmed, T. Nakagawa, and S. Mizuno, “Structure determination of ultra-flat stanene on

Cu(111) using low energy electron diffraction,” Surf. Sci., vol. 691, no. July 2019, p.

121498, 2020, doi: 10.1016/j.susc.2019.121498.

[16] N. Kumar et al., “Self-assembly of magnetic Co atoms on stanene,” Phys. Rev. Mater., vol.

6, no. 6, p. 066001, Jun. 2022, doi: 10.1103/PHYSREVMATERIALS.6.066001.

[17]

Y. L. Tsai, C. Xu, and B. E. Koel, “Chemisorption of ethylene, propylene and isobutylene

on ordered Sn/Pt(111) surface alloys,” Surf. Sci., vol. 385, no. 1, pp. 37–59, 1997, doi:

10.1016/S0039-6028(97)00114-3.

[18]

C. Z. Xu et al., “Elemental Topological Dirac Semimetal: α -Sn on InSb(111),” Phys. Rev.

Lett., vol. 118, no. 14, p. 146402, Apr. 2017, doi: 10.1103/PHYSREVLETT.118.146402.

[19]

D. Tian, H. Li, F. Jona, and P. M. Marcus, “Study of the growth of Fe on Ru(0001) by

low-energy electron diffraction,” Solid State Commun., vol. 80, no. 10, pp. 783–787, 1991,

doi: 10.1016/0038-1098(91)90507-R.

[20]

K. Freindl et al., “Oxygen on an Fe monolayer on W(110): From chemisorption to

Page | 110

oxidation,” Surf. Sci., vol. 617, pp. 183–191, 2013, doi: 10.1016/j.susc.2013.07.011.

[21]

W. Weiss and M. Ritter, “Metal oxide heteroepitaxy:

Stranski-Krastanov growth for iron

oxides on Pt(111),” Phys. Rev. B, vol. 59, no. 7, p. 5201, Feb. 1999, doi:

10.1103/PhysRevB.59.5201.

[22]

G. Ketteler and W. Ranke, “Heteroepitaxial growth and nucleation of iron oxide films on

Ru(0001),” J. Phys. Chem. B, vol. 107, no. 18, pp. 4320–4333, 2003, doi:

10.1021/jp027265f.

[23]

I. Palacio, M. Monti, J. F. Marco, K. F. McCarty, and J. De La Figuera, “Initial stages of

FeO growth on Ru(0001),” J. Phys. Condens. Matter, vol. 25, no. 48, 2013, doi:

10.1088/0953-8984/25/48/484001.

[24]

K. Homann, H. Kuhlenbeck, and H. J. Freund, “N2 adsorption and dissociation on thin

iron films on W(110),” Surf. Sci., vol. 327, no. 3, pp. 216–224, 1995, doi: 10.1016/00396028(94)00834-5.

[25]

I. Goikoetxea, J. I. Juaristi, R. Díez Muiño, and M. Alducin, “Surface strain improves

molecular adsorption but hampers dissociation for N2 on the Fe / W (110) surface,” Phys.

Rev. Lett., vol. 113, no. 6, pp. 1–5, 2014, doi: 10.1103/PhysRevLett.113.066103.

[26] N. F. Mott and Z. Zinamon, “The metal-nonmetal transition,” Reports Prog. Phys., vol. 33,

no. 3, p. 302, Sep. 1970, doi: 10.1088/0034-4885/33/3/302.

[27]

K. G. Gareev, “Diversity of Iron Oxides: Mechanisms of Formation, Physical Properties

and Applications,” Magnetochemistry 2023, Vol. 9, Page 119, vol. 9, no. 5, p. 119, Apr.

2023, doi: 10.3390/MAGNETOCHEMISTRY9050119.

[28]

S. Couet et al., “Stabilization of antiferromagnetic order in FeO nanolayers,” Phys. Rev.

Lett., vol. 103, no. 9, p. 097201, Aug. 2009, doi: 10.1103/PHYSREVLETT.103.097201.

