リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Establishment of a predictive model for GVHD-free, relapse-free survival after allogeneic HSCT using ensemble learning」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Establishment of a predictive model for GVHD-free, relapse-free survival after allogeneic HSCT using ensemble learning

Iwasaki, Makoto 京都大学 DOI:10.14989/doctor.k24312

2023.01.23

概要

Graft-versus-host disease(GVHD)-free, relapse-free survival (GRFS)は、同種造血幹細胞移植(HSCT)後の重篤な合併症を伴わない生存を測る複合エンドポイントとして有用であるが、生存、再発、GVHD といった個々のエンドポイントに関しても正確に予測する事は、移植後の予後を理解する上で重要である。造血幹細胞移植後の予後は、疾患、患者とドナーの Human Leukocyte Antigen の一致度、ドナーソースの種類(骨髄・末梢血・臍帯血)等、非常に多くの移植前因子に影響を受けることが知られており、機械学習手法の応用が近年進められている。しかしながら、生存時間解析で広く使用されている統計学的手法の Cox 比例ハザードモデルと比較して、予後予測能を高める手法の検討は十分に進んでいるとは言い難い。本研究では、古典的統計学解析手法と複数の機械学習モデルを、スタッキングと呼ばれるアンサンブル学習手法を用いる事で統合して新たなメタモデルを作成し、古典的統計解析手法や既存の機械学習手法と C-index 及び Calibration を用いて予後予測能を比較した。アンサンブル学習の基礎となるモデルには、Cox 比例ハザードモデル、Random Survival Forest、Dynamic DeepHit、ADABoost、XGBoost、Extra Tree Classifier、Bagging Classifier、及び Gradient Boosting Classifier を用いた。全生存、再発、非再発死亡、GVHD 発症といった様々なエンドポイントにおいて従来の統計学的解析や機械学習モデルと比較して高い C-index を示した(ensemble model: 0.670; Cox-PH: 0.668; Random Survival Forest: 0.660; Dynamic DeepHit: 0.646)。アンサンブルモデルは、全生存 (C-index: 0.763),再発 (C-index: 0.793)、非再発死亡 (C-index: 0.777)、グレード II-IV 急性 GVHD (C-index: 0.656)、慢性 GVHD (C-index: 0.583)に関しても、既存の手法より高い C-index を示した。同モデルはまた、GRFS (0.023)、OS (0.210), relapse (0.044)、グレード II-IV 急性 GVHD (0.017)、及び慢性 GVHD (0.258)において、最も低い Integrated Calibration Index を示した。本研究における結果から、アンサンブル学習を用いる事で、既存の統計学的手法や機械学習手法よりも優れた予後予測能を示すモデルが作成できる可能性を示しており、移植方法の選択に役立つ事が期待できると考えている。

参考文献

1. Martino R, de Wreede L, Fiocco M, et al; Acute Leukemia Working Party the subcommittee for Myelodysplastic Syndromes of the Chronic Malignancies Working Party of the European group for Blood Marrow Transplantation Group (EBMT). Comparison of conditioning regimens of various intensities for allogeneic hematopoietic SCT using HLA-identical sibling donors in AML and MDS with ,10% BM blasts: a report from EBMT. Bone Marrow Transplant. 2013;48(6):761-770.

2. Bornh€auser M, Kienast J, Trenschel R, et al. Reduced-intensity conditioning versus standard conditioning before allogeneic haemopoietic cell transplantation in patients with acute myeloid leukaemia in first complete remission: a prospective, open-label randomised phase 3 trial. Lancet Oncol. 2012;13(10):1035-1044.

3. Ossenkoppele GJ, Janssen JJWM, van de Loosdrecht AA. Risk factors for relapse after allogeneic transplantation in acute myeloid leukemia. Haematologica. 2016;101(1):20-25.

4. Arai Y, Takeda J, Aoki K, et al; AML and MDS Working Group of the Japan Society for Hematopoietic Cell Transplantation. Efficiency of high-dose cytarabine added to CY/TBI in cord blood transplantation for myeloid malignancy. Blood. 2015;126(3):415-422.

5. Sorror ML, Maris MB, Storb R, et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood. 2005;106(8):2912-2919.

6. Gratwohl A, Hermans J, Goldman JM, et al; Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Risk assessment for patients with chronic myeloid leukaemia before allogeneic blood or marrow transplantation. Lancet. 1998;352(9134):1087-1092.

