リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「N-acylated Rab5b GTPase and Downstream Binding Proteins Regulate Specific Membrane Traffic in Blood-stage Malaria Parasites」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

N-acylated Rab5b GTPase and Downstream Binding Proteins Regulate Specific Membrane Traffic in Blood-stage Malaria Parasites

多久, 和泉 筑波大学

2022.11.18

概要

Newly synthesized secretory proteins are transported from the endoplasmic reticulum (ER) via the Golgi apparatus to be delivered to plasma membrane. Sar1 GTPase plays a critical role as a molecular switch for the cargo sorting at the ER. Arf and Rab GTPases regulate protein transport at the Golgi apparatus. All small GTPases are activated by a guanine nucleotide exchange factor (GEF), and activated GTPases recruit specific effectors to regulate downstream reaction. These discoveries are mainly reported from human and yeast, and findings from protozoan parasite has been limited.

 Plasmodium parasites, the causative agents of malaria, export hundreds of parasite proteins toward host erythrocytes membrane. Many of exported proteins possess a conserved Plasmodium export element (PEXEL), whereas PEXEL negative proteins (PNEPs) are also exported. Currently, how small GTPases regulate the transport of export proteins remains poorly understood.

 N-acylated Rab5 isotype, called Rab5b, localizes at adjacent to the ER and regulates export of Plasmodium falciparum adenylate kinase 2 (PfAK2), which is one of PNEPs and possesses N-acylation. To elucidate the mechanism how PfRab5b regulates the export of PfAK2, three candidates of PfRab5b binding proteins have been isolated: PfArf1, PfRab1b, and Arf1 GEF, PfSec7. In this study, I characterized the role of three candidate proteins on the cargo selection in Plasmodium.

 First, sub-cellular localization of Sec7 was analyzed. I used rodent malaria parasite P. berghei with the advantage of genetic recombination into chromosomes. PbSec7 formed dimer in the parasite cytosol, and specific amino acids required for the dimerization were conserved in PbSec7. Although Arf1, Rab1b and Sec7 are localized to the Golgi in other organisms, PbSec7 was localized to the close to the ER. Colocalization of PbSec7 with PbRab5b or PbArf1 were also observed. These results were the first report from P. berghei. Next, detailed localization of Arf1 and Rab1b was observed in P. falciparum. A super- resolution microgram revealed that the ER marker PfBiP was located closer to PfArf1 than to PfRab1b, suggesting that the two GTPases localized to different ER subdomains. The expression of an active or inactive PfArf1 mutant specifically inhibited the export of PfAK2 to the parasitophorous vacuole membrane, while expression of the inactive PfArf1 or PfRab1b mutant decreased the export of PEXEL-positive Rifin. These results suggest that PfArf1 is extensively involved in the transport of PfAK2, and PfArf1 and PfRab1b are involved in the transport of Rifin, indicating the sequential roles of PfArf1 and PfRab1b in cargo selection.

 This work is the first report on the cargo selection on the different ER subdomain by three GTPase, PfRab5b, PfArf1 and PfRab1b, via Sec7, and is unique to Plasmodium spp. My findings also indicated the diversity of trafficking system mediated by Rab GTPases in eukaryotes.

この論文で使われている画像

参考文献

Adisa, A., Albano, F. R., Reeder, J., Foley, M., and Tilley, L. (2001). Evidence for a role for a Plasmodium falciparum homologue of Sec31p in the export of proteins to the surface of malaria parasite-infected erythrocytes. J. Cell Sci. 114, 3377– 3386.

Agop-Nersesian, C., Naissant, B., Rached, F. Ben, Rauch, M., Kretzschmar, A., Thiberge, S., et al. (2009). Rab11A-controlled assembly of the inner membrane complex is required for completion of apicomplexan cytokinesis. PLOS Pathog. 5, e1000270. doi:10.1371/journal.ppat.1000270.

Aikawa, M. (1971). Parasitological review. Plasmodium: the fine structure of malarial parasites. Exp. Parasitol. 30, 284–320. doi:10.1016/0014-4894(71)90094-4.

Akompong, T., Kadekoppala, M., Harrison, T., Oksman, A., Goldberg, D. E., Fujioka, H., et al. (2002). Trans expression of a Plasmodium falciparum histidine-rich protein II (HRPII) reveals sorting of soluble proteins in the periphery of the host erythrocyte and disrupts transport to the malarial food vacuole. J. Biol. Chem. 277, 28923–28933. doi:10.1074/jbc.M201968200.

Alexandre, J. S. F., Yahata, K., Kawai, S., Torii, M., and Kaneko, O. (2011). PEXEL- independent trafficking of Plasmodium falciparum SURFIN4.2 to the parasite- infected red blood cell and Maurer’s clefts. Parasitol. Int. 60, 313–320. doi:10.1016/j.parint.2011.05.003.

Allan, B. B., Moyer, B. D., and Balch, W. E. (2000). Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science (80-. ). 289, 444–448. doi:10.1126/science.289.5478.444.

Alvarez, C., Garcia-Mata, R., Brandon, E., and Sztul, E. (2003). COPI recruitment is modulated by a Rab1b-dependent mechanism. Mol. Biol. Cell 14, 2116–2127. doi:10.1091/mbc.e02-09-0625.

Appenzeller-Herzog, C., and Hauri, H. P. (2006). The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J. Cell Sci. 119, 2173–2183. doi:10.1242/jcs.03019.

Armstrong, C. M., and Goldberg, D. E. (2007). An FKBP destabilization domain modulates protein levels in Plasmodium falciparum. Nat. Methods 4, 1007–1009. doi:10.1038/nmeth1132.

