リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Modern Microscopic Approaches to Astrocytes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Modern Microscopic Approaches to Astrocytes

Morita, Mitsuhiro 森田, 光洋 モリタ, ミツヒロ 神戸大学

2023.03

概要

Microscopy started as the histological analysis based on intrinsic optical properties of tissues such as the refractive index and light absorption, and is expanding to include the visualization of organelles by chemical staining, localization of molecules by immunostaining, physiological measurements such as Ca²⁺ imaging, functional manipulation by optogenetics, and comprehensive analysis of chemical composition by Raman spectra. The microscope is one of the most important tools in neuroscience, which aims to reveal the complex intercellular communications underlying brain function and pathology. Many aspects of astrocytes, including the structures of their fine processes and physiological activities in concert with neurons and blood vessels, were revealed in the course of innovations in modern microscopy. The evolution of modern microscopy is a consequence of breakthroughs in spatiotemporal resolutions and expansions in molecular and physiological targets due to the progress in optics and information technology, as well as the inventions of probes using organic chemistry and molecular biology. This review overviews the modern microscopic approach to astrocytes.

この論文で使われている画像

参考文献

1.

2.

Chvátal, A.; Verkhratsky, A. An Early History of Neuroglial Research: Personalities. Neuroglia 2018, 1, 245–257. [CrossRef]

Ramón y Cajal, S. Histology of the Nervous System of Man and Vertebrates; Oxford University Press: Oxford, UK, 1995.

Int. J. Mol. Sci. 2023, 24, 5883

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

11 of 14

Lanjakornsiripan, D.; Pior, B.-J.; Kawaguchi, D.; Furutachi, S.; Tahara, T.; Katsuyama, Y.; Suzuki, Y.; Fukazawa, Y.; Gotoh, Y.

Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers. Nat.

Commun. 2018, 9, 1623. [CrossRef]

Zhou, B.; Zuo, Y.-X.; Jiang, R.-T. Astrocyte morphology: Diversity, plasticity, and role in neurological diseases. CNS Neurosci. Ther.

2019, 25, 665–673. [CrossRef]

Luse, S.A. Electron microscopic observations of the central nervous system. J. Biophys. Biochem. Cytol. 1956, 2, 531–542. [CrossRef]

Schultz, R.L.; Maynard, E.A.; Pease, D.C. Electron microscopy of neurons and neuroglia of cerebral cortex and corpus callosum.

Am. J. Anat. 1957, 100, 369–407. [CrossRef]

Aten, S.; Kiyoshi, C.M.; Arzola, E.P.; Patterson, J.A.; Taylor, A.T.; Du, Y.; Guiher, A.M.; Philip, M.; Camacho, E.G.;

Mediratta, D.; et al. Ultrastructural view of astrocyte arborization, astrocyte-astrocyte and astrocyte-synapse contacts, intracellular vesicle-like structures, and mitochondrial network. Prog. Neurobiol. 2022, 213, 102264. [CrossRef]

Goggin, P.; Ho EM, L.; Gnaegi, H.; Searle, S.; Oreffo RO, C.; Schneider, P. Development of protocols for the first serial block-face

scanning electron microscopy (SBF SEM) studies of bone tissue. Bone 2020, 131, 115107. [CrossRef]

Arizono, M.; Inavalli, V.V.G.K.; Panatier, A.; Pfeiffer, T.; Angibaud, J.; Levet, F.; Ter Veer, M.J.T.; Stobart, J.; Bellocchio, L.;

Mikoshiba, K.; et al. Structural basis of astrocytic Ca2+ signals at tripartite synapses. Nat. Commun. 2020, 11, 1906. [CrossRef]

Henneberger, C.; Bard, L.; Panatier, A.; Reynolds, J.P.; Kopach, O.; Medvedev, N.I.; Minge, D.; Herde, M.K.; Anders, S.;

Kraev, I.; et al. LTP Induction Boosts Glutamate Spillover by Driving Withdrawal of Perisynaptic Astroglia. Neuron 2020, 108,

919–936.e11. [CrossRef]

Vicidomini, G.; Bianchini, P.; Diaspro, A. STED super-resolved microscopy. Nat. Methods 2018, 15, 173–182. [CrossRef]

