リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「加圧熱水抽出したバイオマスからの高強度素材の製造に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

加圧熱水抽出したバイオマスからの高強度素材の製造に関する研究

王, 千里 WANG, QIANLI ワン, チエンリ 九州大学

2022.09.22

概要

Traditional building materials such as cement and steel, cause massive energy consumption and environmental problems. Wood particle boards have been widely applied in constructions and building materials due to their specific light weight, low production cost and renewable property. However, such continuing application of wooden products will inevitably consume abundant forest resources, which will affect the sustainable applications, especially in the case of a long growth cycle (more than 10 years) of trees. Therefore, it is significant to substitute wooden boards with non-wood lignocellulosic biomass partially. In order to increase the strength of the densified material, the pretreatments to overcome the recalcitrant structure of raw biomass seems to be necessary. Unlike the commonly used mechanical, chemical, and enzymatic treatment, the hydrothermal treatment represented by hot-compressed water (HCW) presents a green and efficient process. This study aims to develop high-strength densified materials made from non-wood biomass through an environmentally friendly procedure.

Chapter 1 introduces the background, significance and objectives of the development of non-wood lignocellulose boards. It briefly discusses the properties of lignocellulose biomass, including rice husk (RH) and bamboo. The classification of biomass boards, the pretreatment of biomass and the densification process are reviewed

Chapter 2 describes preparation of high-strength plate from RH pretreated in HCW. Traditional particleboards involve formaldehyde-based resins, which easily release toxic formaldehyde. All-natural densified materials have drawn increasing attention. As an agricultural, RH has abundant production but is usually discarded and incinerated. This work proposes processing of RH into high-strength material without external binder after pretreatment in HCW. RH was treated in flow-type HCW at 140−200 °C in a tubular percolator, dried, pulverized, and then molded into rectangular or circular plates by hot pressing without a binder. The obtained plates of HCW-treated RH had greater tensile and flexural strengths than those of the original RH, while having smaller water uptake and swellability. The plates of RH pretreated at 160 °C had the best properties such as tensile strength of 26 MPa (2.8 times that of the nontreated RH), flexural strength of 21 MPa (2.6 times), fracture energy of 1453 mJ (7.8 times), water uptake of 40 wt % (0.74 times), and swelling ratio in water of 1.37 (0.92 times). These properties were attributed mainly to greatly improved pulverizability, resulting occurrence of fibrous reinforcement material, and optimized fractions of cellulose and silica (as reinforcement materials) and those of hemicellulose and lignin (as the matrix and binder).

Chapter 3 describes preparation of high-strength plate from HCW-treated RH blended with polyvinyl alcohol (PVA). To further improve the strength and water resistance of densified RH, it is reasonable to introduce an environmentally friendly binder into RH-based materials. This work proposes fabrication of high-strength RH-based composite materials with PVA via densification by hot pressing. RH was pretreated in HCW prior to pulverization and blending with PVA or PVA/glycerol (GL). The incorporation of PVA greatly improved the strength, toughness and water resistance of the composite plate. The tensile strength, flexural strength and toughness of a composite of HCW treated RH, PVA and GL with a mass ratio of 80:20:2 were 42 MPa, 81 MPa and 5.9 MJ/m3, respectively. The HCW treatment and blending with PVA and GL improved those properties of the hot-pressed original RH plate by factors of 2.5, 2.3 and 6.7, respectively, and reduced water uptake and swelling ratio in water by 57% and 53%, respectively.

Chapter 4 focuses on preparation of high-strength plate of residue from HCW treatment of bamboo. In order to expand the utilization of different biomass resources and investigate the influence of HCW treatment time, fast-growing bamboo is selected to prepare binder-free plates. The process involves a sequential batch-type hydrothermal treatment (HT), pulverization, and hot-press molding. The effect of HT time (2–137 min) on the strength of the plates and the corresponding mechanism was investigated. The strength of the plates was maximized for pretreatment at 77 min corresponding to the tensile strength (28 MPa), which is 1.9 times that of the nontreated bamboo plate. Hemicellulose, lignin and solvent-soluble matter contributed to the strength as binder/matrix, while bamboo fibers provided the reinforcement.

Chapter 5 gives general conclusions of this thesis and outlooksfor possible future research.

この論文で使われている画像

参考文献

Chapter1

[1] Chen, H. Biotechnology of Lignocellulose. Theory and Practice China: Chemical Industry Press and Springer, 2014.

[2] Madurwar, M.V.; Ralegaonkar, R. V.; Mandavgane, S. A. Application of agro-waste for sustainable construction materials: A review. Constr. Build. Mater. 2013, 38, 872–878.

[3] Knowles, C.; Theodoropoulos C.; Griffin, C.; Allen, J. Oregon design professionals views on structural building products in green buildings: implications for wood. Can. J. Forest Res. 2011, 41, 390–400.

[4] Upton, B.; Miner, R.; Spinney, M.; Heath, L. S. The greenhouse gas and energy impacts of using wood instead of alternatives in residential construction in the United States. Biomass Bioenergy 2008, 32, 1–10.

[5] Asif, M. 2 - Sustainability of timber, wood and bamboo in construction. in: J. M. Khatib(Ed.), Sustainability of Construction Materials, Woodhead Publishing, 2009, 31–54.

[6] Asdrubali, F.; Ferracuti, B.; Lombardi, L.; Guattari, C.; Evangelisti, L.; Grazieschi, G. A review of structural, thermo-physical, acoustical, and environmental properties of wooden materials for building applications. Build. Environ. 2017, 114, 307–332.

[7] Marcin, T. C. The Outlook for the Use of Wood Products in New Housing in the 21st-Century. Forest Prod. J. 1987, 37, 55–61.

[8] Song, J. W.; Chen, C. J.; Zhu, S. Z.; Zhu, M. W.; Dai, J. Q.; Ray, U., Li, Y. J.; Kuang, Y. D.; Li, Y. F.; Quispe, N.;Yao, Y. G.; Gong, A.; Leiste, U. H.; Bruck, H. A.; Zhu, J. Y.; Vellore, A.; Li, H.; Minus, M. L.; Jia, Z.; Martini, A.; Li, T.; Hu, L. B. Processing bulk natural wood into a high-performance structural material. Nature 21 2018, 554, 224–228.

[9] Auriga, R.; Gumowska, A.; Szymanowski, K.; Wronka, A.; Robles, E.; Ocipka, P.; Kowaluka, G. Performance properties of plywood composites reinforced with carbon fibers. Compos. Struct. 2020, 248, 112533.

[10] Akbulut, T.; Ayrilmis, N. Some advantages of three-layer medium-density fibreboard as compared to the traditional single-layer one. J. Wood Sci. 2019, 65, 46.

[11] Food and Agriculture Organization of the United Nations. FAO Yearbook of Forest Products, 2018. URL: https://www.fao.org/forestry/statistics/80570/en/.

[12] Schulze, E. D.; Körner C. I.; Law, B. E.; Haberl, H.; Luyssaert, S. Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral. GCB Bioenergy 2012, 4, 611–616.

[13] Bais-Moleman, A. L.; Sikkema, R.; Vis, M.; Reumerman, P.; Theurl, M. C.; Erb, K. H. Assessing wood use efficiency and greenhouse gas emissions of wood product cascading in the European Union. J. Cleaner Prod. 2018, 172, 3942–3954.

[14] Hu, S. J.; Luo, X. L.; Li, Y. B. Polyols and Polyurethanes from the Liquefaction of Lignocellulosic Biomass. Chemsuschem 2014, 7, 66–72.

[15] Liu, S. C.; Du, G. B.; Yang, H. X.; Su, H.; Ran, X.; Li, J.; Zhang, L. P.; Gao, W.; Yang, L. Developing High-Performance Cellulose-Based Wood Adhesive with a Cross-Linked Network. ACS Sustainable Chem. Eng. 2021, 9, 16849–16861.

[16] Huber, G. W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 2006, 106, 4044–4098.

[17] Wang, T. P.; Li, H.; Yuan, J. M.; Li, W. X.; Li, K.; Huang, Y. B.; Xiao, L. P.; Lu, Q. Structures and pyrolytic characteristics of organosolv lignins from typical softwood, hardwood and herbaceous biomass. Ind. Crops Prod. 2021, 171, 113912

[18] Sette, M.; Wechselberger, R.; Crestini, C. Elucidation of Lignin Structure by Quantitative 2D NMR. Chem. Eur. J. 2011, 17, 9529–9535.

[19] Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem. Soc. Rev. 2012, 41, 8075–8098.

[20] Rubin, E. M. Genomics of cellulosic biofuels. Nature 2008, 454, 841–845.

[21] Food and Agriculture Organization of the United Nations. Regions by Commodity (Rice, Paddy), 2019. URL: http://www.fao.org/faostat/en/#data/QCL.

[22] Lim, J. S.; Manan, Z. A.; Alwi, S. R. W.; Hashim, H. A. review on utilisation of biomass from rice industry as a source of renewable energy. Renewable Sustainable Energy Rev. 2012, 16, 3084–3094.

[23] Chen, H. R.; Wang, W. X.; Martin, J. C.; Oliphant, A. J.; Doerr, P. A.; Xu, J. F.; DeBorn, K. M.; Chen, C. X.; Sun, L. Y. Extraction of Lignocellulose and Synthesis of Porous Silica Nanoparticles from Rice Husks: A Comprehensive Utilization of Rice Husk Biomass. ACS Sustainable Chem. Eng. 2013, 1, 254–259.

[24] Bazargan, A.; Bazargan, M.; McKay, G. Optimization of rice husk pretreatment for energy production. Renewable Energy 2015, 77, 512–520.

[25] Pode, R. Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable Sustainable Energy Rev. 2016, 53, 1468–1485.

[26]Azat, S.; Korobeinyk,A.V.; Moustakas, K.; Inglezakis, V.J. Sustainable production of pure silica from rice husk waste in Kazakhstan. J. Cleaner Prod. 2019, 217, 352–359.