[29]

K. V. Larionov, D. G. Kvashnin, and P. B. Sorokin, “2D FeO: A New Member in 2D

Metal Oxide Family,” J. Phys. Chem. C, vol. 122, no. 30, pp. 17389–17394, 2018, doi:

10.1021/acs.jpcc.8b06054.

[30]

T. Amrillah, C. A. C. Abdullah, D. P. Sari, Z. Mumtazah, F. P. Adila, and F. Astuti,

Page | 111

“Crafting a Next-Generation Device Using Iron Oxide Thin Film: A Review,” Cryst.

Growth Des., vol. 21, no. 12, pp. 7326–7352, Dec. 2021, doi:

10.1021/ACS.CGD.1C00841.

[31]

“Iron Oxides: From Nature to Applications", D. Faivre, [Online]. Available:

https://www.wiley.com/en-us/Iron+Oxides%3A+From+Nature+to+Applications-p9783527338825 (accessed Aug. 01, 2023).

[32]

“Iron Oxide Nanoparticles, Characteristics and Applications.”

https://www.sigmaaldrich.com/JP/en/technical-documents/technical-article/materialsscience-and-engineering/biosensors-and-imaging/iron-oxide-nanoparticles-characteristicsand-applications (accessed Aug. 01, 2023).

[33]

K. Zhang, L. Li, J. Goniakowski, C. Noguera, H. J. Freund, and S. Shaikhutdinov, “Size

effect in two-dimensional oxide-on-metal catalysts of CO oxidation and its connection to

oxygen bonding: An experimental and theoretical approach,” J. Catal., vol. 393, pp. 100–

106, 2021, doi: 10.1016/j.jcat.2020.11.022.

[34]

L. R. Merte et al., “Water-Mediated Proton Hopping on an Iron Oxide Surface,” Science

(80-. )., vol. 336, no. 6083, pp. 889–893, May 2012, doi: 10.1126/science.1219468.

[35]

A. J. Freeman and R. quian Wu, “Electronic structure theory of surface, interface and thinfilm magnetism,” J. Magn. Magn. Mater., vol. 100, no. 1–3, pp. 497–514, Nov. 1991, doi:

10.1016/0304-8853(91)90837-Z.

[36]

R. Wu and A. J. Freeman, “Antiferromagnetic ordering of Fe/Ru(0001),” Phys. Rev. B,

vol. 44, no. 9, pp. 4449–4454, 1991, doi: 10.1103/PhysRevB.44.4449.

[37]

L. Martín-García et al., “Unconventional properties of nanometric FeO(111) films on

Ru(0001): Stoichiometry and surface structure,” J. Mater. Chem. C, vol. 4, no. 9, pp.

1850–1859, 2016, doi: 10.1039/c5tc03871e.

[38]

T. Ossowski, Y. Wang, G. Carraro, A. Kiejna, and M. Lewandowski, “Structure of monoand bilayer FeO on Ru(0001): STM and DFT study,” J. Magn. Magn. Mater., vol. 546, no.

November 2021, 2022, doi: 10.1016/j.jmmm.2021.168832.

Page | 112

[39]

L. ‐g Liu, P. Shen, and W. A. Bassett, “High-pressure polymorphism of FeO? An

alternative interpretation and its implications for the Earth’s core,” Geophys. J. Int., vol.

70, no. 1, pp. 57–66, Jul. 1982, doi: 10.1111/J.1365-246X.1982.TB06391.X.

[40]

M. Pozzo, C. Davies, D. Gubbins, and D. Alfè, “FeO Content of Earth’s Liquid Core,”

Phys. Rev. X, vol. 9, no. 4, p. 041018, Oct. 2019, doi: 10.1103/PHYSREVX.9.041018.

[41]

K. Ohta, R. E. Cohen, K. Hirose, K. Haule, K. Shimizu, and Y. Ohishi, “Experimental and

theoretical evidence for pressure-induced metallization in FeO with rocksalt-type

structure,” Phys. Rev. Lett., vol. 108, no. 2, p. 026403, Jan. 2012, doi:

10.1103/PHYSREVLETT.108.026403.