7. Shouval R, Bondi O, Mishan H, Shimoni A, Unger R, Nagler A. Application of machine learning algorithms for clinical predictive modeling: a data- mining approach in SCT. Bone Marrow Transplant. 2014;49(3):332-337.

8. Shouval R, Labopin M, Bondi O, et al. Prediction of allogeneic hematopoietic stem-cell transplantation mortality 100 days after transplantation using a machine learning algorithm: A European Group for Blood and Marrow Transplantation Acute Leukemia Working Party retrospective data mining study. J Clin Oncol. 2015;33(28):3144-3151.

9. Shouval R, Labopin M, Unger R, et al. Prediction of hematopoietic stem cell transplantation related mortality: lessons learned from the in-silico approach. A European Society for Blood and Marrow Transplantation Acute Leukemia Working Party data mining study. PLoS One. 2016;11(3): e0150637.

10. Buturovic L, Shelton J, Spellman SR, et al. Evaluation of a machine learning-based prognostic model for unrelated hematopoietic cell transplantation donor selection. Biol Blood Marrow Transplant. 2018;24(6):1299-1306.

11. Arai Y, Kondo T, Fuse K, et al. Using a machine learning algorithm to predict acute graft-versus-host disease following allogeneic transplantation. Blood Adv. 2019;3(22):3626-3634.

12. Ishwaran H, Gerds TA, Kogalur UB, Moore RD, Gange SJ, Lau BM. Random survival forests for competing risks. Biostatistics. 2014;15(4): 757-773.

13. Shouval R, Ruggeri A, Labopin M, et al. An integrative scoring system for survival prediction following umbilical cord blood transplantation in acute leukemia. Clin Cancer Res. 2017;23(21):6478-6486.

14. Okamura H, Nakamae M, Koh S, et al. Interactive web application for plotting personalized prognosis prediction curves in allogeneic hematopoietic cell transplantation using machine learning. Transplantation. 2021;105(5):1090-1096.

15. Holtan SG, DeFor TE, Lazaryan A, et al. Composite end point of graft-versus-host disease-free, relapse-free survival after allogeneic hematopoietic cell transplantation. Blood. 2015;125(8):1333-1338.

16. Ruggeri A, Labopin M, Ciceri F, Mohty M, Nagler A. Definition of GvHD-free, relapse-free survival for registry-based studies: an ALWP-EBMT analy- sis on patients with AML in remission. Bone Marrow Transplant. 2016;51(4):610-611.

17. Przepiorka D, Weisdorf D, Martin P, et al. 1994 consensus conference on acute GVHD grading. Bone Marrow Transplant. 1995;15(6):825-828.

18. Sullivan KM, Agura E, Anasetti C, et al. Chronic graft-versus-host disease and other late complications of bone marrow transplantation. Semin Hematol. 1991;28(3):250-259.

19. Giralt S, Ballen K, Rizzo D, et al. Reduced-intensity conditioning regimen workshop: defining the dose spectrum. Report of a workshop convened by the Center for International Blood and Marrow Transplant Research. Biol Blood Marrow Transplant. 2009;15(3):367-369.

20. Armand P, Kim HT, Logan BR, et al. Validation and refinement of the disease risk index for allogeneic stem cell transplantation. Blood. 2014; 123(23):3664-3671.

21. Kanda J, Kawase T, Tanaka H, et al; HLA Working Group of the Japan Society for Hematopoietic Cell Transplantation. Effects of haplotype matching on outcomes after adult single-cord blood transplantation. Biol Blood Marrow Transplant. 2020;26(3):509-518.

22. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med. 2015;162(1):55-63.

23. Opitz D, Maclin R. Popular ensemble methods: an empirical study. J Artif Intell Res. 1999;11:169-198.

24. Reid N: The statistical analysis of failure time data [book review]. Can J Stat. 1982;10(1):64-66.

25. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. Ann Appl Stat. 2008;2(3):841-860.

26. Lee C, Yoon J, Schaar MV. Dynamic-DeepHit: a deep learning approach for dynamic survival analysis with competing risks based on longitudinal data. IEEE Trans Biomed Eng. 2020;67(1):122-133.

27. Thongkam J, Xu G, Zhang Y, Huang F. Breast cancer survivability via AdaBoost algorithms. Proc. Second Australas. Workshop Health Data Knowl. Manag. 2008;80:55-64.

28. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. 2016;785-794.

29. Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. 2006;63(1):3-42.

30. Hothorn T, Lausen B, Benner A, Radespiel-Tro€ger M. Bagging survival trees. Stat Med. 2004;23(1):77-91.

31. Chen Y, Jia Z, Mercola D, Xie X. A gradient boosting algorithm for survival analysis via direct optimization of concordance index. Comput Math Methods Med. 2013;2013:873595.

32. Liu P, Fu B, Yang SX. HitBoost: survival analysis via a multi-output gradient boosting decision tree method. IEEE Access. 2019;7:56785-56795.

33. Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst. 2017;30:4765-4774.

34. Uno H, Cai T, Pencina MJ, D’Agostino RB, Wei LJ. On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat Med. 2011;30(10):1105-1117.

35. Wolbers M, Blanche P, Koller MT, Witteman JCM, Gerds TA. Concordance for prognostic models with competing risks. Biostatistics. 2014;15(3): 526-539.

36. Austin PC, Harrell FE Jr, van Klaveren D. Graphical calibration curves and the integrated calibration index (ICI) for survival models. Stat Med. 2020; 39(21):2714-2742.

37. Gooley TA, Leisenring W, Crowley J, Storer BE. Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. Stat Med. 1999;18(6):695-706.

38. Sachs MC, Discacciati A, Everhov ÅH, Ole´n O, Gabriel EE. Ensemble prediction of time-to-event outcomes with competing risks: a case-study of surgical complications in Crohn’s disease. J R Stat Soc Ser C Appl Stat. 2019;68(5):1431-1446.

39. Magenau J, Braun T, Gatza E, et al. Assessment of individual versus composite endpoints of acute graft-versus-host disease in determining long- term survival after allogeneic transplantation. Biol Blood Marrow Transplant. 2019;25(8):1682-1688.

40. Storb R, Gyurkocza B, Storer BE, et al. Graft-versus-host disease and graft-versus-tumor effects after allogeneic hematopoietic cell transplantation. J Clin Oncol. 2013;31(12):1530-1538.

41. Kurosawa S, Oshima K, Yamaguchi T, et al. Quality of life after allogeneic hematopoietic cell transplantation according to affected organ and severity of chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2017;23(10):1749-1758.

42. Schetelig J, de Wreede LC, Andersen NS, et al; CLL subcommittee, Chronic Malignancies Working Party. Centre characteristics and procedure- related factors have an impact on outcomes of allogeneic transplantation for patients with CLL: a retrospective analysis from the European Society for Blood and Marrow Transplantation (EBMT). Br J Haematol. 2017;178(4):521-533.

43. Kanda J, Saji H, Fukuda T, et al. Related transplantation with HLA-1 Ag mismatch in the GVH direction and HLA-8/8 allele-matched unrelated trans- plantation: a nationwide retrospective study. Blood. 2012;119(10):2409-2416.

44. Kanda Y, Kanda J, Atsuta Y, et al. Impact of a single human leucocyte antigen (HLA) allele mismatch on the outcome of unrelated bone marrow transplantation over two time periods. A retrospective analysis of 3003 patients from the HLA Working Group of the Japan Society for Blood and Marrow Transplantation. Br J Haematol. 2013;161(4):566-577.

45. Morishima Y, Kashiwase K, Matsuo K, et al; Japan Marrow Donor Program. Biological significance of HLA locus matching in unrelated donor bone marrow transplantation. Blood. 2015;125(7):1189-1197.

46. Morishima S, Shiina T, Suzuki S, et al; Japan Marrow Donor Program. Evolutionary basis of HLA-DPB1 alleles affects acute GVHD in unrelated donor stem cell transplantation. Blood. 2018;131(7):808-817.

47. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23): 2209-2221.

48. Lindsley RC, Saber W, Mar BG, et al. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N Engl J Med. 2017; 376(6):536-547.

49. Nazha A, Hu Z-H, Wang T, et al. A personalized prediction model for outcomes after allogeneic hematopoietic cell transplant in patients with myelodysplastic syndromes. Biol Blood Marrow Transplant. 2020;26(11):2139-2146.

50. Gandelman JS, Byrne MT, Mistry AM, et al. Machine learning reveals chronic graft-versus-host disease phenotypes and stratifies survival after stem cell transplant for hematologic malignancies. Haematologica. 2019;104(1):189-196.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る