Barbieri, M. A., Li, G., Mayorga, L. S., and Stahl, P. D. (1996). Characterization of Rab5:Q79L-stimulated endosome fusion. Arch Biochem Biophys 326, 64–72. doi:8579373.

Barr, F. A. (2013). Review series: Rab GTPases and membrane identity: causal or inconsequential? J. Cell Biol. 202, 191–199. doi:10.1083/jcb.201306010.

Baumgartner, F., Wiek, S., Paprotka, K., Zauner, S., and Lingelbach, K. (2001). A point mutation in an unusual Sec7 domain is linked to brefeldin A resistance in a Plasmodium falciparum line generated by drug selection. Mol. Microbiol. 41, 1151–1158. doi:10.1046/j.1365-2958.2001.02572.x.

Benting, J., Ansorge, I., Paprotka, K., and Lingelbach, K. R. (1994a). Chemical and thermal inhibition of protein secretion have stage specific effects on the intraerythrocytic development of Plasmodium falciparum in vitro. Tropocal Med. Parasitol. 45, 303–307.

Benting, J., Mattei, D., and Lingelbach, K. (1994b). Brefeldin A inhibits transport of the glycophorin-binding protein from Plasmodium falciparum into the host erythrocyte. Biochem J 300, 821–826. doi:10.1042/bj3000821.

Bi, X., Mancias, J. D., and Goldberg, J. (2007). Insights into COPII Coat Nucleation from the Structure of Sec23•Sar1 Complexed with the Active Fragment of Sec31. Dev. Cell 13, 635–645. doi:10.1016/j.devcel.2007.10.006.

Boddey, J. A., Hodder, A. N., Günther, S., Gilson, P. R., Patsiouras, H., Kapp, E. A., et al. (2010). An aspartyl protease directs malaria effector proteins to the host cell. Nature 463, 627–631. doi:10.1038/nature08728.

Bolte, S., Schiene, K., and Dietz, K. J. (2000). Characterization of a small GTP-binding protein of the rab 5 family in Mesembryanthemum crystallinum with increased level of expression during early salt stress. Plant Mol. Biol. 42, 923–936. doi:10.1023/a:1006449715236.

Bottanelli, F., Gershlick, D. C., and Denecke, J. (2012). Evidence for sequential action of Rab5 and Rab7 GTPases in prevacuolar organelle partitioning. Traffic2 13, 338– 354. doi:10.1111/j.1600-0854.2011.01303.x.

Brandizzi, F., and Barlowe, C. (2013). Organization of the ER-Golgi interface for membrane traffic control. Nat. Rev. Mol. Cell Biol. 14, 382–392. doi:10.1038/nrm3588.

Bruce, M. C., Carter, R. N., Nakamura, K., Aikawa, M., and Carter, R. (1994). Cellular location and temporal expression of the Plasmodium falciparum sexual stage antigen Pfs16. Mol Biochem Parasitol. 65, 11–22. doi:10.1016/0166- 6851(94)90111-2.

Cabrera, A., Herrmann, S., Warszta, D., Santos, J. M., Peter, A. T. J., Kono, M., et al. (2012). Dissection of minimal sequence requirements for rhoptry membrane targeting in the malaria parasite. Traffic 13, 1335–1350. doi:10.1111/j.1600- 0854.2012.01394.x.

Cai, H., Yu, S., Menon, S., Cai, Y., Lazarova, D., Fu, C., et al. (2007). TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. Nature 445, 941–944. doi:10.1038/nature05527.

Casanova, J. E. (2007). Regulation of Arf activation: the Sec7 family of guanine nucleotide exchange factors. Traffic 8, 1476–1485. doi:10.1111/j.1600- 0854.2007.00634.x.

Chang, H. H., Falick, A. M., Carlton, P. M., Sedat, J. W., DeRisi, J. L., and Marletta, M. A. (2008). N-terminal processing of proteins exported by malaria parasites. Mol. Biochem. Parasitol. 160, 107–115. doi:18534695.

Cherfils, J., Ménétrey, J., Mathieu, M., Le Bras, G., Robineau, S., Béraud-Dufour, S., et al. (1998). Structure of the Sec7 domain of the Arf exchange factor ARNO. Nature 392, 101–105. doi:10.1038/32210.

Collaborative, T. P. G. D. (2001). PlasmoDB: An integrative database of the Plasmodium falciparum genome. Tools for accessing and analyzing finished and unfinished sequence data. The Plasmodium Genome Database Collaborative. Nucleic Acids Res. 29, 66–69. doi:10.1093/nar/29.1.66.

Craig, E. A., Gambill, B. D., and Nelson, R. J. (1993). Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol. Rev. 57, 402–414. doi:10.1128/mr.57.2.402-414.1993.

Crary, J. L., and Haldar, K. (1992). Brefeldin A inhibits protein secretion and parasite maturation in the ring stage of Plasmodium falciparum. Mol. Biochem. Parasitol. 53, 185–192. doi:10.1016/0166-6851(92)90020-k.

D’Souza-Schorey, C., and Chavrier, P. (2006). ARF proteins: Roles in membrane traffic and beyond. Nat. Rev. Mol. Cell Biol. 7, 347–358. doi:10.1038/nrm1910.