[42]

K. Ohta, K. Fujino, Y. Kuwayama, T. Kondo, K. Shimizu, and Y. Ohishi, “Highly

conductive iron-rich (Mg,Fe)O magnesiowüstite and its stability in the Earth’s lower

mantle,” J. Geophys. Res. Solid Earth, vol. 119, no. 6, pp. 4656–4665, Jun. 2014, doi:

10.1002/2014JB010972.

[43]

T. Wolfram, G. W. Lehman, and R. E. De Wames, “Lattice Dynamics of White Tin,”

Phys. Rev., vol. 129, no. 6, p. 2483, Mar. 1963, doi: 10.1103/PhysRev.129.2483.

[44]

N. G. Hörmann, A. Grossa, and P. Kaghazchi, “Semiconductor-metal transition induced

by nanoscale stabilization,” Phys. Chem. Chem. Phys., vol. 17, no. 8, pp. 5569–5573,

2015, doi: 10.1039/c4cp05619a.

[45]

Z. A. Piazza, M. Ajmalghan, R. D. Kolasinski, and Y. Ferro, “A density functional theory

based thermodynamic model of hydrogen coverage on the W(110) surface,” Phys. Scr.,

vol. 2020, no. T171, p. 014025, Mar. 2020, doi: 10.1088/1402-4896/AB4474.

[46]

M. Tikhov and E. Bauer, “The interaction of Pb and Sn with the Mo(110) surface,” Surf.

Sci., vol. 203, no. 3, pp. 423–448, 1988, doi: 10.1016/0039-6028(88)90092-1.

[47] A. Krupski, “Growth of Sn on Mo(110) studied by AES and STM,” Surf. Sci., vol. 605, no.

13–14, pp. 1291–1297, 2011, doi: 10.1016/j.susc.2011.04.020.

[48]

A. Logadottir and J. K. Nørskov, “The effect of strain for N2 dissociation on Fe surfaces,”

Surf. Sci., vol. 489, no. 1–3, pp. 135–143, Aug. 2001, doi: 10.1016/S0039Page | 113

6028(01)01171-2.

[49]

Y. N. Sun, Z. H. Qin, M. Lewandowski, S. Kaya, S. Shaikhutdinov, and H. J. Freund,

“When an encapsulating oxide layer promotes reaction on noble metals: Dewetting and in

situ formation of an ‘inverted’ FeO x /Pt catalyst,” Catal. Letters, vol. 126, no. 1–2, pp.

31–35, 2008, doi: 10.1007/s10562-008-9643-x.

[50]

L. Giordano et al., “Oxygen-Induced Transformations of an FeO(111) Film on Pt(111): A

Combined DFT and STM Study,” J. Phys. Chem. C, vol. 114, no. 49, pp. 21504–21509,

Dec. 2010, doi: 10.1021/jp1070105.

[51]

H.-J. Kim, J.-H. Park, and E. Vescovo, “Oxidation of the Fe(110) surface: An

Fe3O4(111)/Fe(110) bilayer,” Phys. Rev. B, vol. 61, no. 22, pp. 15284–15287, Jun. 2000,

doi: 10.1103/PhysRevB.61.15284.

[52]

K. Koike and T. Furukawa, “Evidence for Ferromagnetic Order at the FeO(111) Surface,”

Phys. Rev. Lett., vol. 77, no. 18, p. 3921, Oct. 1996, doi: 10.1103/PhysRevLett.77.3921.

[53]

D. Tian, H. Li, F. Jona, and P. M. Marcus, “Study of the growth of Fe on Ru(0001) by

low-energy electron diffraction,” Solid State Commun., vol. 80, no. 10, pp. 783–787, Dec.

1991, doi: 10.1016/0038-1098(91)90507-R.

[54]

B. Yang, T. Muppidi, V. Ozoliņš, and M. Asta, “First-principles theory of nanoscale

pattern formation in ultrathin alloy films: A comparative study of Fe-Ag on Ru(0001) and

Mo(110) substrates,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 77, no. 20, p.