[27] Brito, F. M. S.; Júnior, G. B.; Paes J. B.; Belini, U. L.; Tomazello, M. Technological characterization of particleboards made with sugarcane bagasse and bamboo culm particles. Constr. Build. Mater. 2020, 262, 120501.

[28] Li, Z. H.; Chen, C. J.; Mi, R. Y.; Gan, W. T.; Dai, J. Q.; Jiao, M. L.; Xie, H.;Yao, Y. G.; Xiao, S. L.; Hu, L. B. A Strong, Tough, and Scalable Structural Material from Fast-Growing Bamboo. Adv. Mater. 2020, 32, 1906308.

[29] Nayak, L.; Mishra S. P. Prospect of bamboo as a renewable textile fiber, historical overview, labeling, controversies and regulation. Fashion Text. 2016, 3, 2.

[30] Chen, C. J.; Li, Z. H.; Mi, R. Y.; Dai, J. Q.; Xie, H.; Pei, Y.; Li, J. G. Qiao, H. Y. Tang, H; Yang, B.; Hu, L. B. Rapid Processing of Whole Bamboo with Exposed, Aligned Nanofibrils toward a High-Performance Structural Material. ACS Nano 2020, 14, 5194–5202.

[31] Song, W.; Zhu, M. H.; Zhang, S. B. Comparison of the Properties of Fiberboard Composites with Bamboo Green, Wood, or their Combination as the Fibrous Raw 23 Material. BioResources 2018, 13, 3315–3334.

[32] Hashim, R.; Saari, N.; Sulaiman, O.; Sugimoto T.; Hiziroglu, S.; Sato, M.; Tanaka, R. Effect of particle geometry on the properties of binderless particleboard manufactured from oil palm trunk. Mater. Des. 2010, 31, 4251–4257.

[33] Legesse, A. A.; Gebremeskel, S. A.; Paramasivam, V.; Selvaraj, S. K. Development and characterization of bamboo-sesame stalk hybrid urea-formaldehyde matrix composite for particleboard application. Mater. Today: Proc. 2021, 46, 7351–7358.

[34] Pędzik, M.; Janiszewska, D.; Rogoziński, T. Alternative lignocellulosic raw materials in particleboard production: A review. Ind. Crops Prod. 2021, 174, 114162.

[35] Bacigalupe, A.; Escobar, M. M. Soy Protein Adhesives for Particleboard Production - A Review. J. Polym. Environ. 2021, 29, 2033–2045.

[36] Amini, M. H. M.; Hashim, R.; Hiziroglu, S.; Sulaiman, N. S.; Sulaiman, O. Properties of particleboard made from rubberwood using modified starch as binder. Composites, Part B 2013, 50, 259-264.

[37] Akinyemi, B. A.; Olamide, O.; Oluwasogo, D. Formaldehyde free particleboards from wood chip wastes using glutaraldehyde modified cassava starch as binder. Case Stud. Constr. Mater. 2019, 11, e00236.

[38] Gao, Z. H.; Zhang, Y. H.; Fang, B.; Zhang, L. P.; Shi, J. Y. The effects of thermalacid treatment and crosslinking on the water resistance of soybean protein. Ind. Crops Prod. 2015, 74, 122–131.

[39] Liu, K. S. Soybeans: chemistry, technology, and utilization. Chapman & Hall: New York, 1997.

[40] Ciannamea, E. M.; Stefani, P. M.; Ruseckaite, R. A. Medium-density particleboards from modified rice husks and soybean protein concentrate-based adhesives. Bioresour. Technol. 2010, 101, 818–825.

[41] Bajwa, D. S.; Pourhashem, G.; Ullah, A. H.; Bajwa, S. G. A concise review of current lignin production, applications, products and their environmental impact. Ind. Crops Prod. 2019, 139, 111526.

[42] Ma, R. S.; Xu Y.; Zhang, X. Catalytic Oxidation of Biorefinery Lignin to Value- 24 added Chemicals to Support Sustainable Biofuel Production. Chemsuschem 2015, 8, 24–51.

[43] Zhang, Y.; Wu, J. Q.; Li, H.; Yuan, T. Q.; Wang, Y. Y.; Sun, R. C. Heat Treatment of Industrial Alkaline Lignin and its Potential Application as an Adhesive for Green Wood-Lignin Composites. ACS Sustainable Chem. Eng. 2017, 5, 7269– 7277.

[44] Mili, M.; Hashmi, S. A. R.; Ather, M.; Hada, V.; Markandeya, N.; Kamble, S.; Mohapatra, M.; Rathore, S. K. S.; Srivastava, A. K.; Verma, S. Novel lignin as natural-biodegradable binder for various sectors-A review. J. Appl. Polym. Sci. 2022, 139, e51951.

[45] Basturk, M. A. Heat Applied Chitosan Treatment on Hardwood Chips to Improve Physical and Mechanical Properties of Particleboard. BioResources 2012, 7, 4858–4866.

[46] Umemura, K.; Kaiho, K.; Kawai, S. Characterization of Bagasse-Rind Particleboard Bonded with Chitosan. J. Appl. Polym. Sci. 2009, 113, 2103–2108.

[47] Sinha P.; Mathur, S.; Sharma, P.; Kumar, V. Potential of pine needles for PLAbased composites. Polym. Compos. 2018, 39, 1339–1349.

[48] Song, X. W.; Guo, Z. P.; Wu, J. X.; Zhang, Y. F.; Cai, Z. Y.; Wang, X. L. Fabrication and characterization of soybean straw and polylactide acid-based hybrid bio-board. J. Adhes. Sci. Technol. 2022, (DOI: 10.1080/01694243.2022.2080930).

[49] Rynkowska, E.; Fatyeyeva, K.; Marais, S.; Kujawa, J.; Kujawski, W. Chemically and Thermally Crosslinked PVA-Based Membranes: Effect on Swelling and Transport Behavior. Polymers 2019, 11, 1799.

[50] Okahisa, Y.; Matsuoka, K.; Yamada, K.; Wataoka, I. Comparison of polyvinyl alcohol films reinforced with cellulose nanofibers derived from oil palm by impregnating and casting methods. Carbohydr. Polym. 2020, 250, 116907.

[51] Zhang, X.; Liu, W. F.; Yang, D. J.; Qiu, X. Q. Biomimetic Supertough and Strong Biodegradable Polymeric Materials with Improved Thermal Properties and Excellent UV-Blocking Performance. Adv. Funct. Mater. 2019, 29, 1806912.

[52] Wang, H. L.; Guo, H.; Chen, R. C.; Zeng, Y. Y.; Yang, M.; Gong, Y. C.; Shi, Y. L.; 25 Ye, D. Y.; Liao, Z. J.; Qi, J. Q.; Shi, Q. W.; Lu, T. C. A novel mass production method for Li2TiO3 tritium breeder ceramic pebbles using polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) assisted granulation method. Ceram. Int. 2020, 46, 4167–4173.

[53] Zhang, J.; Lei, W. W.; Chen, J. Y.; Liu, D.; Tang, B.; Li, J. L.; Wang, X. G. Enhancing the thermal and mechanical properties of polyvinyl alcohol (PVA) with boron nitride nanosheets and cellulose nanocrystals. Polymer 2018, 148, 101–108.

[54] Zhou, Y.; Huang, J.; Yang, X.; Dong, Y.; Feng, T.; Liu, J. Enhancing the PVA fibermatrix interface properties in ultra high performance concrete: An experimental and molecular dynamics study. Constr. Build. Mater. 2021, 285, 122862.

[55] Bian, H. Y.; Wei, L. Q.; Lin, C. X.; Ma, Q. L.; Dai, H. Q.; Zhu, J. Y. LigninContaining Cellulose Nanofibril-Reinforced Polyvinyl Alcohol Hydrogels. ACS Sustainable Chem. Eng. 2018, 6, 4821–4828.

[56] Nasir, M.; Khali, D. P.; Jawaid, M.; Tahir, P. M.; Siakeng, R.; Asim, M.; Khan, T. A. Recent development in binderless fiber-board fabrication from agricultural residues: A review. Constr. Build. Mater. 2019, 211, 502–516.

[57] Lamaming, J.; Sulaiman, O.; Sugimoto, T.; Hashim, R.; Said, N.; Sato, M. Influence of chemical components of oil palm on properties of binderless particleboard. BioResources 2013, 8, 3358–3371.

[58] Tajuddin, M.; Ahmad, Z.; Ismail, H. A Review of Natural Fibers and Processing Operations for the Production of Binderless Boards. BioResources 2016, 11, 5600– 5617.

[59] Himmel M. E.; Ding S.Y.; Johnson, D. K.; Adney, W. S.; Nimlos, M. R.; Brady, J. W.; Foust, T. D. Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 2007, 315, 804–807.

[60] Sun, S. N.; Sun, S. L.; Cao, X. F.; Sun, R. C. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour. Technol. 2016, 199, 49–58.

[61] Delgado-Aguilar M., Tarrés, Q.; Puig,J.; Boufi, S.; Blanco Á.; Mutjé, P. Enzymatic Refining and Cellulose Nanofiber Addition in Papermaking Processes from 26 Recycled and Deinked Slurries. BioResources 2015, 10, 5730–5743.

[62] Barana, D.; Salanti, A.; Orlandi M.; Ali, D. S.; Zoia L. Biorefinery process for the simultaneous recovery of lignin, hemicelluloses, cellulose nanocrystals and silica from rice husk and Arundo donax. Ind. Crops Prod. 2016, 86, 31–39.

[63] Hafid, H. S.; Omar, F. N.; Zhu,J.; Wakisaka, M. Enhanced crystallinity and thermal properties of cellulose from rice husk using acid hydrolysis treatment. Carbohydr. Polym. 2021, 260, 117789.

[64] Pan, M. Z.; Zhou, D. G.; Zhou, X. Y.; Lian, Z. N. Improvement of straw surface characteristics via thermomechanical and chemical treatments. Bioresour. Technol. 2010, 101, 7930–7934.