Dascher, C., and Balch, W. E. (1994). Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J. Biol. Chem. 269, 1437–1448.

de Koning-Ward, T. F., Dixon, M. W. A., Tilley, L., and Gilson, P. R. (2016). Plasmodium species: master renovators of their host cells. Nat. Rev. Microbiol. 14, 494–507. doi:10.1038/nrmicro.2016.79.

de Koning-Ward, T. F., Gilson, P. R., Boddey, J. A., Rug, M., Smith, B. J., Papenfuss, A. T., et al. (2009). A newly discovered protein export machine in malaria parasites. Nature 459, 945–949. doi:10.1038/nature08104.

Deitsch, K., Driskill, C., and Wellems, T. (2001). Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes. Nucleic Acids Res. 29, 850–853. doi:10.1093/nar/29.3.850.

Der, C. J., Finkel, T., and Cooper, G. M. (1986). Biological and biochemical properties of human rasH genes mutated at codon 61. Cell 44, 167–176. doi:10.1016/0092- 8674(86)90495-2.

Donaldson, J. G., and Jackson, C. L. (2011). ARF family G proteins and their regulators: Roles in membrane transport, development and disease. Nat. Rev. Mol. Cell Biol. 12, 362–375. doi:10.1038/nrm3117.

Ebine, K., Fujimoto, M., Okatani, Y., Nishiyama, T., Goh, T., Ito, E., et al. (2011). A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat. Cell Biol. 13, 853–859. doi:10.1038/ncb2270.

Ebine, K., Hirai, M., Sakaguchi, M., Yahata, K., Kaneko, O., and Saito-Nakano, Y. (2016). Plasmodium Rab5b is secreted to the cytoplasmic face of the tubovesicular network in infected red blood cells together with N-acylated adenylate kinase 2. Malar. J. 14. doi:10.1186/s12936-016-1377-4.

Ebine, K., Miyakawa, N., Fujimoto, M., Uemura, T., Nakano, A., and Ueda, T. (2012).

Endosomal trafficking pathway regulated by ARA6, a RAB5 GTPase unique to plants. Small GTPases 3, 23–27. doi:10.4161/sgtp.18299.

Elliott, D. A., McIntosh, M. T., Hosgood, H. D. 3rd, Chen, S., Zhang, G., Baevova, P., et al. (2008). Four distinct pathways of hemoglobin uptake in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U S A. 105, 2463–2468. doi:10.1073/pnas.0711067105.

Ellong, E. N., Soni, K. G., Bui, Q. T., Sougrat, R., Golinelli-Cohen, M. P., and Jackson, C. L. (2011). Interaction between the triglyceride lipase ATGL and the Arf1 activator GBF1. PLoS One 6, e21889. doi:10.1371/journal.pone.0021889.

Elmendorf, H. G., and Haldar, K. (1993). Identification and localization of ERD2 in the malaria parasite Plasmodium falciparum: separation from sites of sphingomyelin synthesis and implications for organization of the Golgi. EMBO J. 12, 4763–4773.

Elsworth, B., Matthews, K., Nie, C. Q., Kalanon, M., Charnaud, S. C., Sanders, P. R., et al. (2014). PTEX is an essential nexus for protein export in malaria parasites.Nature 511, 587–591. doi:10.1038/nature13555.

Eugster, A., Frigerio, G., Dale, M., and Duden, R. (2000). COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP. EMBO J. 19, 3905–3917. doi:10.1093/emboj/19.15.3905.

Ezougou, C. N., Ben-Rached, F., Moss, D. K., Lin, J. W., Black, S., Knuepfer, E., et al. (2014). Plasmodium falciparum Rab5B is an N-terminally myristoylated Rab GTPase that is targeted to the parasite’s plasma and food vacuole membranes. PLoS One 9, e87695. doi:10.1371/journal.pone.0087695.

Feig, L. A., and Cooper, G. M. (1988). Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP. Mol. Biol. Cell 8, 3235– 3243. doi:10.1128/mcb.8.8.3235-3243.1988.

Franzusoff, A., Lauzé, E., and Howell, K. E. (1992). Immuno-isolation of Sec7p-coated transport vesicles from the yeast secretory pathway. Nature 355, 173–175. doi:10.1038/355173a0.

Gardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R. W., et al. (2002). Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511. doi:10.1038/nature01097.

Goldberg, J. (1998). Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95, 237–248. doi:10.1016/s0092-8674(00)81754-7.

Goldberg, J. (2000). Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex. Cell 100, 671–679. doi:10.1016/s0092-8674(00)80703- 5.

Grebe, M., Gadea, J., Steinmann, T., Kientz, M., Rahfeld, J. U., Salchert, K., et al. (2000). A conserved domain of the arabidopsis GNOM protein mediates subunit interaction and cyclophilin 5 binding. Plant Cell 12, 543–556. doi:10.1105/tpc.12.3.343.

Gustafson, M. A., and Fromme, J. C. (2017). Regulation of Arf activation occurs via distinct mechanisms at early and late Golgi compartments. Mol. Biol. Cell 28, 3660–3671. doi:10.1091/mbc.E17-06-0370.

Haubruck, H., and McCormick, F. (1991). Ras p21: effects and regulation. Biochim Biophys Acta 1072, 215–229. doi:10.1016/0304-419x(91)90015-d.

Hiller, N. L., Bhattacharjee, S., van Ooij, C., Liolios, K., Harrison, T., Lopez-Estraño, C., et al. (2004). A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science (80-. ). 306, 1934–1937. doi:10.1126/science.1102737.

Hirai, T. (2016). Analysis of intracellular trafficking system regulated by PfRab5b GTPase, a unique small GTPase in Plasmodium falciparum, Master Thesis, School of life and environmental science, University of Tskuba, Ibaraki, Japan

Hsu, V. W., Shah, N., and Klausner, R. D. (1992). A brefeldin A-like phenotype is induced by the overexpression of a human ERD-2-like protein, ELP-1. Cell 69, 625–635. doi:10.1016/0092-8674(92)90226-3.