205408, May 2008, doi: 10.1103/PHYSREVB.77.205408.

[55]

C. Egawa, K. Sawabe, and Y. Iwasawa, “Adsorption and decomposition of ammonia on

an Fe(1 × 1) overlayer on an Ru(001) surface with or without co-adsorbed oxygen,” J.

Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol. 84, no. 1, pp. 321–330,

1988, doi: 10.1039/F19888400321.

[56]

C. Kittel, “Introduction to Solid State Physics Solution Manual, 8th Edition,” Wiley, p.

704, 2004, Accessed: Jul. 21, 2023. [Online]. Available: https://www.wiley.com/enus/Introduction+to+Solid+State+Physics%2C+8th+Edition-p-9780471415268.

Page | 114

[57]

“A Journey into Reciprocal Space (Second Edition),” A. M. Glazer, Morgan & Claypool

Publishers, 2021, doi: 10.1088/978-0-7503-3875-2.

[58]

S. H. Sung, N. Schnitzer, L. Brown, J. Park, and R. Hovden, “Stacking, strain, and twist in

2D materials quantified by 3D electron diffraction,” Phys. Rev. Mater., vol. 3, no. 6, p.

064003, Jun. 2019, doi: 10.1103/PHYSREVMATERIALS.3.064003.

[59]

C. Davisson and L. H. Ghrmer, “PHYSICAL REVIEW DIFFRACTION OF

ELECTRONS BY A CRYSTAL OF NICKEL,” vol. 3, no. 6.

[60]

T. Engel and G. Ertl, “Elementary Steps in the Catalytic Oxidation of Carbon Monoxide

on Platinum Metals,” Adv. Catal., vol. 28, no. C, pp. 1–78, Jan. 1979, doi: 10.1016/S03600564(08)60133-9.

[61]

G. Ertl, “Primary steps in catalytic synthesis of ammonia,” J. Vac. Sci. Technol. A, vol. 1,

no. 2, pp. 1247–1253, Apr. 1983, doi: 10.1116/1.572299.

[62]

A. Rothschild and Y. Komem, “Numerical computation of chemisorption isotherms for

device modeling of semiconductor gas sensors,” Sensors Actuators B Chem., vol. 93, no.

1–3, pp. 362–369, Aug. 2003, doi: 10.1016/S0925-4005(03)00212-0.

[63]

D. R. Strongin, J. Carrazza, S. R. Bare, and G. A. Somorjai, “The importance of C7 sites

and surface roughness in the ammonia synthesis reaction over iron,” J. Catal., vol. 103, no.

1, pp. 213–215, Jan. 1987, doi: 10.1016/0021-9517(87)90109-6.

[64]

G. J. Kroes, “Six-dimensional quantum dynamics of dissociative chemisorption of H2 on

metal surfaces,” Prog. Surf. Sci., vol. 60, no. 1–4, pp. 1–85, Jan. 1999, doi:

10.1016/S0079-6816(99)00006-4.

[65]

C. C. Price, A. Singh, N. C. Frey, and V. B. Shenoy, “Efficient catalyst screening using

graph neural networks to predict strain effects on adsorption energy,” Sci. Adv., vol. 8, no.

47, p. 5944, Nov. 2022, doi: 10.1126/SCIADV.ABQ5944.

[66]

R. Zhang, G. Yu, Y. Gao, X. Huang, and W. Chen, “Applying surface strain and coupling

with pure or N/B-doped graphene to successfully achieve high HER catalytic activity in

2D layered SnP3-based nanomaterials: a first-principles investigation,” Inorg. Chem.

Page | 115

Front., vol. 7, no. 3, pp. 647–658, Feb. 2020, doi: 10.1039/C9QI01368G.

[67]

“Epitaxial growth (Part B)", J. W. Matthews , Academic Press, 1975.

