リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effects of n-Butanol Blends on the Formation of Hydrocarbons and PAHs from Fuel-Rich Heptane Combustion in a Micro Flow Reactor with a Controlled Temperature Profile」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effects of n-Butanol Blends on the Formation of Hydrocarbons and PAHs from Fuel-Rich Heptane Combustion in a Micro Flow Reactor with a Controlled Temperature Profile

Mohd Hafidzal Bin Mohd Hanafi Hisashi Nakamura Susumu Hasegawa Takuya Tezuka Kaoru Maruta 東北大学 DOI:10.1080/00102202.2020.1729141

2020.02.20

概要

The effects of the addition of n-butanol on the formation of hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) of n-heptane combustions were investigated using a micro flow reactor (MFR) with a controlled temperature profile. The concentrations of small and large hydrocarbons, as well as PAHs were measured at a maximum wall temperature of 1,100 K and atmospheric pressure. The values obtained from several mechanisms were compared to the measurement values at equivalence ratios of 2.0 - 5.0. The CRECK mechanism was in fair agreement with the measurements.

 The computational results confirmed that the concentration of the PAHs and soot precursors’ decreased, while that of CO and CO2 increased due to the addition of butanol. These trends were also shown by the measurement values. The reaction path and rate of production analyses were carried out to identify the major reactions contributing towards species concentrations. (142 words/150 words).

この論文で使われている画像

参考文献

Akih-kumgeh, B. and Bergthorson, J.M., 2010. Comparative study of methyl butanoate and n- heptane high temperature autoignition. Energy & Fuels, 24, 2439–2448.

Alexandrino, K., Salvo, P., Millera, Á., Bilbao, R., and Alzueta, M.U., 2016. Influence of the temperature and 2, 5-dimethylfuran concentration on its sooting tendency. Combust. Sci. Technol., 188 (4-5), 651–666.

Andreae, M.O. 2001. The dark side of aerosols. Nature, 409, 671–672.

Barfknecht, T.R., 1983. Toxicology of soot. Prog. Energy Combust. Sci, 9, 199–237.

Black, G., Curran, H.J., Pichon, S., Simmie, J.M., and Zhukov, V., 2010. Bio-butanol: Combustion properties and detailed chemical kinetic model. Combust. Flame., 157 (2), 363–373.

Bond, T.C., Doherty, S.J., Fahey, D.W., Forster, P.M., Berntsen, T., Deangelo, B.J., Flanner, M.G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P.K., Sarofim, M.C., Schultz, M.G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S.K., Hopke, P.K., Jacobson, M.Z., Kaiser, J.W., Klimont, Z., Lohmann, U., Schwarz, J.P., Shindell, D., Storelvmo, T., Warren, S.G., and Zender, C.S., 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J Geophys Res Atmos, 118 (11), 5380–5552.

Braun-unkhoff, M., Hansen, N., Methling, T., Moshammer, K., and Yang, B., 2017. The influence of i -butanol addition to the chemistry of premixed 1, 3-butadiene flames. Proc. Combust. Inst., 36 (1), 1311–1319.

Cai, J., Zhang, L., Zhang, F., Wang, Z., Cheng, Z., Yuan, W., and Qi, F., 2012. Experimental and kinetic modeling study of n-butanol pyrolysis and combustion. Energy & Fuels, 26, 5550–5568.

Chen, B., Liu, X., Liu, H., Wang, H., Kyritsis, D.C., and Yao, M., 2017. Soot reduction effects of the addition of four butanol isomers on partially premixed flames of diesel surrogates. Combust. Flame., 177, 123–136.

Curran, H.J., Gaffuri, P., Pitz, W.J., and Westbrook, C.K., 1998. A comprehensive modeling study of n-heptane oxidation. Combust. Flame., 114 (1), 147–177.

Dagaut, P., Sarathy, S.M., and Thomson, M.J., 2009. A chemical kinetic study of n-butanol oxidation at elevated pressure in a jet stirred reactor. Proc. Combust. Inst., 32 (1), 229– 237.

Davidson, D.F., Hong, Z., Pilla, G.L., Farooq, A., Cook, R.D., and Hanson, R.K., 2010. Multi- species time-history measurements during n-heptane oxidation behind reflected shock waves. Combust. Flame., 157 (10), 1899–1905.