Hutagalung, A. H., and Novick, P. J. (2011). Role of Rab GTPases in membrane traffic and cell physiology. Physiol. Rev. 91, 119–149. doi:10.1152/physrev.00059.2009.

Iriko, H., Ishino, T., Tachibana, M., Omoda, A., Torii, M., and Tsuboi, T. (2020). Skeleton binding protein 1 (SBP1) of Plasmodium falciparum accumulates in electron-dense material before passing through the parasitophorous vacuole membrane. Parasitol. Int. 75. doi:10.1016/j.parint.2019.102003.

Ishizaki, R., Shin, H.-W., Iguchi-Ariga, S. M. M., Ariga, H., and Nakayama, K. (2006). AMY-1 (associate of Myc-1) localization to the trans-Golgi network through interacting with BIG2, a guanine-nucleotide exchange factor for ADP-ribosylation factors. Genes Cells 11, 949–959. doi:10.1111/j.1365-2443.2006.00991.x.

Ito, E., Choi, S. W., and Ueda, T. (2020). Purification and Interaction Analysis of a Plant-Specific RAB5 Effector by In Vitro Pull-Down Assay. Methods Mol. Biol. 2177, 183–197. doi:10.1007/978-1-0716-0767-1_15.

Ito, E., Ebine, K., Choi, S. W., Ichinose, S., Uemura, T., Nakano, A., et al. (2018). Integration of two RAB5 groups during endosomal transport in plants. Elife 7, e34064. doi:10.7554/eLife.34064.

Iwanaga, S., Kato, T., Kaneko, I., and Yuda, M. (2012). Centromere plasmid: a new genetic tool for the study of Plasmodium falciparum. PLoS One 7, e33326. doi:10.1371/journal.pone.0033326.

Jackson, C. L., and Casanova, J. E. (2000). Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol. 10, 60–67. doi:10.1016/s0962-8924(99)01699-2.

Janse, C. J., Ramesar, J., and Waters, A. P. (2006). High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei. Nat. Protoc. 1, 346–356. doi:10.1038/nprot.2006.53.

Joberty, G., Tavitian, A., and Zahraoui, A. (1993). Isoprenylation of Rab proteins possessing a C-terminal CaaX motif. FEBS Lett. 330, 323–328. doi:10.1016/0014- 5793(93)80897-4.

Kaczmarek, B., Verbavatz, J. M., and Jackson, C. L. (2017). GBF1 and Arf1 function in vesicular trafficking, lipid homoeostasis and organelle dynamics. Biol. cell 109, 391–399. doi:10.1111/boc.201700042.

Kawamoto, K., Yoshida, Y., Tamaki, H., Torii, S., Shinotsuka, C., Yamashina, S., et al. (2002). GBF1, a guanine nucleotide exchange factor for ADP-ribosylation factors, is localized to the cis-Golgi and involved in membrane association of the COPI coat. Traffic 3, 483–495. doi:10.1034/j.1600-0854.2002.30705.x.

Kibria, K. M. K., Ferdous, J., Sardar, R., Panda, A., Gupta, D., Mohmmed, A., et al. (2019). A genome-wide analysis of coatomer protein (COP) subunits of apicomplexan parasites and their evolutionary relationships. BMC Genomics 20, 98. doi:10.1186/s12864-019-5463-1.

Klöpper, T. H., Kienle, N., Fasshauer, D., and Munro, S. (2012). Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis. BMC Biol. 10, 71. doi:10.1186/1741-7007-10-71.

Kotzer, A. M., Brandizzi, F., Neumann, U., Paris, N., Moore, I., and Hawes, C. (2004). AtRabF2b (Ara7) acts on the vacuolar trafficking pathway in tobacco leaf epidermal cells. J. Cell Sci. 117, 6377–6389. doi:10.1242/jcs.01564.

Krai, P., Dalal, S., and Klemba, M. (2014). Evidence for a Golgi-to-endosome protein sorting pathway in Plasmodium falciparum. PLoS One 9, e89771. doi:10.1371/journal.pone.0089771.

Kremer, K., Kamin, D., Rittweger, E., Wilkes, J., Flammer, H., Mahler, S., et al. (2013). An overexpression screen of Toxoplasma gondii Rab-GTPases reveals distinct transport routes to the micronemes. PLOS Pathog. 9, e1003213. doi:10.1371/journal.ppat.1003213.

Kumar, N., Koski, G., Harada, M., Aikawa, M., and Zheng, H. (1991). Induction and localization of Plasmodium falciparum stress proteins related to the heat shock protein 70 family. Mol Biochem Parasitol 48, 47–58. doi:10.1016/0166- 6851(91)90163-z.

Kumar, N., and Zheng, H. (1992). Nucleotide sequence of a Plasmodium falciparum stress protein with similarity to mammalian 78-kDa glucose-regulated protein. Mol Biochem Parasitol 56, 353–356. doi:10.1016/0166-6851(92)90187-o.

Kung, L. F., Pagant, S., Futai, E., D’Arcangelo, J. G., Buchanan, R., Dittmar, J. C., et al. (2012). Sec24p and Sec16p cooperate to regulate the GTP cycle of the COPII coat. EMBO J. 31, 1014–1027. doi:10.1038/emboj.2011.444.

Kurokawa, K., and Nakano, A. (2019). The ER exit sites are specialized ER zones for the transport of cargo proteins from the ER to the Golgi apparatus. J. Biochem. 165, 109–114. doi:10.1093/jb/mvy080.