[65] Kurokochi, Y.; Sato, M. Effect of surface structure, wax and silica on the properties of binderless board made from rice straw. Ind. Crops Prod. 2015, 77, 949–953.

[66] Zhang, L.; Hu, Y. C. Novel lignocellulosic hybrid particleboard composites made from rice straws and coir fibers. Mater. Des. 2014, 55, 19–26.

[67] Edeerozey, A. M. M.; Akil, H. M.; Azhar, A. B.; Ariffin M. I. Z. Chemical modification of kenaf fibers. Mater Lett. 2007, 61, 2023–2025.

[68] Wu, J. Q.; Wen, J. L.; Yuan, T. Q.; Sun, R. C. Integrated Hot-Compressed Water and Laccase-Mediator Treatments of Eucalyptus grandis Fibers: Structural Changes of Fiber and Lignin. J. Agric. Food Chem. 2015, 63, 1763–1772.

[69] Euring, M.; Rühl, M.; Ritter, N.; Kües, U.; Kharazipour, A. Laccase mediator systems for eco-friendly production of medium-density fiberboard (MDF) on a pilot scale: Physicochemical analysis of the reaction mechanism. Biotechnol J. 2011, 6, 1253–1261.

[70] Álvarez C.; Rojano, B.; Almaza, O.; Rojas, O. J.; Gañán P. Self-Bonding Boards From Plantain Fiber Bundles After Enzymatic Treatment: Adhesion Improvement of Lignocellulosic Products by Enzymatic Pre-Treatment. J. Polym. Environ. 2011, 19, 182–188.

[71] Kharazipour, A.; Huettermann, A.; Luedemann, H. D. Enzymatic activation of wood fibres as a means for the production of wood composites. J. Adhes. Sci. Technol. 1997, 11, 419–427.

[72] Agustin, M. B.; de Carvalho, D. M.; Lahtinen, M. H.; Hilden, K.; Lundell, T.; Mikkonen, K. S. Laccase as a Tool in Building Advanced Lignin-Based Materials. Chemsuschem 2021, 14, 4615–4635.

[73] Felby, C.; Thygesen, L. G.; Sanadi, A.; Barsberg, S. Native lignin for bonding of fiber boards - evaluation of bonding mechanisms in boards made from laccasetreated fibers of beech (Fagus sylvatica). Ind Crops Prod. 2004, 20, 181–189.

[74] Yang, Z. X.; Song, W.; Cao, Y.; Wang, C. C.; Hu, X. X.; Yang, Y.; Zhang, S. B. The Effect of Laccase Pretreatment Conditions on the Mechanical Properties of Binderless Fiberboards with Wheat Straw. BioResources 2017, 12, 3707–3719.

[75] Giardina, P.; Faraco, V.; Pezzella, C.; Piscitelli, A.; Vanhulle, S.; Sannia, G. Laccases: a never-ending story. Cell. Mol. Life Sci. 2010, 67, 369–385.

[76] Sun, W.; Tajvidi, M.; Hunt, C. G.; Cole, B. J. W.; Howell, C.; Gardner, D. J.; Wang, J. Fungal and enzymatic pretreatments in hot-pressed lignocellulosic biocomposites: A critical review. J. Cleaner Prod. 2022, 353, 131659.

[77] Nasir, M.; Gupta, A.; Beg, M. D. H.; Chua, G. K.; Jawaid, M.; Kumar, A.; Khan, T. A. Fabricating Eco-Friendly Binderless Fiberboard from Laccase-Treated Rubber Wood Fiber. BioResources 2013, 8, 3599–3608.

[78] Kudanga, T.; Prasetyo E. N.; Sipilä, J.; Nousiainen, P.; Widsten, P.; Kandelbauer A.; Nyanhongo, G. S.; Guebitz, G. Laccase-mediated wood surface functionalization. Eng. Life Sci. 2008, 8, 297–302.

[79] Shafiei, M.; Kabir, M. M.; Zilouei, H.; Horváth, I. S.; Karimi, K. Technoeconomical study of biogas production improved by steam explosion pretreatment. Bioresour. Technol. 2013, 148, 53–60.

[80] Singh, J.; Suhag, M.; Dhaka, A. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: A review. Carbohydr. Polym. 2015, 117, 624–631.

[81] Sarker T. R.; Pattnaik F.; Nanda, S.; Dalai, A. K.; Meda, V.; Naik, S. Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis. Chemosphere. 2021, 284, 131372.

[82] Bauer, A.; Lizasoain, J.; Theuretzbacher, F.; Agger, J. W.; Rincón, M., Menardo, 28 S.; Saylor, M. K.; Enguídanos, R.; Nielsen, P. J.; Potthast, A.; Zweckmair, T.; Gronauer, A.; Horn, S. J. Steam explosion pretreatment for enhancing biogas production of late harvested hay. Bioresour. Technol. 2014, 166, 403–410.

[83] Saari, N.; Hashim, R.; Sulaiman, O.; Hiziroglu, S.; Sato, M.; Sugimoto, T. Properties of steam treated binderless particleboard made from oil palm trunks. Composites, Part B 2014, 56, 344–349.

[84] Han, G. P.; Deng, J.; Zhang, S. Y.; Bicho, P.; Wu, Q. L. Effect of steam explosion treatment on characteristics of wheat straw. Ind. Crops Prod. 2010, 31, 28–33.

[85] Ciftci, D.; Saldaña M. D. A. Hydrolysis of sweet blue lupin hull using subcritical water technology. Bioresour. Technol. 2015, 194, 75–82.

[86] Okolie, J. A.; Nanda, S.; Dalai, A. K.; Berruti, F.; Kozinski J. A. A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas. Renewable Sustainable Energy Rev. 2020, 119, 109546.

[87] Meillisa, A.; Woo, H. C.; Chun, B. S. Production of monosaccharides and bioactive compounds derived from marine polysaccharides using subcritical water hydrolysis. Food Chem. 2015, 171, 70–77.

[88] Lin, R. C.; Cheng, J.; Ding, L. K.; Song W. L.; Qi F.; Zhou J. H.; Cen, K. F. Subcritical water hydrolysis of rice straw for reducing sugar production with focus on degradation by-products and kinetic analysis. Bioresour. Technol. 2015, 186, 8–14.

[89] Yu, Y.; Lou, X.; Wu, H. W. Some recent advances in hydrolysis of biomass in hotcompressed, water and its comparisons with other hydrolysis methods. Energy Fuels 2008, 22, 46–60.

[90] Jumhuri, N.; Hashim, R.; Sulaiman, O.; Nadhari, W. N. A. W.; Salleh, K. M.; Khalid, I.; Saharudin, N. I.; Razali, M. Z. Effect of treated particles on the properties of particleboard made from oil palm trunk. Mater. Des. 2014, 64, 769– 774.

[91] Elsheikh, A. H.; Panchal, H.; Shanmugan, S.; Muthuramalingam, T.; El-Kassas, A. M.; Ramesh, B. Recent progresses in wood-plastic composites: Pre-processing 29 treatments, manufacturing techniques, recyclability and eco-friendly assessment. Clean. Eng. Technol. 2022, 8, 100450.

[92] Hubbe, M. A.; Pizzi, A.; Zhang, H. Y.; Halis, R. Critical Links Governing Performance of Self-binding and Natural Binders for Hot-pressed Reconstituted Lignocellulosic Board without Added Formaldehyde: A Review. BioResources 2018, 13, 2049–2115.

[93] Bouajila, J.; Limare, A.; Joly, C.; Dole, P. Lignin plasticization to improve binderless fiberboard mechanical properties. Polym. Eng. Sci. 2005, 45, 809–816.

[94] Liu, R.; Long, L.; Sheng, Y.; Xu, J. F.; Qiu, H. Y.; Li, X. Y.; Wang, Y. X.; Wu, H. G. Preparation of a kind of novel sustainable mycelium/cotton stalk composites and effects of pressing temperature on the properties. Ind. Crops Prod. 2019, 141, 111732.

[95] Hashim, R.; Said, N.; Lamaming, J.; Baskaran, M.; Sulaiman, O.; Sato, M.; Hizirogluc, S; Sugimoto, T. Influence of press temperature on the properties of binderless particleboard made from oil palm trunk. Mater. Des. 2011, 32, 2520– 2525.

[96] Nadhari, W. N. A. W.; Karim, N. A.; Boon, J. G.; Salleh, K. M.; Mustapha, A.; Hashim, R.; Sulaiman, O.; Azni, M. E. Sugarcane (Saccharum officinarium L.) bagasse binderless particleboard: Effect of hot pressing time study. Mater. Today: Proc. 2020, 31, 313–317.

[97] Boon, J. G.; Hashim, R.; Sulaiman, O.; Hiziroglu, S.; Sugimoto, T.; Sato, M. Influence of processing parameters on some properties of oil palm trunk binderless particleboard. Eur. J. Wood Wood Prod. 2013, 71, 583–589.

[98] Ferreira, A. M.; Pereira, J.; Almeida, M.; Ferra, J.; Paiva, N.; Martins, J.; Magalhães, F. D.; Carvalho, L. H. Low-cost natural binder for particleboards production: study of manufacture conditions and stability. Int. J. Adhes. Adhes. 2019, 93, 59–63.

[99] Bai, Y.; Zhang, X. Q.; Xia, K. N. High strength biocomposites consolidated from hardwood particles by severe plastic deformation. Cellulose. 2019, 26, 1067–1084.

[100] Pereira, C.; Carvalho, L. M. H.; Costa, C. A. V. Modeling the continuous hot- 30 pressing of MDF. Wood Sci. Technol. 2006, 40, 308–326.