[68]

H. Brune, “Epitaxial Growth of Thin Films,” Surf. Interface Sci., pp. 421–492, Nov. 2014,

doi: 10.1002/9783527680566.CH20.

[69]

A. A. Chernov, “Microscopic Phenomena in Epitaxy,” pp. 169–181, 1992, doi:

10.1007/978-3-642-76376-2_23.

[70]

Surface Science, F. A. Ponce M. Cardona (Eds.), vol. 62. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1991.

[71]

Y. Wang, W. Chen, B. Wang, and Y. Zheng, “Ultrathin Ferroelectric Films: Growth,

Characterization, Physics and Applications,” Mater. 2014, Vol. 7, Pages 6377-6485, vol. 7,

no. 9, pp. 6377–6485, Sep. 2014, doi: 10.3390/MA7096377.

[72]

K. A. Lozovoy, A. G. Korotaev, A. P. Kokhanenko, V. V. Dirko, and A. V.

Voitsekhovskii, “Kinetics of epitaxial formation of nanostructures by Frank–van der

Merwe, Volmer–Weber and Stranski–Krastanow growth modes,” Surf. Coatings Technol.,

vol. 384, p. 125289, Feb. 2020, doi: 10.1016/J.SURFCOAT.2019.125289.

[73]

M. A. Van Hove et al., “Automated determination of complex surface structures by

LEED,” Surf. Sci. Rep., vol. 19, no. 3–6, pp. 191–229, 1993, doi: 10.1016/01675729(93)90011-D.

[74]

M. Salmerón, L. Brewer, and G. A. Somorjai, “The structure and stability of surface

platinum oxide and of oxides of other noble metals,” Surf. Sci., vol. 112, no. 3, pp. 207–

228, Dec. 1981, doi: 10.1016/0039-6028(81)90370-8.

[75]

S. Chandavarkar, R. D. Diehl, A. Faké, and J. Jupille, “Alkali metal atoms adsorbed on

Ni{111}: Surface interactions,” Surf. Sci., vol. 211–212, no. C, pp. 432–440, Apr. 1989,

doi: 10.1016/0039-6028(89)90799-1.

[76]

Y. Horio, “Low-Energy Electron Diffraction,” Compend. Surf. Interface Anal., pp. 349–

353, 2018, doi: 10.1007/978-981-10-6156-1_57.

Page | 116

[77]

J. B. Pendry, “Reliability factors for LEED calculations,” J. Phys. C Solid State Phys., vol.

13, no. 5, pp. 937–944, 1980, doi: 10.1088/0022-3719/13/5/024.

[78]

R. G. Parr and W. Yang, “Density-functional theory of atoms and molecules,” p. 333,

1989, Accessed: Jun. 25, 2023. [Online]. Available:

https://books.google.com/books/about/Density_Functional_Theory_of_Atoms_and_M.ht

ml?id=mGOpScSIwU4C.

[79]

“Density functional theory : a practical introduction,” D. S. Sholl and J. A. Steckel, Wiley,

p. 204,2009. Accessed: Jun. 25, 2023. [Online]. Available: https://www.wiley.com/enus/Density+Functional+Theory%3A+A+Practical+Introduction%2C+2nd+Edition-p9781119840862.

[80]

“Foundations of surface science,”, S. J. Jenkins, p. 130, Oxford University Press, 2022.

[81]

P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., vol. 136, no. 3B,

p. B864, Nov. 1964, doi: 10.1103/PHYSREV.136.B864.

[82]

W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation

effects,” Phys. Rev., vol. 140, no. 4A, p. A1133, Nov. 1965, doi:

10.1103/PHYSREV.140.A1133.

[83]

J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electrongas correlation energy,” Phys. Rev. B, vol. 45, no. 23, p. 13244, Jun. 1992, doi:

10.1103/PhysRevB.45.13244.

[84]

J. P. Perdew and Y. Wang, “Erratum: Accurate and simple analytic representation of the

electron-gas correlation energy (Physical Review B (1992) 45 (13244) DOI:

10.1103/PhysRevB.45.13244),” Phys. Rev. B, vol. 98, no. 7, Aug. 2018, doi:

10.1103/PHYSREVB.98.079904.