Davidson, D.F., Oehlschlaeger, M.A., and Hanson, R.K., 2007. Methyl concentration time- histories during iso-octane and n-heptane oxidation and pyrolysis. Proc. Combust. Inst., 31, 321–328.

Dubey, A.K., Tezuka, T., Hasegawa, S., Nakamura, H., and Maruta, K., 2016. Study on sooting behavior of premixed C1–C4 n-alkanes/air flames using a micro flow reactor with a controlled temperature profile. Combust. Flame., 174, 100–110.

Esarte, C., Abián, M., Millera, Á., Bilbao, R., and Alzueta, M.U., 2012. Gas and soot products formed in the pyrolysis of acetylene mixed with methanol, ethanol, isopropanol or n- butanol. Energy, 43, 37–46.

Frassoldati, A., Cuoci, A., Faravelli, T., and Ranzi, E., 2010. Kinetic modeling of the oxidation of ethanol and gasoline surrogate mixtures. Combust. Sci. Technol., 182 (4-6), 653–667.

Frassoldati, A., Grana, R., Faravelli, T., Ranzi, E., Oßwald, P., and Kohse-Höinghaus, K., 2012. Detailed kinetic modeling of the combustion of the four butanol isomers in premixed low- pressure flames. Combust. Flame., 159 (7), 2295–2311.

Ghiassi, H., Toth, P., and Lighty, J.S., 2014. Sooting behaviors of n-butanol and n-dodecane blends. Combust. Flame., 161 (3), 671–679.

Glassman, I., 1988. Soot formation in combustion processes. Symp Combust, 22 (1), 295–311.

Golea, D., Rezgui, Y., Guemini, M., and Hamdane, S., 2012. Reduction of PAH and soot precursors in benzene flames by addition of ethanol. J Phys Chem A, 116, 3625–3642.

Grana, R., Frassoldati, A., Faravelli, T., Niemann, U., Ranzi, E., Seiser, R., Cattolica, R., and Seshadri, K., 2010. An experimental and kinetic modeling study of combustion of isomers of butanol. Combust. Flame., 157 (11), 2137–2154.

Green, D.A. and Lewis, R., 2007. Effect of soot on oil properties and wear of engine components. J Phys D Appl Phys, 40, 5488–5501.

Hafidzal, M., Nakamura, H., Hasegawa, S., Tezuka, T., and Maruta, K., 2018. Effects of n- butanol addition on sooting tendency and formation of C1-C2 primary intermediates of n- heptane/air mixture in a micro flow reactor with a controlled temperature profile. Combust. Sci. Technol., 1–16.

Hakka, H.M., Cracknell, R.F., Pekalski, A., Glaude, P., and Battin-leclerc, F., 2015. Experimental and modeling study of ultra-rich oxidation of n-heptane. Fuel, 144, 358– 368.

Hansen, N., Merchant, S.S., Harper, M.R., and Green, W.H., 2013. The predictive capability of an automatically generated combustion chemistry mechanism: Chemical structures of premixed iso-butanol flames. Combust. Flame.,160 (11), 2343–2351.

Haynes, B.S. and Wagner, H.G., 1981. Soot formation. Prog Energy Combust Sci, 7, 229–273.

He, B.-Q., Liu, M.-B., Yuan, J., and Zhao, H., 2013. Combustion and emission characteristics of a HCCI engine fuelled with n-butanol–gasoline blends. Fuel, 108, 668–674.

Herbinet, O., Husson, B., Serinyel, Z., Cord, M., Warth, V., Fournet, R., Glaude, P., Sirjean, B., and Battin-leclerc, F., 2012. Experimental and modeling investigation of the low- temperature oxidation of n-heptane. Combust. Flame., 159 (12), 3455–3471.

Hori, M., Yamamoto, A., Nakamura, H., Tezuka, T., Hasegawa, S., and Maruta, K. 2012. Study on octane number dependence of PRF/air weak flames at 1-5 atm in a micro flow reactor with a controlled temperature profile. Combust. Flame., 159, 959–967.

Hori, M., Nakamura, H., Tezuka, T., Hasegawa, S., and Maruta, K., 2013. Characteristics of n- heptane and toluene weak flames in a micro flow reactor with a controlled temperature profile. Proc. Combust. Inst., 34 (2), 3419–3426.