[101] Gupta, A.; Kumar, A.; Sharma, K.V.; Gupta, R. Application of High Conductive Nanoparticles to Enhance the Thermal and Mechanical Properties of Wood Composite. Mater. Today: Proc. 2018, 5, 3143–3149

Chapter2

[1] Asdrubali, F.; Ferracuti, B.; Lombardi, L.; Guattari, C.; Evangelisti, L.; Grazieschi, G. A review of structural, thermo-physical, acoustical, and environmental properties of wooden materials for building applications. Build. Environ. 2017, 114, 307−332.

[2] Ayrilmis, N.; Kwon, J. H.; Han, T. H. Effect of resin type and content on properties of composite particleboard made of a mixture of wood and rice husk. Int. J. Adhes. Adhes. 2012, 38, 79−83.

[3] Food and Agriculture Organization of the United Nations. Regions by Commodity (Rice, Paddy), 2019. URL: http://www.fao.org/faostat/en/#data/QCL.

[4] Pode, R. Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable Sustainable Energy Rev. 2016, 53, 1468−1485.

[5] Das, O.; Hedenqvist, M. S.; Prakash, C.; Lin, R. J. T. Nanoindentation and flammability characterisation of five rice husk biomasses for biocomposites applications. Composites, Part A 2019, 125, 105566.

[6] Pizzi, A.; Papadopoulos, A. N.; Policardi, F. Wood Composites and Their Polymer Binders. Polymers 2020, 12, 1115.

[7] Zhang, W.; Ma, Y. F.; Wang, C. P.; Li, S. H.; Zhang, M. M.; Chu, F. X. Preparation and properties of lignin-phenol-formaldehyde resins based on different biorefinery residues of agricultural biomass. Ind. Crops Prod. 2013, 43, 326−333.

[8] Pirayesh, H.; Khazaeian, A. Using almond (Prunus amygdalus L.) shell as a biowaste resource in wood based composite. Composites, Part B 2012, 43, 53 1475−1479.

[9] Bohm, M.; Salem, M. Z. M.; Srba, J. Formaldehyde emission monitoring from a variety of solid wood, plywood, blockboard and flooring products manufactured for building and furnishing materials. J. Hazard. Mater. 2012, 221, 68−79.

[10] Evon, P.; Vinet, J.; Labonne, L.; Rigal, L. Influence of thermo-pressing conditions on the mechanical properties of biodegradable fiberboards made from a deoiled sunflower cake. Ind. Crops Prod. 2015, 65, 117−126.

[11] Amini, E.; Tajvidi, M.; Gardner, D. J.; Bousfield, D. W. Utilization of Cellulose Nanofibrils as a Binder for Particleboard Manufacture. BioResources 2017, 12, 4093−4110.

[12] Diop, C. I. K.; Tajvidi, M.; Bilodeau, M. A.; Bousfield, D. W.; Hunt, J. F. Isolation of lignocellulose nanofibrils (LCNF) and application as adhesive replacement in wood composites: example of fiberboard. Cellulose 2017, 24, 3037−3050.

[13] Arevalo, R.; Peijs, T. Binderless all-cellulose fibreboard from microfibrillated lignocellulosic natural fibres. Composites, Part A 2016, 83, 38−46. [14] Liu, C.; Luan, P. C.; Li, Q.; Cheng, Z.; Sun, X.; Cao, D. X.; Zhu, H. L. Biodegradable, Hygienic, and Compostable Tableware from Hybrid Sugarcane and Bamboo Fibers as Plastic Alternative. Matter 2020, 3, 2066−2079.

[15] Nassar, M. M. A.; Alzebdeh, K. I.; Pervez, T.; Al-Hinai, N.; Munam, A. Progress and challenges in sustainability, compatibility, and production of eco-composites: A state-of-art review. J. Appl. Polym. Sci. 2021, 138, e51284.

[16] Sun, J. M.; Pang, Y.; Yang, Y. N.; Zhao, J. Q.; Xia, R. Q.; Li, Y. C.; Liu, Y.; Guo, H. W. Improvement of Rice Husk/HDPE Bio-Composites Interfacial Properties by Silane Coupling Agent and Compatibilizer Complementary Modification. Polymers 2019, 11, 1928.

[17] Dominguez-Robles, J.; Tarres, Q.; Alcala, M.; El Mansouri, N. E.; Rodriguez, A.; Mutje, P.; Delgado-Aguilar, M. Development of high-performance binderless fiberboards from wheat straw residue. Constr. Build. Mater. 2020, 232, 117247.

[18] Barakat, A.; Monlau, F.; Solhy, A.; Carrere, H. Mechanical dissociation and fragmentation of lignocellulosic biomass: Effect of initial moisture, biochemical and structural proprieties on energy requirement. Appl. Energy 2015, 142, 240−246.

[19] Dos Santos, J. C.; Siqueira, R. L.; Vieira, L. M. G.; Freire, R. T. S.; Mano, V.; Panzera, T. H. Effects of sodium carbonate on the performance of epoxy and 54 polyester coir-reinforced composites. Polym. Test. 2018, 67, 533−544.

[20] Chen, J. H.; Xu, J. K.; Huang, P. L.; Sun, R. C. Effect of alkaline pretreatment on the preparation of regenerated lignocellulose fibers from bamboo stem. Cellulose 2016, 23, 2727−2739.

[21] Boonsuk, P.; Sukolrat, A.; Bourkaew, S.; Kaewtatip, K.; Chantarak, S.; Kelarakis, A.; Chaibundit, C. Structure-properties relationships in alkaline treated rice husk reinforced thermoplastic cassava starch biocomposites. Int. J. Biol. Macromol. 2021, 167, 130−140.

[22] Cai, M.; Takagi, H.; Nakagaito, A. N.; Katoh, M.; Ueki, T.; Waterhouse, G. I. N.; Li, Y. Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Ind. Crops Prod. 2015, 65, 27−35.

[23] Chen, Y. P.; Dang, B. K.; Jin, C. D.; Sun, Q. F. Processing Lignocellulose-Based Composites into an Ultrastrong Structural Material. ACS Nano 2019, 13, 371−376.

[24] Tayeb, A. H.; Amini, E.; Ghasemi, S.; Tajvidi, M. Cellulose NanomaterialsBinding Properties and Applications: A Review. Molecules 2018, 23, 2684.

[25] Chaiwong, W.; Samoh, N.; Eksomtramage, T.; Kaewtatip, K., Surface-treated oil palm empty fruit bunch fiber improved tensile strength and water resistance of wheat gluten-based bioplastic. Composites, Part B 2019, 176, 107331.

[26] Nasir, M.; Khali, D. P.; Jawaid, M.; Tahir, P. M.; Siakeng, R.; Asim, M.; Khan, T. A. Recent development in binderless fiber-board fabrication from agricultural residues: A review. Constr. Build. Mater. 2019, 211, 502−516.

[27] Yang, Z. X.; Song, W.; Cao, Y.; Wang, C. C.; Hu, X. X.; Yang, Y.; Zhang, S. B. The Effect of Laccase Pretreatment Conditions on the Mechanical Properties of Binderless Fiberboards with Wheat Straw. BioResources 2017, 12, 3707−3719.

[28] Lourenco, A.; Gominho, J.; Curt, M. D.; Revilla, E.; Villar, J. C.; Pereira, H. Steam Explosion as a Pretreatment of Cynara cardunculus Prior to Delignification. Ind. Eng. Chem. Res. 2017, 56, 424−433.

[29] Tupciauskas, R.; Rizhikovs, J.; Brazdausks, P.; Fridrihsone, V.; Andzs, M. Influence of steam explosion pre-treatment conditions on binder-less boards from hemp shives and wheat straw. Ind. Crops Prod. 2021, 170, 113717.

[30] Nitsos, C. K.; Choli-Papadopoulou, T.; Matis, K. A.; Triantafyllidis, K. S. Optimization of Hydrothermal Pretreatment of Hardwood and Softwood Lignocellulosic Residues for Selective Hemicellulose Recovery and Improved 55 Cellulose Enzymatic Hydrolysis. ACS Sustainable Chem. Eng. 2016, 4, 4529−4544.

[31] Piqueras, C. M.; Cabeza, A.; Gallina, G.; Cantero, D. A.; Garcia-Serna, J.; Cocero, M. J. Online integrated fractionation-hydrolysis of lignocellulosic biomass using sub- and supercritical water. Chem. Eng. J. 2017, 308, 110−125.

[32] Wu, J. Q.; Wen, J. L.; Yuan, T. Q.; Sun, R. C. Integrated Hot-Compressed Water and Laccase-Mediator Treatments of Eucalyptus grandis Fibers: Structural Changes of Fiber and Lignin. J. Agric. Food Chem. 2015, 63, 1763−1772.

[33] Munir, M. T.; Kheirkhah, H.; Baroutian, S.; Quek, S. Y.; Young, B. R. Subcritical water extraction of bioactive compounds from waste onion skin. J. Cleaner Prod. 2018, 183, 487−494.

[34] Takada, M.; Minami, E.; Saka, S. Decomposition behaviors of the lignocellulosics as treated by semi-flow hot-compressed water. J. Supercrit. Fluids 2018, 133, 566−572.

[35] Kudo, S.; Okada, J.; Ikeda, S.; Yoshida, T.; Asano, S.; Hayashi, J. Improvement of Pelletability of Woody Biomass by Torrefaction under Pressurized Steam. Energy Fuels 2019, 33, 11253−11262.

[36] Sluiter, B. H. A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass. Laboratory Analytical Procedure; National Renewable Energy Laboratory: Golden, CO, 2012. https://www.nrel.gov/docs/gen/fy13/42618.pdf.

[37] Segal, L.; Creely, J. J.; Martin, A. E.; Conrad, C. M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 1959, 29, 786−794.

[38] Japanese Industrial Standard (2003) Japanese Industrial Standard JIS A 5908 for Particleboard. Japanese Standard Association, Japan.

[39] Dai, Y. J.; Li, Y. W.; Xu, X. F.; Zhu, Q. Y.; Yan, W.; Jin, S. L.; Harmuth, H. Fracture behaviour of magnesia refractory materials in tension with the Brazilian test. J. Eur. Ceram. Soc. 2019, 39, 5433−5441.