[85]

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made

Simple,” Phys. Rev. Lett., vol. 77, no. 18, p. 3865, Oct. 1996, doi:

10.1103/PhysRevLett.77.3865.

[86]

P. Giannozzi et al., “QUANTUM ESPRESSO: a modular and open-source software

Page | 117

project for quantumsimulations of materials,” J. Phys. Condens. Matter, vol. 21, no. 39, p.

395502, Sep. 2009, doi: 10.1088/0953-8984/21/39/395502.

[87]

P. Giannozzi et al., “Advanced capabilities for materials modelling with Quantum

ESPRESSO,” J. Phys. Condens. Matter, vol. 29, no. 46, p. 465901, Oct. 2017, doi:

10.1088/1361-648X/AA8F79.

[88]

K. F. Garrity, J. W. Bennett, K. M. Rabe, and D. Vanderbilt, “Pseudopotentials for highthroughput DFT calculations,” Comput. Mater. Sci., vol. 81, pp. 446–452, Jan. 2014, doi:

10.1016/J.COMMATSCI.2013.08.053.

[89]

A. Dal Corso, “Pseudopotentials periodic table: From H to Pu,” Comput. Mater. Sci., vol.

95, pp. 337–350, 2014, doi: 10.1016/j.commatsci.2014.07.043.

[90]

R. S. Mulliken, “Electronic Population Analysis on LCAO–MO Molecular Wave

Functions. I,” J. Chem. Phys., vol. 23, no. 10, pp. 1833–1840, Oct. 1955, doi:

10.1063/1.1740588.

[91]

R. F. W. Bader, “Atoms in Molecules: A Quantum Theory, Oxford University Press,” p.

438, 1990, Accessed: Jun. 25, 2023. [Online]. Available:

https://global.oup.com/academic/product/atoms-in-molecules-9780198558651.

[92]

G. Henkelman, A. Arnaldsson, and H. Jónsson, “A fast and robust algorithm for Bader

decomposition of charge density,” Comput. Mater. Sci., vol. 36, no. 3, pp. 354–360, Jun.

2006, doi: 10.1016/J.COMMATSCI.2005.04.010.

[93]

S. Posysaev, O. Miroshnichenko, M. Alatalo, D. Le, and T. S. Rahman, “Oxidation states

of binary oxides from data analytics of the electronic structure,” Comput. Mater. Sci., vol.

161, pp. 403–414, Apr. 2019, doi: 10.1016/J.COMMATSCI.2019.01.046.

[94]

“LEEDpat4 | Fritz Haber Institute of the Max Planck Society.”

https://www.fhi.mpg.de/958975/LEEDpat4 (accessed Jul. 03, 2023).

[95]

Y. Maehara, T. Kimura, H. Kawanowa, and Y. Gotoh, “Surface structures of Sn on

Mo(1 1 0) surface investigated by RHEED,” J. Cryst. Growth, vol. 275, no. 1–2, pp.

e1619–e1624, Feb. 2005, doi: 10.1016/J.JCRYSGRO.2004.11.201.

Page | 118

[96]

K. Heinz, P. Heilmann, and K. Müller, “The Double Diffraction Model for LEEDIntensity Spectra of the Clean Pt(100) Surface,” Zeitschrift für Naturforsch. A, vol. 32, no.

1, pp. 28–32, Jan. 1977, doi: 10.1515/zna-1977-0108.

[97]

J. Martínez-Blanco et al., “Fermi surface gapping and nesting in the surface phase

transition of Sn/Cu(100),” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 72, no. 4, pp.

5–8, 2005, doi: 10.1103/PhysRevB.72.041401.

[98]

K. Yaji, R. Nakayama, K. Nakatsuji, T. Iimori, and F. Komori, “Phase transition for a 3 8

-monolayer Sn-adsorbed Cu(001) bimetallic surface alloy,” Phys. Rev. B - Condens.