Langreth, S. G., Jensen, J. B., Reese, R. T., and Trager, W. (1978). Fine structure of human malaria in vitro. J. Protozool. 25, 443–452. doi:10.1111/j.1550- 7408.1978.tb04167.x.

Lanoix, J., Ouwendijk, J., Lin, C. C., Stark, A., Love, H. D., Ostermann, J., et al. (1999). GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COP I vesicles. EMBO J. 18, 4935–4948. doi:10.1093/emboj/18.18.4935.

Lee, M. C. S., Moura, P. A., Miller, E. A., and Fidock, D. A. (2008). Plasmodium falciparum Sec24 marks transitional ER that exports a model cargo via a diacidic motif. Mol. Microbiol. 68, 1535–1546. doi:10.1111/j.1365-2958.2008.06250.x.

Lefrançois, S., and McCormick, P. J. (2007). The Arf GEF GBF1 is required for GGA recruitment to Golgi membranes. Traffic2 8, 144–1451. doi:10.1111/j.1600- 0854.2007.00623.x.

Leung, K. F., Baron, R., and Seabra, M. C. (2006). Thematic review series: lipid posttranslational modifications. geranylgeranylation of Rab GTPases. J. Lipid Res. 47, 467–475. doi:16401880.

Lewis, M. J., and Pelham, H. R. (1990). A human homologue of the yeast HDEL receptor. Nature 348, 162–163. doi:10.1038/348162a0.

Lewis, M. J., Sweet, D. J., and Pelham, H. R. (1990). The ERD2 gene determines the specificity of the luminal ER protein retention system. Cell 61, 1359–1363. doi:10.1016/0092-8674(90)90699-f.

Li, H., Adamik, R., Pacheco-Rodriguez, G., Moss, J., and Vaughan, M. (2003). Protein kinase A-anchoring (AKAP) domains in brefeldin A-inhibited guanine nucleotide- exchange protein 2 (BIG2). Proc Natl Acad Sci U S A 100, 1627–1632. doi:10.1073/pnas.0337678100.

Lin, J., Annoura, T., Sajid, M., Chevalley-Maurel, S., Ramesar, J., Klop, O., et al. (2011). A novel “gene insertion/marker out” (GIMO) method for transgene expression and gene complementation in rodent malaria parasites. PLoS One 6, e29289. doi:10.1371/journal.pone.0029289.

Mansour, S. J., Skaug, J., Zhao, X. H., Giordano, J., Scherer, S. W., and Melançon, P. (1999). p200 ARF-GEP1: a Golgi-localized guanine nucleotide exchange protein whose Sec7 domain is targeted by the drug brefeldin A. Proc Natl Acad Sci U S A 96, 7963–7973. doi:10.1073/pnas.96.14.7968.

Marti, M., Good, R. T., Rug, M., Knuepfer, E., and Cowman, A. F. (2004). Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science (80-. ). 306, 1930–1933. doi:10.1126/science.1102452.

Martinez, H., García, I. A., Sampieri, L., and Alvarez, C. (2016). Spatial-Temporal Study of Rab1b Dynamics and Function at the ER-Golgi Interface. PLoS One 11, e0160838. doi:10.1371/journal.pone.0160838.

McCabe, J. B., and Berthiaume, L. G. (2001). N-terminal protein acylation confers localization to cholesterol, sphingolipid-enriched membranes but not to lipid rafts/caveolae. Mol. Biol. Cell 12, 3601–3617. doi:10.1091/mbc.12.11.3601.

McDonold, C. M., and Fromme, J. C. (2014). Four GTPases differentially regulate the Sec7 Arf-GEF to direct traffic at the trans-golgi network. Dev. Cell 30, 759–767. doi:10.1016/j.devcel.2014.07.016.

McGuffin, L. J., Bryson, K., and Jones, D. T. (2000). The PSIPRED protein structure prediction server. Bioinformatics 16, 404–405. doi:10.1093/bioinformatics/16.4.404.

Miller, L. H., Ackerman, H. C., Su, X., and Wellems, T. E. (2013). Malaria biology and disease pathogenesis: insights for new treatments. Nat. Med. 19, 156–67. doi:10.1038/nm.3073.

Ming, M., VanWye, J., Janse, C. J., Waters, A. P., and Haldar, K. (1999). Gene organization of rab6, a marker for the novel Golgi of Plasmodium. Mol Biochem Parasitol 100, 217–222. doi:10.1016/s0166-6851(99)00039-0.

Monetta, P., Slavin, I., Romero, N., and Alvarez, C. (2007). Rab1b interacts with GBF1 and modulates both ARF1 dynamics and COPI association. Mol. Biol. Cell 18, 2400–2410. doi:10.1091/mbc.e06-11-1005.

Morinaga, N., Tsai, S. C., Moss, J., and Vaughan, M. (1996). Isolation of a brefeldin A- inhibited guanine nucleotide-exchange protein for ADP ribosylation factor (ARF) 1 and ARF3 that contains a Sec7-like domain. Proc Natl Acad Sci U S A 93, 12856–12860. doi:10.1073/pnas.93.23.12856.

Morse, D., Webster, W., Kalanon, M., Langsley, G., and McFadden, G. I. (2016). Plasmodium falciparum Rab1A Localizes to Rhoptries in Schizonts. PLoS One 11, e0158174. doi:10.1371/journal.pone.0158174.