[40] Amiri, H.; Kianmehr, M. H.; Arabhosseini, A. Effect of particle size, die rotary speed and amount of urea on physical properties of the produced pellet. Int. J. Environ. Sci. Technol. 2019, 16, 2059−2068.

[41] Mori, A.; Yuniati, M. D.; Mursito, A. T.; Kudo, S.; Norinaga, K.; Nonaka, M.; Hirajima, T.; Kim, H. S.; Hayashi, J. Preparation of Coke from Indonesian Lignites 56 by a Sequence of Hydrothermal Treatment, Hot Briquetting, and Carbonization. Energy Fuels 2013, 27, 6607−6616.

[42] Kwon, J. H.; Ayrilmis, N.; Han, T. H. Enhancement of flexural properties and dimensional stability of rice husk particleboard using wood strands in face layers. Composites, Part B 2013, 44, 728−732.

[43] Cholake, S. T.; Rajarao, R.; Henderson, P.; Rajagopal, R. R.; Sahajwalla, V. Composite panels obtained from automotive waste plastics and agricultural macadamia shell waste. J. Cleaner Prod. 2017, 151, 163−171.

[44] Sitz, E. D.; Bajwa, D. S. The mechanical properties of soybean straw and wheat straw blended medium density fiberboards made with methylene diphenyl diisocyanate binder. Ind. Crops Prod. 2015, 75, 200−205.

[45] Yu, Y.; Lou, X.; Wu, H. W. Some recent advances in hydrolysis of biomass in hotcompressed, water and its comparisons with other hydrolysis methods. Energy Fuels 2008, 22, 46−60.

[46] Ciannamea, E. M.; Stefani, P. M.; Ruseckaite, R. A. Medium-density particleboards from modified rice husks and soybean protein concentrate-based adhesives. Bioresour. Technol. 2010, 101, 818−825.

[47] Kurokochi, Y.; Sato, M. Properties of binderless board made from rice straw: The morphological effect of particles. Ind. Crops Prod. 2015, 69, 55−59.

[48] Imman, S.; Arnthong, J.; Burapatana, V.; Champreda, V.; Laosiripojana, N. Influence of alkaline catalyst addition on compressed liquid hot water pretreatment of rice straw. Chem. Eng. J. 2015, 278, 85−91.

[49] Liu, D. G.; Sun, X.; Tian, H. F.; Maiti, S.; Ma, Z. S. Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose 2013, 20, 2981−2989.

[50] Collard, F. X.; Blin, J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew. Sust. Energy Rev. 2014, 38, 594−608.

[51] Gu, S.; Zhou, J. S.; Luo, Z. Y.; Wang, Q. H.; Ni, M. J. A detailed study of the effects of pyrolysis temperature and feedstock particle size on the preparation of nanosilica from rice husk. Ind. Crops Prod. 2013, 50, 540−549.

[52] Kong, L. Z.; Miao, P. J.; Qin, J. G. Characteristics and pyrolysis dynamic behaviors of hydrothermally treated micro crystalline cellulose. J. Anal. Appl. Pyrol. 2013, 100, 67−74.

[53] Sun, Q. N.; Foston, M.; Meng, X. Z.; Sawada, D.; Pingali, S. V.; O'Neill, H. M.; Li, H. J.; Wyman, C. E.; Langan, P.; Ragauskas, A. J.; Kumar, R. Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment. Biotechnol. Biofuels 2014, 7, 150.

[54] Guo, J.; Rennhofer, H.; Yin, Y. F.; Lichtenegger, H. C. The influence of thermohygro-mechanical treatment on the micro- and nanoscale architecture of wood cell walls using small- and wide-angle X-ray scattering. Cellulose 2016, 23, 2325−2340.

[55] Carrillo-Varela, I.; Pereira, M.; Mendonca, R. T. Determination of polymorphic changes in cellulose from Eucalyptus spp. fibres after alkalization. Cellulose 2018, 25, 6831−6845.

[56] Boon, J. G.; Hashim, R.; Sulaiman, O.; Hiziroglu, S.; Sugimoto, T.; Sato, M. Influence of processing parameters on some properties of oil palm trunk binderless particleboard. Eur. J. Wood Prod. 2013, 71, 583−589.

[57] Bazargan, A.; Rough, S. L.; McKay, G. Compaction of palm kernel shell biochars for application as solid fuel. Biomass Bioenergy 2014, 70, 489−497.

[58] Kaliyan, N.; Morey, R. V. Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 2009, 33, 337−359.

[59] Kong, L. J.; Tian, S. H.; He, C.; Du, C. M.; Tu, Y. T.; Xiong, Y. Effect of waste wrapping paper fiber as a “solid bridge” on physical characteristics of biomass pellets made from wood sawdust. Appl. Energy 2012, 98, 33−39.

[60] Misljenovic, N.; Bach, Q. V.; Tran, K. Q.; Salas-Bringas, C.; Skreiberg, O. Torrefaction Influence on Pelletability and Pellet Quality of Norwegian Forest Residues. Energy Fuels 2014, 28, 2554−2561.

[61] Hubbe, M. A.; Pizzi, A.; Zhang, H. Y.; Halis, R. Critical Links Governing Performance of Self-binding and Natural Binders for Hot-pressed Reconstituted Lignocellulosic Board without Added Formaldehyde: A Review. BioResources 2018, 13, 2049−2115.

[62] Chen, Y. P.; Dang, B. K.; Fu, J. Z.; Wang, C.; Li, C. C.; Sun, Q. F.; Li, H. Q. Cellulose-Based Hybrid Structural Material for Radiative Cooling. Nano Lett. 2021, 21, 397−404.

Chapter3

[1] Liu, R.; Long, L.; Sheng, Y.; Xu, J. F.; Qiu, H. Y.; Li, X. Y.; Wang, Y. X.; Wu, H. G. Preparation of a kind of novel sustainable mycelium/cotton stalk composites and effects of pressing temperature on the properties. Ind. Crops Prod. 2019, 141, 111732.

[2] Sitz, E. D.; Bajwa, D. S. The mechanical properties of soybean straw and wheat straw blended medium density fiberboards made with methylene diphenyl diisocyanate binder. Ind. Crops Prod. 2015, 75, 200−205.

[3] Komariah, R. N.; Miyamoto, T.; Tanaka, S.; Prasetiyo, K. W.; Syamani, F. A.; Subyakto; Umezawa, T.; Kanayama, K.; Umemura, K. High-performance binderless particleboard from the inner part of oil palm trunk by addition of ammonium dihydrogen phosphate. Ind. Crops Prods. 2019, 141, 111761.

[4] Cholake, S. T.; Rajarao, R.; Henderson, P.; Rajagopal, R. R.; Sahajwalla, V. Composite panels obtained from automotive waste plastics and agricultural 63 macadamia shell waste. J. Cleaner Prod. 2017, 151, 163−171.

[5] Battegazzore, D.; Alongi, J.; Frache, A.; Wågberg, L.; Carosio, F. Layer by Layerfunctionalized rice husk particles: A novel and sustainable solution for particleboard production. Mater. Today Commun. 2017, 13, 92−101.

[6] Saadaoui, N.; Rouilly, A.; Fares, K.; Rigal, L. Characterization of date palm lignocellulosic by-products and self-bonded composite materials obtained thereof. Mater. Design 2013, 50, 302−308.

[7] Ciannamea, E. M.; Stefani, P. M.; Ruseckaite, R. A. Medium-density particleboards from modified rice husks and soybean protein concentrate-based adhesives. Bioresour. Technol. 2010, 101, 818−825.

[8] Feng, J. N.; Zhang, W. X.; Wang, L.; He, C. X. Performance Comparison of Four Kinds of Straw/PLA/PBAT Wood Plastic Composites. BioResources 2020, 15, 2596−2604.

[9] Chalapud, M. C.; Herdt, M.; Nicolao, E. S.; Ruseckaite, R. A.; Ciannamea, E. M.; Stefani, P. M. Biobased particleboards based on rice husk and soy proteins: Effect of the impregnation with tung oil on the physical and mechanical behavior. Constr. Build. Mater. 2020, 230, 116996.

[10] Hidayat, H.; Keijsers, E. R. P.; Prijanto, U.; van Dam, J. E. G.; Heeres, H. J. Preparation and properties of binderless boards from Jatropha curcas L. seed cake. Ind. Crops Prod. 2014, 52, 245−254.

[1] Gröndahl, J.; Karisalmi, K.; Vapaavuori, J. Micro- and nanocelluloses from nonwood waste sources; processes and use in industrial applications. Soft Matter 2021, 17, 9842–9858.

[2] Lim, J. S.; Manan, Z. A.; Alwi, S. R. W.; Hashim, H. A review on utilisation of biomass from rice industry as a source of renewable energy. Renewable Sustainable Energy Rev. 2012, 16, 3084–3094.

[3] El-Kassas, A. M.; Mourad, A. H. I. Novel fibers preparation technique for manufacturing of rice straw based fiberboards and their characterization. Mater. Des. 2013, 50, 757–765.

[4] Hýsková, P.; Hýsek, Š.; Schönfelder, O.; Šedivka, P.; Lexa, M.; Jarský, V. Utilization of agricultural rests: Straw-based composite panels made from 83 enzymatic modified wheat and rapeseed straw. Ind. Crops Prod. 2020, 144, 112067.

[5] Gao, Y.; Xing, F. R.; Jha, M.; Yadav, K. K.; Yadav, R.; Matharu, A. S. Toward Novel Biocomposites from Unavoidable Food Supply Chain Wastes and Zirconia. ACS Sustainable Chem. Eng. 2020, 8, 14039–14046.

[6] He, X.; Wang, D. F.; Zhang, Y. L.; Tang, Y. Manufacturing Technology and Parameter Optimization for Composite Board from Corn Stalk Rinds. BioResources 2016, 11, 4564–4578.