Ingemarsson, T., Pedersen, R., and Olsson, J.O., 1999. Oxidation of n-heptane in a premixed laminar flame. J Phys Chem A, 103, 8222–8230.

Jin, C., Yao, M., Liu, H., Lee, C.F., and Ji, J., 2011. Progress in the production and application of n-butanol as a biofuel. Renew Sustain Energy Rev, 15 (8), 4080–4106.

Kamada, T., Nakamura, H., Tezuka, T., Hasegawa, S., and Maruta, K., 2014. Study on combustion and ignition characteristics of natural gas components in a micro flow reactor with a controlled temperature profile. Combust. Flame.,161, 37–48.

Kikui, S., Kamada, T., Nakamura, H., Tezuka, T., Hasegawa, S., and Maruta, K., 2015. Characteristics of n-butane weak flames at elevated pressures in a micro flow reactor with a controlled temperature profile. Proc. Combust. Inst., 35 (3), 3405–3412.

Kizaki, Y., Nakamura, H., Tezuka, T., Hasegawa, S., and Maruta, K., 2015. Effect of radical quenching on CH4/air flames in a micro flow reactor with a controlled temperature profile. Proc. Combust. Inst., 35 (3), 3389–3396.

Lefkowitz, J.K., Heyne, J.K., Won, S.H., Dooley, S., Kim, H.H., Haas, F.M, Jahangirian, S., Dryer, F.L., Ju, Y., 2012. A chemical kinetic study of tertiary-butanol in a flow reactor and a counterflow diffusion flame, Combust. Flame., 159, 968–978.

Li, Y., Yuan, W., Li, T., Li, W., Yang, J., and Qi, F., 2018. Experimental and kinetic modeling investigation of rich premixed toluene flames doped with n-butanol. Phys Chem Chem Phys, 28, 10628–10636.

Liu, H., Huo, M., Liu, Y., Wang, X., Wang, H., Li, Z., Yao, M., and Lee, C.F., 2014. Time- resolved spray, flame, soot quantitative measurement fueling n-butanol and soybean biodiesel in a constant volume chamber under various ambient temperatures, Fuel., 133, 317–325.

Liu, H., Zhang, P., Liu, X., Chen, B., Geng, C., Li, B., Wang, H., Li, Z., and Yao, M., 2018. Laser diagnostics and chemical kinetic analysis of PAHs and soot in co-flow partially premixed flames using diesel surrogate and oxygenated additives of n -butanol and DMF, Combust. Flame., 188, 129–141.

Loparo, Z.E., Lopez, J.G., Neupane, S., Partridge, W.P., Vodopyanov, K., and Vasu, S.S., 2017. Fuel-rich n-heptane oxidation: A shock tube and laser absorption study, Combust. Flame., 185, 220–233.

Mahmood, W.M.F.W., 2011. Computational studies of soot paths to cylinder wall layers of a direct injection diesel engine.

Maruta, K., Kataoka, T., Kim, N. Il, Minaev, S., and Fursenko, R., 2005. Characteristics of combustion in a narrow channel with a temperature gradient. Proc. Combust. Inst., 30 (2), 2429–2436.

Mckinnon, J.T. and Howard, J.B., 1992. The roles of PAH and acetylene in soot nucleation and growth. Symp Combust, 24 (1), 965–971.

Mehl, M., Pitz, W.J., Westbrook, C.K., and Curran, H.J., 2011. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. Proc. Combust. Inst., 33 (1), 193–200.

Merola, S., Tornatore, C., Marchitto, L., Valentino, G., and Corcione, F.E., 2012. Experimental investigations of butanol-gasoline blends effects on the combustion process in a SI engine. Int. J. Energy Environ. Eng., 3, 1–14.

Miyoshi, A. 2011. Systematic computational study on the unimolecular reactions of alkylperoxy (RO2), hydroperoxyalkyl (QOOH), and hydroperoxyalkylperoxy (O2QOOH) radicals. J. Phys. Chem A., 115, 3301–3325.

Nakamura, H., Suzuki, S., Tezuka, T., Hasegawa, S., and Maruta, K., 2015. Sooting limits and PAH formation of n-hexadecane and 2,2,4,4,6,8,8-heptamethylnonane in a micro flow reactor with a controlled temperature profile. Proc. Combust. Inst., 35 (3), 3397–3404.