Möskes, C., Burghaus, P. A., Wernli, B., Sauder, U., Dürrenberger, M., and Kappes, B. (2004). Export of Plasmodium falciparum calcium-dependent protein kinase 1 to the parasitophorous vacuole is dependent on three N-terminal membrane anchor motifs. Mol. Microbiol. 54, 676–691. doi:10.1111/j.1365-2958.2004.04313.x.

Mossessova, E., Gulbis, J. M., and Goldberg, J. (1998). Structure of the guanine nucleotide exchange factor Sec7 domain of human arno and analysis of the interaction with ARF GTPase. Cell 92, 415–423. doi:10.1016/s0092- 8674(00)80933-2.

Mouratou, B., Biou, V., Joubert, A., Cohen, J., Shields, D. J., Geldner, N., et al. (2005). The domain architecture of large guanine nucleotide exchange factors for the small GTP-binding protein Arf. BMC Genomics 6, 20. doi:10.1186/1471-2164-6-20.

Moyer, B. D., Allan, B. B., and Balch, W. E. (2001). Rab1 interaction with a GM130 effector complex regulates COPII vesicle cis--Golgi tethering. Traffic 2, 268–276. doi:10.1034/j.1600-0854.2001.1o007.x.

Nakayama, K. (2004). Membrane Traffic: Editorial Overview. J Biochem 136, 751–753. doi:10.1093/jb/mvh.

Nakazawa, S., Culleton, R., and Maeno, Y. (2011). In vivo and in vitro gametocyte production of Plasmodium falciparum isolates from Northern Thailand. Int J Parasitol 41, 317–323. doi:21110978.

Nickel, W., and Rabouille, C. (2009). Mechanisms of regulated unconventional protein secretion. Nat. Rev. Mol. Cell Biol. 10, 148–155. doi:10.1038/nrm2617.

Niu, T. K., Pfeifer, A. C., Lippincott-Schwartz, J., and Jackson, C. L. (2005). Dynamics of GBF1, a Brefeldin A-sensitive Arf1 exchange factor at the Golgi. Mol. Biol. Cell 16, 1213–1222. doi:10.1091/mbc.e04-07-0599.

Ogun, S. A., and Holder, A. A. (1994). Plasmodium yoelii: brefeldin A-sensitive processing of proteins targeted to the rhoptries. Exp. Parasitol. 79, 270–278. doi:10.1006/expr.1994.1090.

Padilla, P. I., Chang, M. J., Pacheco-Rodriguez, G., Adamik, R., Moss, J., and Vaughan, M. (2003). Interaction of FK506-binding protein 13 with brefeldin A-inhibited guanine nucleotide-exchange protein 1 (BIG1): effects of FK506. Proc Natl Acad Sci U S A 100, 2322–2327. doi:10.1073/pnas.2628047100.

Park, S. K., Hartnell, L. M., and Jackson, C. L. (2005). Mutations in a highly conserved region of the Arf1p activator GEA2 block anterograde Golgi transport but not COPI recruitment to membranes. Mol. Biol. Cell 16, 3786–3799. doi:10.1091/mbc.e05-04-0289.

Pasqualato, S., Renault, L., and Cherfils, J. (2002). Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for “front-back” communication. EMBO Rep. 3, 1035–1041. doi:10.1093/embo-reports/kvf221.

Pereira-Leal, J. B., and Seabra, M. C. (2000). The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J. Mol. Biol. 301, 1077–1087. doi:10.1006/jmbi.2000.4010.

Peyroche, A., Paris, S., and Jackson, C. L. (1996). Nucleotide exchange on ARF mediated by yeast Gea1 protein. Nature 384, 479–481. doi:10.1038/384479a0.

Pipaliya, S. V, Schlacht, A., Klinger, C. M., Kahn, R. A., and Dacks, J. (2019). Ancient complement and lineage-specific evolution of the Sec7 ARF GEF proteins in eukaryotes. Mol. Biol. Cell 30, 1846–1863. doi:10.1091/mbc.E19-01-0073.

Quevillon, E., Spielmann, T., Brahimi, K., Chattopadhyay, D., Yeramian, E., and Langsley, G. (2003). The Plasmodium falciparum family of Rab GTPases. Gene 306, 13–25. doi:10.1016/s0378-1119(03)00381-0.

Rached, F. B., Ndjembo-Ezougou, C., Chandran, S., Talabani, H., Yera, H., Dandavate, V., et al. (2012). Construction of a Plasmodium falciparum Rab-interactome identifies CK1 and PKA as Rab-effector kinases in malaria parasites. Biol. cell 104, 34–47. doi:10.1111/boc.201100081 Free PMC article.

Ramaen, O., Joubert, A., Simister, P., Belgareh-Touzé, N., Olivares-Sanchez, M. C., Zeeh, J.-C., et al. (2007). Interactions between conserved domains within homodimers in the BIG1, BIG2, and GBF1 Arf guanine nucleotide exchange factors. J Biol Chem 282, 28834–28842. doi:10.1074/jbc.M705525200.

Richardson, B. C., McDonold, C. M., and Fromme, J. C. (2012). The Sec7 Arf-GEF is recruited to the trans-Golgi network by positive feedback. Dev. Cell 22, 799–810. doi:10.1016/j.devcel.2012.02.006.

Ridzuan, M. A. M., Moon, R. W., Knuepfer, E., Black, S., Holder, A. A., and Green, J. L. (2012). Subcellular location, phosphorylation and assembly into the motor complex of GAP45 during Plasmodium falciparum schizont development. PLoS One 7, e33845. doi:10.1371/journal.pone.0033845.