[7] Wu, Z. Z.; Aladejana, J. T.; Liu, S. Q.; Gong, X. H.; Wang, X. A.; Xie, Y. Q. Unsaturated Polyester Resin as a Nonformaldehyde Adhesive Used in Bamboo Particle Boards. ACS Omega 2022, 7, 3483–3490.

[8] Kremensas, A.; Kairytė, A.; Vaitkus, S.; Vėjelis, S.; Członka, S.; Strąkowska, A. The impact of hot-water-treated fibre hemp shivs on the water resistance and thermal insulating performance of corn starch bonded biocomposite boards. Ind. Crops Prod. 2019, 137, 290–299.

[9] Muramatsu, H.; Kim, Y. A.; Yang, K. S.; Cruz-Silva, R.; Toda, I.; Yamada, T.; Terrones, M.; Endo, M.; Hayashi, T.; Saitoh, H. Rice Husk-Derived Graphene with Nano-Sized Domains and Clean Edges. Small 2014, 10, 2766–2770.

[10] Kwon, J. H.; Ayrilmis, N.; Han, T. H. Enhancement of flexural properties and dimensional stability of rice husk particleboard using wood strands in face layers. Composites, Part B 2013, 44, 728–732.

[11] Mohanty, A. K.; Vivekanandhan, S.; Pin, J. M.; Misra, M. Composites from renewable and sustainable resources: Challenges and innovations. Science 2018, 362, 536–542.

[12] Li, R. J.; Gutierrez, J.; Chung, Y. L.; Frank, C. W.; Billington, S. L.; Sattely, E. S. A lignin-epoxy resin derived from biomass as an alternative to formaldehydebased wood adhesives. Green Chem. 2018, 20, 1459–1466.

[13] Hemmilä, V.; Adamopoulos, S.; Karlsson, O.; Kumar, A. Development of sustainable bio-adhesives for engineered wood panels - A Review. RSC Adv. 2017, 7, 38604–38630.

[14] Chalapud, M. C.; Herdt, M.; Nicolao, E. S.; Ruseckaite, R. A.; Ciannamea, E. M.; Stefani, P. M. Biobased particleboards based on rice husk and soy proteins: Effect of the impregnation with tung oil on the physical and mechanical behavior. Constr. Build. Mater. 2020, 230, 116996.

[15] Abbott, A. P.; Conde, J. P.; Davis, S. J.; Wise, W. R. Starch as a replacement for urea-formaldehyde in medium density fibreboard. Green Chem. 2012, 14, 3067– 3070.

[16] Trinh, B. M.; Ogunsona, E. O.; Mekonnen, T. H. Thin-structured and compostable wood fiber-polymer biocomposites: Fabrication and performance evaluation. Composites, Part A 2021, 140, 106150.

[17] Chen, R. S.; Ahmad, S. Mechanical performance and flame retardancy of rice husk/organoclay-reinforced blend of recycled plastics. Mater. Chem. Phys. 2017, 198, 57–65.

[18] Suhot, M. A.; Hassan, M. Z.; Aziz, S. A.; Daud, M. Y. M. Recent Progress of Rice Husk Reinforced Polymer Composites: A Review. Polymers 2021, 13, 2391.

[19] Guna, V.; Ilangovan, M.; Rather, M. H.; Giridharan, B. V.; Prajwal, B.; Krishna, K. V.; Venkatesh, K.; Reddy, N. Groundnut shell / rice husk agro-waste reinforced polypropylene hybrid biocomposites. J. Build. Eng. 2020, 27, 100991.

[20] Wang, C. Q.; Mei, J.; Zhang, L. High-added-value biomass-derived composites by chemically coupling post-consumer plastics with agricultural and forestry wastes. J. Cleaner Prod. 2021, 284, 124768.

[21] Qian, S.; Wang, H.; Zarei, E.; Sheng, K. Effect of hydrothermal pretreatment on the properties of moso bamboo particles reinforced polyvinyl chloride composites. Composites, Part B 2015, 82, 23–29.

[22] Nasir, M.; Khali, D. P.; Jawaid, M.; Tahir, P. M.; Siakeng, R.; Asim, M.; Khan, T. A. Recent development in binderless fiber-board fabrication from agricultural residues: A review. Constr. Build. Mater. 2019, 211, 502–516.

[23] Xie, Q.; Li, F. Y.; Li, J. F.; Wang, L. M.; Li, Y. L.; Zhang, C. W.; Xu, J.; Chen, S. A new biodegradable sisal fiber-starch packing composite with nest structure. Carbohydr. Polym. 2018, 189, 56–64.

[24] Wang, Q.; Kudo, S.; Asano, S.; Hayashi, J.-i. Hot-Compressed Water Treatment and Subsequent Binderless Hot Pressing for High-Strength Plate Preparation from Rice Husk. ACS Sustainable Chem. Eng. 2022, 10, 1932–1942.

[25] Ding, L.; Li, X.; Hu, L. C.; Zhang, Y. C.; Jiang, Y.; Mao, Z. P.; Xu, H.; Wang, B. J.; Feng, X. L.; Sui, X. F. A naked-eye detection polyvinyl alcohol/cellulose-based pH sensor for intelligent packaging. Carbohydr. Polym. 2020, 233, 115859.

[26] Wang, H. M.; Yuan, T. Q.; Song, G. Y.; Sun, R. C. Advanced and versatile ligninderived biodegradable composite film materials toward a sustainable world. Green Chem. 2021, 23, 3790–3817.

[27] Bian, H. Y.; Wei, L. Q.; Lin, C. X.; Ma, Q. L.; Dai, H. Q.; Zhu, J. Y. LigninContaining Cellulose Nanofibril-Reinforced Polyvinyl Alcohol Hydrogels. ACS Sustainable Chem. Eng. 2018, 6, 4821–4828.

[28] Hancock, B. C.; York, P.; Rowe, R. C. The use of solubility parameters in pharmaceutical dosage form design. Int. J. Pharm. 1997, 148, 1–21.

[29] Sameni, J.; Krigstin, S.; Sain, M. Solubility of lignin and acetylated lignin in organic solvents. BioResources 2017, 12, 1548–1565.

[30] Lamaming, J.; Heng, N. B.; Owodunni, A. A.; Lamaming, S. Z.; Abd Khadir, N. K.; Hashim, R.; Sulaiman, O.; Kassim, M. H. M.; Hussin, M. H.; Bustami, Y.; Amini, M. H. M.; Hiziroglu, S. Characterization of rubberwood particleboard made using carboxymethyl starch mixed with polyvinyl alcohol as adhesive. Composites, Part B 2020, 183, 107731.

[31] Wu, M. X.; Shuai, H.; Cheng, Q. F.; Jiang, L. Bioinspired Green Composite Lotus Fibers. Angew. Chem., Int. Ed. 2014, 53, 3358–3361.

[32] Zhang, X.; Liu, W. F.; Liu, W. Q.; Qiu, X. Q. High performance PVA/lignin nanocomposite films with excellent water vapor barrier and UV-shielding properties. Int. J. Biol. Macromol. 2020, 142, 551–558.

[33] Majeed, K.; Arjmandi, R.; Al-Maadeed, M. A.; Hassan, A.; Ali, Z.; Khan, A. U.; Khurram, M. S.; Inuwa, I. M.; Khanam, P. N. Structural properties of rice husk and its polymer matrix composites: An overview. Lignocellulosic Fibre and Biomass-based Composite Materials 2017, 473–490.

[34] Rahman, W. A. W. A.; Sin, L. T.; Rahmat, A. R.; Samad, A. A. Thermal behaviour and interactions of cassava starch filled with glycerol plasticized polyvinyl alcohol blends. Carbohydr. Polym. 2010, 81, 805–810.

[35] Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass. Laboratory Analytical Procedure; National Renewable Energy Laboratory: Golden, CO, 2012. https://www.nrel.gov/docs/gen/fy13/42618.pdf.

[36] Japanese Industrial Standard (2003). JIS A 5908–2003 Particleboards; Japanese Standards Association: Tokyo, Japan, 2003.

[37] Mori, A.; Yuniati, M. D.; Mursito, A. T.; Kudo, S.; Norinaga, K.; Nonaka, M.; Hirajima, T.; Kim, H. S.; Hayashi, J.-i. Preparation of Coke from Indonesian Lignites by a Sequence of Hydrothermal Treatment, Hot Briquetting, and Carbonization. Energy Fuels 2013, 27, 6607–6616.

[38] Namburi, D. K.; Singh, K.; Huang, K. Y.; Neelakantan, S.; Durrell, J. H.; Cardwell, D. A. Improved mechanical properties through recycling of Y-Ba-Cu-O bulk superconductors. J. Eur. Ceram. Soc. 2021, 41, 3480–3492.

[39] Hakalahti, M.; Salminen, A.; Seppälä, J.; Tammelin, T.; Hänninen, T. Effect of interfibrillar PVA bridging on water stability and mechanical properties of TEMPO/NaClO2 oxidized cellulosic nanofibril films. Carbohydr. Polym. 2015, 126, 78–82.

[40] Amiri, H.; Kianmehr, M. H.; Arabhosseini, A. Effect of particle size, die rotary speed and amount of urea on physical properties of the produced pellet. Int. J. Environ. Sci. Technol. 2019, 16, 2059–2068.

[41] Mahmood, H.; Moniruzzaman, M.; Yusup, S.; Akil, H. M. Pretreatment of oil palm biomass with ionic liquids: a new approach for fabrication of green composite board. J. Cleaner Prod. 2016, 126, 677–685.

[42] Sitz, E. D.; Bajwa, D. S. The mechanical properties of soybean straw and wheat straw blended medium density fiberboards made with methylene diphenyl diisocyanate binder. Ind. Crops Prod. 2015, 75, 200–205.