Bushong, E.A.; Martone, M.E.; Jones, Y.Z.; Ellisman, M.H. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate

anatomical domains. J. Neurosci. 2002, 22, 183–192. [CrossRef]

Livet, J.; Weissman, T.A.; Kang, H.; Draft, R.W.; Lu, J.; Bennis, R.A.; Sanes, J.R.; Lichtman, J.W. Transgenic strategies for

combinatorial expression of fluorescent proteins in the nervous system. Nature 2007, 450, 56–62. [CrossRef]

Abdeladim, L.; Matho, K.S.; Clavreul, S.; Mahou, P.; Sintes, J.-M.; Solinas, X.; Arganda-Carreras, I.; Turney, S.G.; Lichtman, J.W.;

Chessel, A.; et al. Multicolor multiscale brain imaging with chromatic multiphoton serial microscopy. Nat. Commun. 2019,

10, 1662. [CrossRef]

Clavreul, S.; Abdeladim, L.; Hernández-Garzón, E.; Niculescu, D.; Durand, J.; Ieng, S.-H.; Barry, R.; Bonvento, G.; Beaurepaire, E.;

Livet, J.; et al. Cortical astrocytes develop in a plastic manner at both clonal and cellular levels. Nat. Commun. 2019, 10, 4884.

[CrossRef]

Grienberger, C.; Konnerth, A. Imaging calcium in neurons. Neuron 2012, 73, 862–885. [CrossRef]

Bazargani, N.; Attwell, D. Astrocyte calcium signaling: The third wave. Nat. Neurosci. 2016, 19, 182–189. [CrossRef]

Sugino, H.; Ogura, A.; Kudo, Y.; Amano, T. Intracellular Ca2+ elevation induced by a neurotransmitter in a glial cell clone. Brain

Res. 1984, 322, 127–130. [CrossRef]

Verkhratsky, A.; Kettenmann, H. Calcium signalling in glial cells. Trends Neurosci. 1996, 19, 346–352. [CrossRef]

Agronskaia, A.V.; Tertoolen, L.; Gerritsen, H.C. Fast fluorescence lifetime imaging of calcium in living cells. J. Biomed. Opt. 2004,

9, 1230–1237. [CrossRef]

Wilms, C.D.; Schmidt, H.; Eilers, J. Quantitative two-photon Ca2+ imaging via fluorescence lifetime analysis. Cell Calcium. 2006,

40, 73–79. [CrossRef]

King, C.M.; Bohmbach, K.; Minge, D.; Delekate, A.; Zheng, K.; Reynolds, J.; Rakers, C.; Zeug, A.; Petzold, G.C.;

Rusakov, D.A.; et al. Local Resting Ca2+ Controls the Scale of Astroglial Ca2+ Signals. Cell Rep. 2020, 30, 3466–3477.e4.

[CrossRef] [PubMed]

Ishikawa-Ankerhold, H.C.; Ankerhold, R.; Drummen, G.P.C. Advanced fluorescence microscopy techniques—FRAP, FLIP, FLAP,

FRET and FLIM. Molecules 2012, 17, 4047–4132. [CrossRef]

Köhler, S.; Winkler, U.; Junge, T.; Lippmann, K.; Eilers, J.; Hirrlinger, J. Gray and white matter astrocytes differ in basal metabolism

but respond similarly to neuronal activity. Glia 2023, 71, 229–244. [CrossRef]

Engels, M.; Kalia, M.; Rahmati, S.; Petersilie, L.; Kovermann, P.; van Putten, M.J.A.M.; Rose, C.R.; Meijer HG, E.; Gensch, T.;

Fahlke, C. Glial Chloride Homeostasis Under Transient Ischemic Stress. Front. Cell. Neurosci. 2021, 15, 735300. [CrossRef]

Requardt, R.P.; Hirrlinger, P.G.; Wilhelm, F.; Winkler, U.; Besser, S.; Hirrlinger, J. Ca2+ signals of astrocytes are modulated by the

NAD+ /NADH redox state. J. Neurochem. 2012, 120, 1014–1025. [CrossRef] [PubMed]

Morita, M.; Higuchi, C.; Moto, T.; Kozuka, N.; Susuki, J.; Itofusa, R.; Yamashita, J.; Kudo, Y. Dual Regulation of Calcium Oscillation

in Astrocytes by Growth Factors and Pro-Inflammatory Cytokines via the Mitogen-Activated Protein Kinase Cascade. J. Neurosci.