Russo, I., Babbitt, S., Muralidharan, V., Butler, T., Oksman, A., and Goldberg, D. E. (2010). Plasmepsin V licenses Plasmodium proteins for export into the host erythrocyte. Nature 463, 632–636. doi:10.1038/nature08726.

Sager, G., Szul, T., Lee, E., Kawai, R., Presley, J. F., and Sztul, E. (2021). Modeling the dynamic behaviors of the COPI vesicle formation regulators, the small GTPase Arf1 and its activating Sec7 guanine nucleotide exchange factor GBF1 on Golgi membranes. Mol. Biol. Cell 32, 446–459. doi:10.1091/mbc.E20-09-0587.

Saraste, J., and Kuismanen, E. (1992). Pathways of protein sorting and membrane traffic between the rough endoplasmic reticulum and the Golgi complex. Semin Cell Biol 3, 343–355. doi:10.1016/1043-4682(92)90020-v.

Sargeant, T. J., Marti, M., Caler, E., Carlton, J. M., Simpson, K., Speed, T. P., et al. (2006). Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biol. 7, R12. doi:10.1186/gb-2006-7-2-r12.

Saridaki, T., Fröhlich, K. S., Braun-Breton, C., and Lanzer, M. (2009). Export of PfSBP1 to the Plasmodium falciparum Maurer’s clefts. Traffic 10, 137–152. doi:10.1111/j.1600-0854.2008.00860.x.

Scales, S. J., Gomez, M., and Kreis, T. E. (2000). Coat proteins regulating membrane traffic. Int Rev Cytol 195, 67–144. doi:10.1016/s0074-7696(08)62704-7.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. doi:10.1038/nmeth.2019.

Schlott, A. C., Holder, A. A., and Tate, E. W. (2018). N-Myristoylation as a Drug Target in Malaria: Exploring the Role of N-Myristoyltransferase Substrates in the Inhibitor Mode of Action. ACS Infect. Dis. 4, 449–457. doi:10.1021/acsinfecdis.7b00203.

Semenza, J. C., Hardwick, K. G., Dean, N., and Pelham, H. R. (1990). ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61, 1349–1357. doi:10.1016/0092-8674(90)90698-e.

Sewell, J. L., and Kahn, R. A. (1988). Sequences of the bovine and yeast ADP- ribosylation factor and comparison to other GTP-binding proteins. Proc Natl Acad Sci U S A 85, 4620–4624. doi:10.1073/pnas.85.13.4620.

Shibata, T., Hadano, J., Kawasaki, D., Dong, X., and Kawabata, S. I. (2017). Drosophila TG-A transglutaminase is secreted via an unconventional Golgi- independent mechanism involving exosomes and two types of fatty acylations. J. Biol. Chem. 292, 10723–10734. doi:10.1074/jbc.M117.779710.

Singer-Krüger, B., Stenmark, H., and Zerial, M. (1995). Yeast Ypt51p and mammalian Rab5: counterparts with similar function in the early endocytic pathway. J. Cell Sci. 108, 3509–3521.

Spielmann, T., Fergusen, D. J. P., and Beck, H. P. (2003). etramps, a new Plasmodium falciparum gene family coding for developmentally regulated and highly charged membrane proteins located at the parasite-host cell interface. Mol. Biol. Cell 14, 1529–1544. doi:10.1091/mbc.e02-04-0240.

Spielmann, T., and Gilberger, T. W. (2010). Protein export in malaria parasites: do multiple export motifs add up to multiple export pathways? Trends Parasitol. 26, 6–10. doi:10.1016/j.pt.2009.10.001.

Stafford, W. H., Stockley, R. W., Ludbrook, S. B., and Holder, A. A. (1996). Isolation, expression and characterization of the gene for an ADP-ribosylation factor from the human malaria parasite, Plasmodium falciparum. Eur J Biochem 242, 104–113. doi:10.1111/j.1432-1033.1996.0104r.x.

Stalder, D., and Antonny, B. (2013). Arf GTPase regulation through cascade mechanisms and positive feedback loops. FEBS Lett. 587, 2028–2035. doi:10.1016/j.febslet.2013.05.015.

Stearns, T., Willingham, M. C., Botstein, D., and Kahn, R. A. (1990). ADP-ribosylation factor is functionally and physically associated with the Golgi complex. Proc Natl Acad Sci U S A 87, 1238–1242. doi:10.1073/pnas.87.3.1238.

Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10, 513–525. doi:10.1038/nrm2728.

Stenmark, H., Parton, R. G., Steele-Mortimer, O., Lütcke, A., Gruenberg, J., and Zerial, M. (1994). Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J. 13, 1287–1296.

Struck, N. S., Dias, S. de S., Langer, C., Marti, M., Pearce, J. A., Cowman, A. F., et al. (2005). Re-defining the Golgi complex in Plasmodium falciparum using the novel Golgi marker PfGRASP. J. Cell Sci. 118, 5603–5613. doi:10.1242/jcs.02673.

Struck, N. S., Herrmann, S., Schmuck-Barkmann, I., Dias, S. de S., Haase, S., Cabrera, A. L., et al. (2008). Spatial dissection of the cis- and trans-Golgi compartments in the malaria parasite Plasmodium falciparum. Mol. Microbiol. 67, 1320–1330. doi:10.1111/j.1365-2958.2008.06125.x.

Suda, Y., Kurokawa, K., and Nakano, A. (2018). Regulation of ER-Golgi transport dynamics by GTPases in budding yeast. Front. Cell Dev. Biol. 5, 1–6. doi:10.3389/fcell.2017.00122.