[43] Pang, H. W.; Wang, Y. Y.; Chang, Z. W.; Xia, C. L.; Han, C. R.; Liu, H. G.; Li, J. 87 Z.; Zhang, S. F.; Cai, L. P.; Huang, Z. H. Soy meal adhesive with high strength and water resistance via carboxymethylated wood fiber-induced crosslinking. Cellulose 2021, 28, 3569–3584.

[44] Haque, A. N. M. A.; Zhang, Y.; Naebe, M. A review on lignocellulose/poly (vinyl alcohol) composites: cleaner approaches for greener materials. Cellulose 2021, 28, 10741–10764.

[45] Ago, M.; Okajima, K.; Jakes, J. E.; Park, S.; Rojas, O. J. Lignin-Based Electrospun Nanofibers Reinforced with Cellulose Nanocrystals. Biomacromolecules 2012, 13, 918–926.

[46] Wang, W. T.; Zhang, H.; Jia, R.; Dai, Y. Y.; Dong, H. Z.; Hou, H. X.; Guo, Q. B. High performance extrusion blown starch/polyvinyl alcohol/clay nanocomposite films. Food Hydrocolloids 2018, 79, 534–543.

[47] Mu, B. S.; Tang, W.; Liu, T.; Hao, X. L.; Wang, Q. W.; Ou, R. X. Comparative study of high-density polyethylene-based biocomposites reinforced with various agricultural residue fibers. Ind. Crops Prod. 2021, 172, 114053.

[48] Krause, K. C.; Müller, M.; Militz, H.; Krause, A. Enhanced water resistance of extruded wood-polypropylene composites based on alternative wood sources. Eur. J. Wood Wood Prod. 2017, 75, 125–134.

[49] Shams, M. I.; Yano, H. Development of selectively densified surface laminated wood based composites. Eur. J. Wood Wood Prod. 2009, 67, 169–172.

[50] Song, H. Z.; Zheng, L. W. Nanocomposite films based on cellulose reinforced with nano-SiO2: microstructure, hydrophilicity, thermal stability, and mechanical properties. Cellulose 2013, 20, 1737–1746.

[51] Hu, J. Q.; Wu, Y. L.; Yang, Q.; Zhou, Q. W.; Hui, L. F.; Liu, Z.; Xu, F.; Ding, D. Y. One-pot freezing-thawing preparation of cellulose nanofibrils reinforced polyvinyl alcohol based ionic hydrogel strain sensor for human motion monitoring. Carbohydr. Polym. 2022, 275, 118697.

[52] Xu, X. D.; Li, L. J.; Seraji, S. M.; Liu, L.; Jiang, Z.; Xu, Z. G.; Li, X.; Zhao, S.; Wang, H.; Song, P. A. Bioinspired, Strong, and Tough Nanostructured Poly(vinyl alcohol)/Inositol Composites: How Hydrogen-Bond Cross-Linking Works? 88 Macromolecules 2021, 54, 9510–9521.

[53] Singh, M. P.; Singh, R. K.; Chandra, S. Properties of Ionic Liquid Confined in Porous Silica Matrix. Chemphyschem 2010, 11, 2036–2043.

[54] Shalom, T. B.; Nevo, Y.; Leibler, D.; Shtein, Z.; Azerraf, C.; Lapidot, S.; Shoseyov, O. Cellulose nanocrystals (CNCs) induced crystallization of polyvinyl alcohol (PVA) super performing nanocomposite films. Macromol. Biosci. 2019, 19, 1800347.

[55] Aloui, H.; Khwaldia, K.; Hamdi, M.; Fortunati, E.; Kenny, J. M.; Buonocore, G. G.; Lavorgna, M. Synergistic Effect of Halloysite and Cellulose Nanocrystals on the Functional Properties of PVA Based Nanocomposites. ACS Sustainable Chem. Eng. 2016, 4, 794–800.

[56] Deng, J.; Xiong, T. Y.; Wang, H. Y.; Zheng, A. M.; Wang, Y. Effects of Cellulose, Hemicellulose, and Lignin on the Structure and Morphology of Porous Carbons. ACS Sustainable Chem. Eng. 2016, 4, 3750–3756.

[57] Chen, Y. P.; Dang, B. K.; Fu, J. Z.; Wang, C.; Li, C. C.; Sun, Q. F.; Li, H. Q. Cellulose-Based Hybrid Structural Material for Radiative Cooling. Nano Lett. 2021, 21, 397–404.

[58] Segal, L.; Creely, J. J.; Martin, A. E., Jr.; Conrad, C. M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 1959, 29, 786–794.

[59] Buendia-Kandia, F.; Mauviel, G.; Guedon, E.; Rondags, E.; Petitjean, D.; Dufour, A. Decomposition of Cellulose in Hot-Compressed Water: Detailed Analysis of the Products and Effect of Operating Conditions. Energy Fuels 2018, 32, 4127– 4138.

[60] Liu, P.; Chen, W. H.; Liu, C. H.; Tian, M.; Liu, P. J. A novel poly (vinyl alcohol)/poly (ethylene glycol) scaffold for tissue engineering with a unique bimodal open-celled structure fabricated using supercritical fluid foaming. Sci. Rep. 2019, 9, 9534.

[61] Kusmono; Wildan, M. W.; Lubis, F. I. Fabrication and Characterization of Chitosan/Cellulose Nanocrystal/Glycerol Bio-Composite Films. Polymers 2021, 89 13, 1096.

[62] Xie, Y. J.; Pan, Y. F.; Cai, P. X. Hydroxyl crosslinking reinforced bagasse cellulose/polyvinyl alcohol composite films as biodegradable packaging. Ind. Crops Prod. 2022, 176, 114381.

[63] Hosseinaei, O.; Wang, S.; Rials, T. G.; Xing, C.; Taylor, A. M.; Kelley, S. S. Effect of Hemicellulose Extraction on Physical and Mechanical Properties and Mold Susceptibility of Flakeboard. For. Prod. J. 2011, 61, 31–37.

[1] Nadhari, W. N. A. W.; Danish, M.; Nasir, M. S. R. M.; Geng, B. J. Mechanical properties and dimensional stability of particleboard fabricated from steam pretreated banana trunk waste particles. J. Build. Eng. 2019, 26, 100848.

[2] Muthuraj, R.; Lacoste, C.; Lacroix, P.; Bergeret, A. Sustainable thermal insulation biocomposites from rice husk, wheat husk, wood fibers and textile waste fibers: Elaboration and performances evaluation. Ind. Crops Prod. 2019, 135, 238−245.

[3] Theng, D.; Arbat, G.; Delgado-Aguilar, M.; Vilaseca, F.; Ngo, B.; Mutjé, P. Alllignocellulosic fiberboard from corn biomass and cellulose nanofibers. Ind. Crops Prod. 2015, 76, 166−173.

[4] Fang, L.; Chang, L.; Guo, W. J.; Chen, Y. P.; Wang, Z. Influence of silane surface modification of veneer on interfacial adhesion of wood-plastic plywood. Appl. Surf. Sci. 2014, 288, 682−689.

[5] Khanjanzadeh, H.; Behrooz, R.; Bahramifar, N.; Pinkl, S.; Gindl-Altmutter, W. Application of surface chemical functionalized cellulose nanocrystals to improve the performance of UF adhesives used in wood based composites-MDF type. Carbohydr. Polym. 2019, 206, 11−20.

[6] Evon, P.; Vinet, J.; Labonne, L.; Rigal, L. Influence of thermo-pressing conditions on the mechanical properties of biodegradable fiberboards made from a deoiled sunflower cake. Ind. Crops Prod. 2015, 65, 117−126.

[7] Arévalo, R.; Peijs, T. Binderless all-cellulose fibreboard from microfibrillated lignocellulosic natural fibres. Composites, Part A 2016, 83, 38−46.

Chapter4

[1] Rebollar, M.; Pérez, R.; Vidal, R. Comparison between oriented strand boards and other wood-based panels for the manufacture of furniture. Mater. Des. 2007, 28, 882–888.

[2] Asdrubali, F.; Ferracuti, B.; Lombardi, L.; Guattari, C.; Evangelisti, L.; Grazieschi, G. A review of structural, thermo-physical, acoustical, and environmental properties of wooden materials for building applications. Build. Environ. 2017, 114, 307–332.

[3] Zhang, Y.; Wu, J. Q.; Li, H.; Yuan, T. Q.; Wang, Y. Y.; Sun, R. C. Heat Treatment of Industrial Alkaline Lignin and its Potential Application as an Adhesive for Green Wood-Lignin Composites. ACS Sustainable Chem. Eng. 2017, 5, 7269– 7277.

[4] Böhm, M.; Salem, M. Z. M.; Srba, J. Formaldehyde emission monitoring from a variety of solid wood, plywood, blockboard and flooring products manufactured for building and furnishing materials. J. Hazard. Mater. 2012, 221–222, 68–79.

[5] Ge, S. B.; Ma, N. L.; Jiang, S. C.; Ok, Y. S.; Lam, S. S.; Li, C.; Shi, S. Q.; Nie, X.; Qiu, Y.; Li, D. L.; Wu, Q. D.; Tsang, D. C. W.; Peng, W. X.; Sonne, C. Processed Bamboo as a Novel Formaldehyde-Free High-Performance Furniture Biocomposite. ACS Appl. Mater. Interfaces 2020, 12, 30824–30832. 115

[6] Zhang, P.; Dong, S. J.; Ma, H. H.; Zhang, B. X.; Wang, Y. F.; Hu, X. M. Fractionation of corn stover into cellulose, hemicellulose and lignin using a series of ionic liquids. Ind. Crops Prod. 2015, 76, 688–696.

[7] Chen, J.; Du, K. P.; Chen, X. M.; Li, Y. B.; Huang, J.; Wu, Y. T.; Yang, C. L.; Xia, X. C. Influence of surface microstructure on bonding strength of modified polypropylene/aluminum alloy direct adhesion. Appl. Surf. Sci. 2019, 489, 392– 402.