2003, 23, 10944–10952. [CrossRef] [PubMed]

Fujii, Y.; Maekawa, S.; Morita, M. Astrocyte calcium waves propagate proximally by gap junction and distally by extracellular

diffusion of ATP released from volume-regulated anion channels. Sci. Rep. 2017, 7, 13115. [CrossRef]

Porter, J.T.; McCarthy, K.D. Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J. Neurosci.

1996, 16, 5073–5081. [CrossRef]

Int. J. Mol. Sci. 2023, 24, 5883

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

12 of 14

Wang, X.; Lou, N.; Xu, Q.; Tian, G.F.; Peng, W.G.; Han, X.; Kang, J.; Takano, T.; Nedergaard, M. Astrocytic Ca2+ signaling evoked

by sensory stimulation in vivo. Nat. Neurosci. 2006, 9, 816–823. [CrossRef]

Bindocci, E.; Savtchouk, I.; Liaudet, N.; Becker, D.; Carriero, G.; Volterra, A. Three-dimensional Ca2+ imaging advances

understanding of astrocyte biology. Science 2017, 356, eaai8185. [CrossRef]

Streich, L.; Boffi, J.C.; Wang, L.; Alhalaseh, K.; Barbieri, M.; Rehm, R.; Deivasigamani, S.; Gross, C.T.; Agarwal, A.; Prevedel, R.

High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy. Nat. Methods 2021,

18, 1253–1258. [CrossRef]

Gómez-Gaviro, M.V.; Sanderson, D.; Ripoll, J.; Desco, M. Biomedical Applications of Tissue Clearing and Three-Dimensional

Imaging in Health and Disease. iScience 2020, 23, 101432. [CrossRef]

Wang, K.; Sun, W.; Richie, C.T.; Harvey, B.K.; Betzig, E.; Ji, N. Direct wavefront sensing for high-resolution in vivo imaging in

scattering tissue. Nat. Commun. 2015, 6, 7276. [CrossRef]

Li, L.; Li, Q.; Sun, S.; Lin, H.-Z.; Liu, W.-T.; Chen, P.-X. Imaging through scattering layers exceeding memory effect range with

spatial-correlation-achieved point-spread-function. Opt. Lett. 2018, 43, 1670–1673. [CrossRef] [PubMed]

Pham, C.; Moro, D.H.; Mouffle, C.; Didienne, S.; Hepp, R.; Pfrieger, F.W.; Mangin, J.-M.; Legendre, P.; Martin, C.; Luquet, S.; et al.

Mapping astrocyte activity domains by light sheet imaging and spatio-temporal correlation screening. Neuroimage 2002,

220, 117069. [CrossRef]

Agarwal, A.; Wu, P.H.; Hughes, E.G.; Fukaya, M.; Tischfield, M.A.; Langseth, A.J.; Wirtz, D.; Bergles, D.E. Transient Opening of

the Mitochondrial Permeability Transition Pore Induces Microdomain Calcium Transients in Astrocyte Processes. Neuron 2017,

93, 587–605. [CrossRef] [PubMed]

Cho, W.-H.; Noh, K.; Lee, B.H.; Barcelon, E.; Jun, S.B.; Park, H.Y.; Lee, S.J. Hippocampal astrocytes modulate anxiety-like behavior.

Nat. Commun. 2022, 13, 6536. [CrossRef]

Yu, X.; Taylor, A.M.W.; Nagai, J.; Golshani, P.; Evans, C.J.; Coppola, G.; Khakh, B.S. Reducing Astrocyte Calcium Signaling In Vivo

Alters Striatal Microcircuits and Causes Repetitive Behavior. Neuron 2018, 99, 1170–1187.e9. [CrossRef]

Pittolo, S.; Yokoyama, S.; Willoughby, D.D.; Taylor, C.R.; Reitman, M.E.; Tse, V.; Wu, Z.; Etchenique, R.; Li, Y.; Poskanzer, K.E.