Nakamura, H., Takahashi, H., Tezuka, T., Hasegawa, S., Maruta, K., and Abe, K., 2016. Effects of CO-to-H2 ratio and diluents on ignition properties of syngas examined by weak flames in a micro flow reactor with a controlled temperature profile. Combust. Flame., 172, 94– 104.

Nakamura, H., Tanimoto, R., Tezuka, T., Hasegawa, S., and Maruta, K., 2014. Soot formation characteristics and PAH formation process in a micro flow reactor with a controlled temperature profile. Combust. Flame., 161 (2), 582–591.

Nielsen, T., Jsrgensen, H.E., Larsenb, J.C., and Poulsenb, M., 1996. City air pollution of polycyclic aromatic hydrocarbons and other mutagens: occurrence, sources and health effects. Sci Total Environ, 189/190, 41–49.

Oshibe, H., Nakamura, H., Tezuka, T., Hasegawa, S., and Maruta, K., 2010. Stabilized three- stage oxidation of DME/air mixture in a micro flow reactor with a controlled temperature profile. Combust. Flame., 157 (8), 1572–1580.

Oßwald, P., Güldenberg, H., Kohse-höinghaus, K., Yang, B., Yuan, T., and Qi, F., 2011. Combustion of butanol isomers–A detailed molecular beam mass spectrometry investigation of their flame chemistry. Combust. Flame., 158, 2–15.

Rakopoulos, D.C., Rakopoulos, C.D., Giakoumis, E.G., Dimaratos, A.M., and Kyritsis, D.C., 2010. Effects of butanol–diesel fuel blends on the performance and emissions of a high- speed DI diesel engine. Energy Convers. Manag., 51 (10), 1989–1997.

Randall, L.V.W., Kirk, A.J., and Mun, Y.C., 1997. Simultaneous laser-induced emission of soot and polycyclic aromatic hydrocarbons within a gas-jet diffusion flame. Combust. Flame., 109 (3), 399–414.

Richter, H. and Howard, J.B., 2000. Formation of polycyclic aromatic hydrocarbons and their growth to soot–a review of chemical reaction pathways. Prog Energy Combust Sci, 26 (4- 6), 565–608.

Ruiz, M.P., Callejas, A., Millera, A., Alzueta, M.U., and Bilbao, R., 2007. Soot formation from C2H2 and C2H4 pyrolysis at different temperatures. J. Anal. Appl. Pyrolysis., 79 (1-2), 244–251.

Russo, C., D'Anna, A., Ciajolo, A., and Sirignano, M., 2019. The effect of butanol isomers on the formation of carbon particulate matter in fuel-rich premixed ethylene flames. Combust. Flame., 199, 122–130.

Saiki, Y., and Suzuki, Y. 2013. Effect of wall surface reaction on a methane-air premixed flame in narrow channels with different wall materials. Proc. Combust. Inst., 34, 3395–3402.

Sarathy, S.M., Thomson, M.J., Togbé, C., Dagaut, P., Halter, F., and Mounaim-Rousselle, C., 2009. An experimental and kinetic modeling study of n-butanol combustion. Combust. Flame., 156 (4), 852–864.

Sarathy, S.M., Vranckx, S., Yasunaga, K., Mehl, M., Oßwald, P., Metcalfe, W.K., Westbrook, C.K., Pitz, W.J., Kohse-Höinghaus, K., Fernandes, R.X., and Curran, H.J., 2012. A comprehensive chemical kinetic combustion model for the four butanol isomers. Combust. Flame., 159 (6), 2028–2055.

Savard, B., Wang, H., Teodorczyk, A., and Hawkes, E.R., 2018. Low-temperature chemistry in n-heptane/air premixed turbulent flames. Combust. Flame., 196, 71–84.

Seidel, L., Moshammer, K., Wang, X., Zeuch, T., Kohse-höinghaus, K., and Mauss, F., 2015. Comprehensive kinetic modeling and experimental study of a fuel-rich, premixed n- heptane flame. Combust. Flame., 162 (5), 2045–2058.

Seiser, R., Pitsch, H., Seshadri, K., Pitz, W.J., and Curran, H.J., 2000. Extinction and autoignition of n-heptane in counterflow configuration. Proc. Combust. Inst., 28, 2029– 2037.