Teal, S. B., Hsu, V. W., Peters, P. J., Klausner, R. D., and Donaldson, J. G. (1994). An activating mutation in ARF1 stabilizes coatomer binding to Golgi membranes. J. Biol. Chem. 269, 3135–3138.

Thavayogarajah, T., Gangopadhyay, P., Rahlfs, S., Becker, K., Lingelbach, K., Przyborski, J. M., et al. (2015). Alternative Protein Secretion in the Malaria Parasite Plasmodium falciparum. PLoS One 10, e0125191. doi:10.1371/journal.pone.0125191.

Tisdale, E. J., Bourne, J. R., Khosravi-Far, R., Der, C. J., and Balch, W. E. (1992). GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. J. Cell Biol. 119, 749–761. doi:10.1083/jcb.119.4.749.

Townsley, F. M., Frigerio, G., and Pelham, H. R. (1994). Retrieval of HDEL proteins is required for growth of yeast cells. J. Cell Biol. 127, 21–28. doi:10.1083/jcb.127.1.21.

Ueda, T., Yamaguchi, M., Uchimiya, H., and Nakano, A. (2001). Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J. 20, 4730–4741. doi:10.1093/emboj/20.17.4730.

van Ooij, C., Tamez, P., Bhattacharjee, S., Hiller, N. L., Harrison, T., Liolios, K., et al. (2008). The malaria secretome: from algorithms to essential function in blood stage infection. PLOS Pathog. 4, e1000084. doi:10.1371/journal.ppat.1000084.

Viotti, C. (2016). ER to Golgi-Dependent Protein Secretion: The Conventional Pathway. Methods Mol. Biol. 1459, 3–29. doi:10.1007/978-1-4939-3804-9_1.

Walliker, D., Quakyi, I. A., Wellems, T. E., McCutchan, T. F., Szarfman, A., London,

W. T., et al. (1987). Genetic analysis of the human malaria parasite Plasmodium falciparum. Science (80-. ). 236, 1661–1666. doi:10.1126/science.3299700.

Wang, R., Wang, Z., Wang, K., Zhang, T., and Ding, J. (2016). Structural basis for targeting BIG1 to Golgi apparatus through interaction of its DCB domain with Arl1. J. Mol. Cell Biol. 8, 459–461. doi:10.1093/jmcb/mjw033.

Wang, T., Li, L., and Hong, W. (2017). SNARE proteins in membrane trafficking. Traffic 18, 767–775. doi:10.1111/tra.12524.

Watanabe, N., Nakada-Tsukui, K., and Nozaki, T. (2020). Two isotypes of phosphatidylinositol 3-phosphate-binding sorting nexins play distinct roles in trogocytosis in Entamoeba histolytica. Cell. Microbiol. 22, e13144. doi:10.1111/cmi.13144.

WHO (2020). World Malaria Report 2020. < https://www.who.int/publications/i/item/9789240015791>, final access on 3rd December 2021. ISBN 978-92-4-001579-1

Xu, K. F., Shen, X., Li, H., Pacheco-Rodriguez, G., Moss, J., and Vaughan, M. (2005). Interaction of BIG2, a brefeldin A-inhibited guanine nucleotide-exchange protein, with exocyst protein Exo70. Proc Natl Acad Sci U S A 102, 2784–2789. doi:10.1073/pnas.0409871102.

Yamaji, R., Adamik, R., Takeda, K., Togawa, A., Pacheco-Rodriguez, G., Ferrans, V. J., et al. (2000). Identification and localization of two brefeldin A-inhibited guanine nucleotide-exchange proteins for ADP-ribosylation factors in a macromolecular complex. Proc Natl Acad Sci U S A 97, 2567–2572. doi:10.1073/pnas.97.6.2567.

Yano, K., Komaki-Yasuda, K., Kobayashi, T., Takemae, H., Kita, K., Kano, S., et al. (2005). Expression of mRNAs and proteins for peroxiredoxins in Plasmodium falciparum erythrocytic stage. Parasitol. Int. 54, 35–41. doi:10.1016/j.parint.2004.08.005.

Yarwood, R., Hellicar, J., Woodman, P. G., and Lowe, M. (2020). Membrane trafficking in health and disease. Dis. Model. Mech. 13. doi:10.1242/dmm.043448.

Yin, C., Karim, S., Zhang, H., and Aronsson, H. (2017). Arabidopsis RabF1 (ARA6) Is Involved in Salt Stress and Dark-Induced Senescence (DIS). Int J Mol Sci 18, 309. doi:10.3390/ijms18020309.

Yorimitsu, T., and Sato, K. (2012). Insights into structural and regulatory roles of Sec16 in COPII vesicle formation at ER exit sites. Mol. Biol. Cell 23, 2930–2942. doi:10.1091/mbc.E12-05-0356.

Zhang, X., and Wang, Y. (2016). GRASPs in Golgi Structure and Function. Front Cell Dev Biol 3, 84. doi:10.3389/fcell.2015.00084.

Zhao, L., Helms, J. B., Brunner, J., and Wieland, F. T. (1999). GTP-dependent binding of ADP-ribosylation factor to coatomer in close proximity to the binding site for dilysine retrieval motifs and p23. J. Biol. Chem. 274, 14198–14203. doi:10.1074/jbc.274.20.14198.

Zhao, X., Lasell, T. K. R., and Melançon, P. (2002). Localization of large ADP- ribosylation factor-guanine nucleotide exchange factors to different Golgi compartments: evidence for distinct functions in protein traffic. Mol. Biol. Cell 13, 119–133. doi:10.1091/mbc.01-08-0420.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る