Dopamine activates astrocytes in prefrontal cortex via α1-adrenergic receptors. Cell Rep. 2022, 40, 111426. [CrossRef] [PubMed]

Chien, Y.-F.; Lin, J.-Y.; Yeh, P.-T.; Hsu, K.-J.; Tsai, Y.-H.; Chen, S.-K.; Chu, S.-W. Dual GRIN lens two-photon endoscopy for

high-speed volumetric and deep brain imaging. Biomed. Opt. Express. 2021, 12, 162–172. [CrossRef] [PubMed]

Stamatakis, A.M.; Resendez, S.L.; Chen, K.-S.; Favero, M.; Liang-Guallpa, J.; Nassi, J.J.; Neufeld, S.Q.; Visscher, K.; Ghosh, K.K.

Miniature microscopes for manipulating and recording in vivo brain activity. Microscopy 2021, 70, 399–414. [CrossRef]

Klioutchnikov, A.; Wallace, D.J.; Frosz, M.H.; Zeltner, R.; Sawinski, J.; Pawlak, V.; Voit, K.-M.; Russell, P.S.J.; Kerr, J.N.D.

Three-photon head-mounted microscope for imaging deep cortical layers in freely moving rats. Nat. Methods 2020, 17, 509–513.

[CrossRef]

Rynes, M.L.; Surinach, D.A.; Linn, S.; Laroque, M.; Rajendran, V.; Dominguez, J.; Hadjistamoulou, O.; Navabi, Z.S.; Ghanbari, L.;

Johnson, G.W.; et al. Miniaturized head-mounted microscope for whole-cortex mesoscale imaging in freely behaving mice. Nat.

Methods 2021, 18, 417–425. [CrossRef]

Monai, H.; Ohkura, M.; Tanaka, M.; Oe, Y.; Konno, A.; Hirai, H.; Mikoshiba, K.; Itohara, S.; Nakai, J.; Iwai, Y.; et al. Calcium

imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat. Commun.

2016, 7, 11100. [CrossRef]

Ma, Y.; Shaik, M.A.; Kim, S.H.; Kozberg, M.G.; Thibodeaux, D.N.; Zhao, H.T.; Yu, H.; Hillman, E.M.C. Wide-field optical mapping

of neural activity and brain haemodynamics: Considerations and novel approaches. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016,

371, 20150360. [CrossRef] [PubMed]

Couto, J.; Musall, S.; Sun, X.R.; Khanal, A.; Gluf, S.; Saxena, S.; Kinsella, I.; Abe, T.; Cunningham, J.P.; Paninski, L.; et al. Chronic,

cortex-wide imaging of specific cell populations during behavior. Nat. Protoc. 2021, 16, 3241–3263. [CrossRef] [PubMed]

Valley, M.T.; Moore, M.G.; Zhuang, J.; Mesa, N.; Castelli, D.; Sullivan, D.; Reimers, M.; Waters, J. Separation of hemodynamic

signals from GCaMP fluorescence measured with wide-field imaging. J. Neurophysiol. 2020, 123, 356–366. [CrossRef] [PubMed]

Ren, C.; Komiyama, T. Characterizing Cortex-Wide Dynamics with Wide-Field Calcium Imaging. J. Neurosci. 2021, 41, 4160–4168.

[CrossRef]

Liu, Q.S.; Xu, Q.; Arcuino, G.; Kang, J.; Nedergaard, M. Astrocyte-mediated activation of neuronal kainate receptors. Proc. Natl.

Acad. Sci. USA 2004, 101, 3172–3177. [CrossRef]

Gordon, G.R.J.; Choi, H.B.; Rungta, R.L.; Ellis-Davies, G.C.R.; MacVicar, B.A. Brain metabolism dictates the polarity of astrocyte

control over arterioles. Nature 2008, 456, 745–749. [CrossRef]

Perea, G.; Yang, A.; Boyden, E.S.; Sur, M. Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons

in vivo. Nat. Commun. 2014, 5, 3262. [CrossRef] [PubMed]

Masamoto, K.; Unekawa, M.; Watanabe, T.; Toriumi, H.; Takuwa, H.; Kawaguchi, H.; Kanno, I.; Matsui, K.; Tanaka, K.F.;

Tomita, Y.; et al. Unveiling astrocytic control of cerebral blood flow with optogenetics. Sci. Rep. 2015, 5, 11455. [CrossRef]