Sileghem, L., Alekseev, V.A., Vancoillie, J., Geem, K.M. Van, Nilsson, E.J.K., Verhelst, S., and Konnov, A.A., 2013. Laminar burning velocity of gasoline and the gasoline surrogate components iso-octane, n-heptane and toluene. Fuel, 112, 355–365.

Smallbone, A.J., Liu, W., Law, C.K., You, X.Q., and Wang, H., 2009. Experimental and modeling study of laminar flame speed and non-premixed counterflow ignition of n- heptane. Proc. Combust. Inst., 32 (1), 1245–1252.

Suzuki, S., Hori, M., Nakamura, H., Tezuka, T., Hasegawa, S., and Maruta, K., 2013. Study on cetane number dependence of diesel surrogates/air weak flames in a micro flow reactor with a controlled temperature profile. Proc. Combust. Inst., 34 (2), 3411–3417.

Tekawade, A., Kosiba, G., and Oehlschlaeger, M.A., 2016. Time-resolved carbon monoxide measurements during the low- to intermediate-temperature oxidation of n-heptane, n- decane, and n-dodecane. Combust. Flame., 173, 402–410.

Togbé, C., Ahmed, A.M., and Dagaut, P., 2010. Kinetics of oxidation of 2-butanol and isobutanol in a jet-stirred reactor: Experimental study and modeling investigation. Energy & Fuels, 24, 5244–5256.

Tran, L., Pieper, J., Zeng, M., Li, Y., Zhang, X., Li, W., Graf, I., Qi, F., and Kohse-höinghaus, K., 2017. Influence of the biofuel isomers diethyl ether and n-butanol on flame structure and pollutant formation in premixed n-butane flames. Combust. Flame., 175, 47–59.

Veloo, P.S., Wang, Y.L., Egolfopoulos, F.N., and Westbrook, C.K., 2010. A comparative experimental and computational study of methanol, ethanol, and n-butanol flames. Combust. Flame., 157 (10), 1989–2004.

Wang, H., Deneys Reitz, R., Yao, M., Yang, B., Jiao, Q., and Qiu, L., 2013. Development of an n-heptane-n-butanol-PAH mechanism and its application for combustion and soot prediction. Combust. Flame., 160 (3), 504–519.

Westbrook, C.K., Pitz, W.J., and Curran, H.J., 2006. Chemical kinetic modeling study of the effects of oxygenated hydrocarbons on soot emissions from diesel engines. J. Phys. Chem. A., 110, 6912–6922.

Yamamoto, A., Oshibe, H., Nakamura, H., Tezuka, T., Hasegawa, S., and Maruta, K., 2011. Stabilized three-stage oxidation of gaseous n-heptane/air mixture in a micro flow reactor with a controlled temperature profile. Proc. Combust. Inst., 33 (2), 3259–3266.

Yang, Z., Wang, Y., Yang, X., Qian, Y., Lu, X., and Huang, Z., 2014. Autoignition of butanol isomers/n-heptane blend fuels on a rapid compression machine in N2/O2/Ar mixtures. Sci China Technol Sci, 57 (3), 461–470.

Yao, C., Cheng, C., Liu, S., Tian, Z., and Wang, J., 2009. Identification of intermediates in an n-heptane/oxygen/argon low-pressure premixed laminar flame using synchrotron radiation. Fuel, 88 (9), 1752–1757.

Zhang, J., Niu, S., Zhang, Y., Tang, C., Jiang, X., Hu, E., and Huang, Z., 2013. Experimental and modeling study of the auto-ignition of n-heptane/n-butanol mixtures. Combust. Flame., 160 (1), 31–39.

Zhang, J., Wei, L., Man, X., Jiang, X., Zhang, Y., Hu, E., and Huang, Z., 2012. Experimental and modeling study of n-butanol oxidation at high temperature. Energy & Fuels, 26, 3368–3380.

Zhang, K., Banyon, C., Bugler, J., Curran, H.J., Rodriguez, A., Herbinet, O., Battin-leclerc, F., Chir, C.B., and Alexander, K., 2016. An updated experimental and kinetic modeling study of n-heptane oxidation. Combust. Flame., 172, 116–135.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る