Matter Mater. Phys., vol. 79, no. 11, p. 115449, Mar. 2009, doi:

10.1103/PHYSREVB.79.115449.

[99]

T. Nakagawa et al., “Fermi Surface Nesting and Structural Transition on a Metal Surface:

In /Cu(001),” Phys. Rev. Lett., vol. 86, no. 5, p. 854, Jan. 2001, doi:

10.1103/PhysRevLett.86.854.

[100] P. Pavone and S. Baroni, “α↔β phase transition in tin: A theoretical study based on

density-functional perturbation theory,” Phys. Rev. B, vol. 57, no. 17, p. 10421, May 1998,

doi: 10.1103/PhysRevB.57.10421.

[101] M. Boström et al., “Fluid-sensitive nanoscale switching with quantum levitation

controlled by α -Sn/ β -Sn phase transition,” Phys. Rev. B, vol. 97, no. 12, pp. 1–9, 2018,

doi: 10.1103/PhysRevB.97.125421.

[102] W. Weiss and W. Ranke, “Surface chemistry and catalysis on well-defined epitaxial ironoxide layers,” Prog. Surf. Sci., vol. 70, no. 1–3, pp. 1–151, 2002, doi: 10.1016/S00796816(01)00056-9.

[103] G. Ketteler and W. Ranke, “Self-assembled periodic Fe3O4 nanostructures in ultrathin

FeO(111) films on Ru(0001),” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 66, no. 3,

pp. 1–4, Jul. 2002, doi: 10.1103/PhysRevB.66.033405.

[104] M. Lewandowski et al., “Room temperature magnetism of few-nanometers-thick

Fe3O4(111) films on Pt(111) and Ru(0001) studied in ambient conditions,” Thin Solid

Films, vol. 591, pp. 285–288, Sep. 2015, doi: 10.1016/J.TSF.2015.04.060.

Page | 119

[105] L. R. Merte et al., “Structure of two-dimensional Fe3O4,” J. Chem. Phys., vol. 152, no. 11,

Mar. 2020, doi: 10.1063/1.5142558.

[106] D. F. Ogletree, M. A. Van Hove, and G. A. Somorjai, “LEED intensity analysis of the

structures of clean Pt(111) and of CO adsorbed on Pt(111) in the c(4 × 2) arrangement,”

Surf. Sci., vol. 173, no. 2–3, pp. 351–365, Aug. 1986, doi: 10.1016/0039-6028(86)90195-0.

[107] L. L. Kesmodel, L. H. Dubois, and G. A. Somorjai, “LEED analysis of acetylene and

ethylene chemisorption on the Pt(111) surface: Evidence for ethylidyne formation,” J.

Chem. Phys., vol. 70, no. 5, pp. 2180–2188, Mar. 1979, doi: 10.1063/1.437772.

[108] J. Yamashita and N. Nunomura, “First-Principles Study of Chlorine Adsorption on Clean

Al(111),” doi: 10.2320/matertrans.M2017101.

[109] V. I. Anisimov, M. A. Korotin, and E. Z. Kurmaev, “Band-structure description of Mott

insulators (NiO, MnO, FeO, CoO),” J. Phys. Condens. Matter, vol. 2, no. 17, p. 3973, Apr.

1990, doi: 10.1088/0953-8984/2/17/008.

[110] V. I. Anisimov, J. Zaanen, and O. K. Andersen, “Band theory and Mott insulators:

Hubbard U instead of Stoner I,” Phys. Rev. B, vol. 44, no. 3, p. 943, Jul. 1991, doi:

10.1103/PhysRevB.44.943.

[111] K. Bhola, J. J. Varghese, L. Dapeng, Y. Liu, and S. H. Mushrif, “Influence of Hubbard U

parameter in simulating adsorption and reactivity on CuO: Combined theoretical and

experimental study,” J. Phys. Chem. C, vol. 121, no. 39, pp. 21343–21353, Oct. 2017, doi:

10.1021/acs.jpcc.7b05385.

Page | 120

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る