[PubMed]

Int. J. Mol. Sci. 2023, 24, 5883

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

13 of 14

Pettit, D.L.; Wang, S.S.; Gee, K.R.; Augustine, G.J. Chemical two-photon uncaging: A novel approach to mapping glutamate

receptors. Neuron 1997, 19, 465–471. [CrossRef]

Liang, C.W.; Mohammadi, M.; Santos, M.D.; Tang, C.-M. Patterned photostimulation with digital micromirror devices to

investigate dendritic integration across branch points. J. Vis. Exp. 2011, 49, e2003. [CrossRef]

Pégard, N.C.; Mardinly, A.R.; Oldenburg, I.A.; Sridharan, S.; Waller, L.; Adesnik, H. Three-dimensional scanless holographic

optogenetics with temporal focusing (3D-SHOT). Nat. Commun. 2017, 8, 1228. [CrossRef]

Xue, Y.; Waller, L.; Adesnik, H.; Pégard, N. Three-dimensional multi-site random access photostimulation (3D-MAP). Elife 2022,

11, e73266. [CrossRef]

Carmi, I.; De Battista, M.; Maddalena, L.; Carroll, E.C.; Kienzler, M.A.; Berlin, S. Holographic two-photon activation for synthetic

optogenetics. Nat. Protoc. 2019, 14, 864–900. [CrossRef]

Okada, T.; Kato, D.; Nomura, Y.; Obata, N.; Quan, X.; Morinaga, A.; Yano, H.; Guo, Z.; Aoyama, Y.; Tachibana, Y.; et al. Pain

induces stable, active microcircuits in the somatosensory cortex that provide a therapeutic target. Sci Adv. 2021, 337, 730–735.

[CrossRef] [PubMed]

Morita, M.; Ikeshima-Kataoka, H.; Kreft, M.; Vardjan, N.; Zorec, R.; Noda, M. Metabolic Plasticity of Astrocytes and Aging of the

Brain. Int. J. Mol. Sci. 2019, 20, 941. [CrossRef]

Zimmer, E.R.; Parent, M.J.; Souza, D.G.; Leuzy, A.; Lecrux, C.; Kim, H.-I.; Gauthier, S.; Pellerin, L.; Hamel, E.; Rosa-Neto, P.

[18F]FDG PET signal is driven by astroglial glutamate transport. Nat. Neurosci. 2017, 20, 393–395. [CrossRef]

Yao, J.; Xia, J.; Maslov, K.I.; Nasiriavanaki, M.; Tsytsarev, V.; Demchenko, A.V.; Wang, L.V. Noninvasive photoacoustic computed

tomography of mouse brain metabolism in vivo. Neuroimage 2013, 64, 257–266. [CrossRef]

Chuquet, J.; Quilichini, P.; Nimchinsky, E.A.; Buzsáki, G. Predominant enhancement of glucose uptake in astrocytes versus

neurons during activation of the somatosensory cortex. J. Neurosci. 2010, 30, 15298–15303. [CrossRef]

Lundgaard, I.; Li, B.; Xie, L.; Kang, H.; Sanggaard, S.; Haswell, J.D.; Sun, W.; Goldman, S.; Blekot, S.; Nielsen, M.; et al. Direct

neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nat. Commun. 2015, 6, 6807. [CrossRef]

[PubMed]

Mita, M.; Sugawara, I.; Harada, K.; Ito, M.; Takizawa, M.; Ishida, K.; Ueda, H.; Kitaguchi, T.; Tsuboi, T. Development of red

genetically encoded biosensor for visualization of intracellular glucose dynamics. Cell Chem Biol. 2022, 29, 98–108.e4. [CrossRef]

Bekdash, R.; Quejada, J.R.; Ueno, S.; Kawano, F.; Morikawa, K.; Klein, A.D.; Matsumoto, K.; Lee, T.C.; Nakanishi, K.;

Chalan, A.; et al. GEM-IL: A highly responsive fluorescent lactate indicator. Cell. Rep. Methods 2021, 1, 100092. [CrossRef]

[PubMed]

Durkee, C.A.; Araque, A. Diversity and Specificity of Astrocyte-neuron Communication. Neuroscience 2019, 396, 73–78. [CrossRef]

[PubMed]

Vandebroek, A.; Yasui, M. Regulation of AQP4 in the Central Nervous System. Int. J. Mol. Sci. 2020, 21, 1603. [CrossRef]

Kojima, S.; Nakamura, T.; Nidaira, T.; Nakamura, K.; Ooashi, N.; Ito, E.; Watase, K.; Tanaka, K.; Wada, K.; Kudo, Y.; et al. Optical

detection of synaptically induced glutamate transport in hippocampal slices. J. Neurosci. 1999, 19, 2580–2588. [CrossRef]

Pál, I.; Kardos, J.; Dobolyi, Á.; Héja, L. Appearance of fast astrocytic component in voltage-sensitive dye imaging of neural activity.

Mol. Brain 2015, 8, 35. [CrossRef]

Zhang, Y.; Phillips, G.J.; Li, Q.; Yeung, E.S. Imaging localized astrocyte ATP release with firefly luciferase beads attached to the

cell surface. Anal. Chem. 2008, 80, 9316–9325. [CrossRef]

Yamashiro, K.; Fujii, Y.; Maekawa, S.; Morita, M. Multiple pathways for elevating extracellular adenosine in the rat hippocampal

CA1 region characterized by adenosine sensor cells. J. Neurochem. 2016, 140, 24–36. [CrossRef]

Wu, Z.; He, K.; Chen, Y.; Li, H.; Pan, S.; Li, B.; Liu, T.; Xi, F.; Deng, F.; Wang, H.; et al. A sensitive GRAB sensor for detecting

extracellular ATP in vitro and in vivo. Neuron 2022, 110, 770–782.e5. [CrossRef]

Bezzi, P.; Gundersen, V.; Galbete, J.L.; Seifert, G.; Steinhäuser, C.; Pilati, E.; Volterra, A. Astrocytes contain a vesicular compartment

that is competent for regulated exocytosis of glutamate. Nat. Neurosci. 2004, 7, 613–620. [CrossRef] [PubMed]

Shuttleworth, C.W. Use of NAD(P)H and flavoprotein autofluorescence transients to probe neuron and astrocyte responses to

synaptic activation. Neurochem. Int. 2010, 56, 379–386. [CrossRef]

Gomes da Costa, S.; Richter, A.; Schmidt, U.; Breuninger, S.; Hollricher, O. Confocal Raman microscopy in life sciences. Morphologie

2019, 103, 11–16. [CrossRef] [PubMed]

Watanabe, K.; Palonpon, A.F.; Smith, N.I.; Chiu, L.; Kasai, A.; Hashimoto, H.; Kawata, S.; Fujita, K. Structured line illumination

Raman microscopy. Nat. Commun. 2015, 6, 10095. [CrossRef]

Palombo, F.; Tamagnini, F.; Jeynes, J.C.G.; Mattana, S.; Swift, I.; Nallala, J.; Hancock, J.; Brown, J.T.; Randall, A.D.; Stone, N.

Detection of Aβ plaque-associated astrogliosis in Alzheimer’s disease brain by spectroscopic imaging and immunohistochemistry.

Analyst 2018, 143, 850–857. [CrossRef] [PubMed]

Hsu, C.-C.; Xu, J.; Brinkhof, B.; Wang, H.; Cui, Z.; Huang, W.E.; Ye, H. A single-cell Raman-based platform to identify

developmental stages of human pluripotent stem cell-derived neurons. Proc. Natl. Acad. Sci. USA 2002, 117, 18412–18423.

[CrossRef]

Int. J. Mol. Sci. 2023, 24, 5883

80.

81.

14 of 14

Ibata, K.; Takimoto, S.; Morisaku, T.; Miyawaki, A.; Yasui, M. Analysis of Aquaporin-Mediated Diffusional Water Permeability by

Coherent Anti-Stokes Raman Scattering Microscopy. Biophys. J. 2011, 101, 2277–2283. [CrossRef]

Yu, Y.-C.; Sohma, Y.; Takimoto, S.; Miyauchi, T.; Yasui, M. Direct visualization and quantitative analysis of water diffusion in

complex biological tissues using CARS microscopy. Sci. Rep. 2013, 3, 2745. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る