[8] Dai, N. H.; Huynh, K. T. T.; Nguyen, T. A. D.; Do, V. V. T.; Tran, M. V. Hydrothermal and Steam Explosion Pretreatment of Bambusa stenostachya Bamboo. Waste Biomass Valorization 2021, 12, 4103–4112.

[9] Nkeuwa, W. N.; Zhang, J.; Semple, K. E.; Chen, M.; Xia, Y.; Dai, C. Bamboobased composites: A review on fundamentals and processes of bamboo bonding. Composites, Part B 2022, 235, 109776.

[10] Zhang, L.; Hu, Y. C. Novel lignocellulosic hybrid particleboard composites made from rice straws and coir fibers. Mater. Des. 2014, 55, 19–26. DOI: 10.1016/j.matdes.2013.09.066.

[11]Jumhuri, N.; Hashim, R.; Sulaiman, O.; Nadhari, W. N. A. W.; Salleh, K. M.; Khalid, I.; Saharudin, N. I.; Razali, M. Z. Effect of treated particles on the properties of particleboard made from oil palm trunk. Mater. Des. 2014, 64, 769– 774.

[12]Yu, Y.; Lou, X.; Wu, H. W. Some recent advances in hydrolysis of biomass in hotcompressed, water and its comparisons with other hydrolysis methods. Energy Fuels 2008, 22, 46–60.

[13]Wang, Q.; Kudo, S.; Asano, S.; Hayashi, J.-i. Hot-Compressed Water Treatment and Subsequent Binderless Hot Pressing for High-Strength Plate Preparation from Rice Husk. ACS Sustainable Chem. Eng. 2022, 10, 1932–1942.

[14]Carvalho, A. G.; Zanuncio, A. J. V.; Vital, B. R.; Carneiro, A. D. O.; da Silva, C. M. S.; Tonoli, G. H. D. Hydrothermal treatment of strand particles of pine for the improvement of OSB panels. Eur. J. Wood Wood Prod. 2018, 76, 155–162.

[15] Hýsek, S.; Podlena, M.; Bartsch, H.; Wenderdel, C.; Bohm, M. Effect of wheat 116 husk surface pre-treatment on the properties of husk-based composite materials. Ind. Crops Prod. 2018, 125, 105–113.

[16]Song, X. B.; Zhang, S. Y.; Wu, Y. M.; Cao, Z. Y. Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust. Renewable Energy 2020, 151, 184–191.

[17]Bian, F. Y.; Zhong, Z. K.; Zhang, X. P.; Yang, C. B.; Gai, X. Bamboo - An untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemosphere 2020, 246, 125750.

[18]Yang, T. H.; Lee, C. H.; Lee, C. J.; Cheng, Y. W. Effects of different thermal modification media on physical and mechanical properties of moso bamboo. Constr. Build. Mater. 2016, 119, 251–259.

[19]Guo, W. W.; Kalali, E. N.; Wang, X.; Xing, W. Y.; Zhang, P.; Song, L.; Hu, Y. Processing bulk natural bamboo into a strong and flame-retardant composite material. Ind. Crops Prod. 2019, 138, 111478.

[20]Chen, C. J.; Li, Z. H.; Mi, R. Y.; Dai, J. Q.; Xie, H.; Pei, Y.; Li, J. G.; Qiao, H. Y.; Tang, H.; Yang, B.; Hu, L. B. Rapid Processing of Whole Bamboo with Exposed, Aligned Nanofibrils toward a High-Performance Structural Material. ACS Nano 2020, 14, 5194–5202.

[21]Wang, Y. Y.; Wang, X. Q.; Li, Y. Q.; Huang, P.; Yang, B.; Hu, N.; Fu, S. Y. HighPerformance Bamboo Steel Derived from Natural Bamboo. ACS Appl. Mater. Interfaces 2021, 13, 1431–1440.

[22]Kumar, A.; Vlach, T.; Laiblova, L.; Hrouda, M.; Kasal, B.; Tywoniak, J.; Hajek, P. Engineered bamboo scrimber: Influence of density on the mechanical and water absorption properties. Constr. Build. Mater. 2016, 127, 815–827.

[23]Suwan, A.; Sukhawipat, N.; Uthaipan, N.; Saetung, A.; Saetung, N. Some properties of experimental particleboard manufactured from waste bamboo using modified recycled palm oil as adhesive. Prog. Org. Coat. 2020, 149, 105899.

[24]Hassanin, A. H.; Hamouda, T.; Candan, Z.; Kilic, A.; Akbulut, T. Developing highperformance hybrid green composites. Composites, Part B 2016, 92, 384–394.

[25]Kudo, S.; Okada, J.; Ikeda, S.; Yoshida, T.; Asano, S.; Hayashi, J.-i. Improvement 117 of Pelletability of Woody Biomass by Torrefaction under Pressurized Steam. Energy Fuels 2019, 33, 11253–11262.

[26]Mori, A.; Yuniati, M. D.; Mursito, A. T.; Kudo, S.; Norinaga, K.; Nonaka, M.; Hirajima, T.; Kim, H. S.; Hayashi, J.-i. Preparation of Coke from Indonesian Lignites by a Sequence of Hydrothermal Treatment, Hot Briquetting, and Carbonization. Energy Fuels 2013, 27, 6607–6616.

[27]Dai, Y. J.; Li, Y. W.; Xu, X. F.; Zhu, Q. Y.; Yan, W.; Jin, S. L.; Harmuth, H. Fracture behaviour of magnesia refractory materials in tension with the Brazilian test. J. Eur. Ceram. Soc. 2019, 39, 5433–5441.

[28]Adak, N. C.; Chhetri, S.; Kuila, T.; Murmu, N. C.; Samanta, P.; Lee, J. H. Effects of hydrazine reduced graphene oxide on the inter-laminar fracture toughness of woven carbon fiber/epoxy composite. Compos. Part B 2018, 149, 22–30. DOI: 10.1016/j.compositesb.2018.05.009.

[29]Amiri, H.; Kianmehr, M. H.; Arabhosseini, A. Effect of particle size, die rotary speed and amount of urea on physical properties of the produced pellet. Int. J. Environ. Sci. Technol. 2019, 16, 2059–2068.

[30]Bach, Q. V.; Chen, W. H.; Chu, Y. S.; Skreiberg, Ø. Predictions of biochar yield and elemental composition during torrefaction of forest residues. Bioresour. Technol. 2016, 215, 239–246.

[31]Mirmehdi, S. M.; Zeinaly, F.; Dabbagh, F. Date palm wood flour as filler of linear low-density polyethylene. Composites. Part B 2014, 56, 137–141.

[32]Tawfik, M. E.; Eskander, S. B.; Nawwar, G. A. Hard wood-composites made of rice straw and recycled polystyrene foam wastes. J. Appl. Polym. Sci. 2017, 134, 44770.

[33]Gozdecki, C.; Wilczynski, A.; Kociszewski, M.; Zajchowski, S. Properties of wood-plastic composites made of milled particleboard and polypropylene. Eur. J. Wood Wood Prod. 2015, 73, 87–95.

[34]Orelma, H.; Tanaka, A.; Vuoriluoto, M.; Khakalo, A.; Korpela, A. Manufacture of all-wood sawdust-based particle board using ionic liquid-facilitated fusion process. Wood Sci. Technol. 2021, 55, 331–349.

[35]El Achaby, M.; Qaiss, A. Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes. Mater. Des. 2013, 44, 81–89.

[36]Wang, H.; Xiong, F. Q.; Tan, Y. J.; Yang, J. M.; Qing, Y.; Chu, F. X.; Wu, Y. Q. Preparation and Formation Mechanism of Covalent-Noncovalent Forces Stabilizing Lignin Nanospheres and Their Application in Superhydrophobic and Carbon Materials. ACS Sustainable Chem. Eng. 2021, 9, 3811–3820.

[37]Li, M.; Yoo, C. G.; Pu, Y. Q.; Biswal, A. K.; Tolbert, A. K.; Mohnen, D.; Ragauskas, A. J. Downregulation of pectin biosynthesis gene GAUT4 leads to reduced ferulate and lignin-carbohydrate cross-linking in switchgrass. Commun. Biol. 2019, 2, 22. DOI: 10.1038/s42003-018-0265-6.

[38]Gouveia, S.; Fernández-Costas, C.; Sanromán, M. A.; Moldes, D. Enzymatic polymerisation and effect of fractionation of dissolved lignin from Eucalyptus globulus Kraft liquor. Bioresour. Technol. 2012, 121, 131–138.

[39]Yan, K. L.; Liu, F.; Chen, Q.; Ke, M.; Huang, X.; Hu, W. Y.; Zhou, B.; Zhang, X. Y.; Yu, H. B. Pyrolysis characteristics and kinetics of lignin derived from enzymatic hydrolysis residue of bamboo pretreated with white-rot fungus. Biotechnol. Biofuels 2016, 9, 76.

[40]Goh, G. D.; Dikshit, V.; Nagalingam, A. P.; Goh, G. L.; Agarwala, S.; Sing, S. L.; Wei, J.; Yeong, W. Y. Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Mater. Des. 2018, 137, 79–89.

[41]Bai, L. K.; Hu, H. R.; Xu, J. F. Influences of configuration and molecular weight of hemicelluloses on their paper-strengthening effects. Carbohydr. Polym. 2012, 88, 1258–1263.

[42]Noori, A.; Lu, Y. B.; Saffari, P.; Liu, J. G.; Ke, J. F. The effect of mercerization on thermal and mechanical properties of bamboo fibers as a biocomposite material: A review. Constr. Build. Mater. 2021, 279, 122519.

[43]Lee, C. H.; Yang, T. H.; Cheng, Y. W.; Lee, C. J. Effects of thermal modification on the surface and chemical properties of moso bamboo. Constr. Build. Mater. 2018, 178, 59–71.

[44]Guo, X. L.; Pan, X. J. Mechanical properties and mechanisms of fiber reinforced fly ash-steel slag based geopolymer mortar. Constr. Build. Mater. 2018, 179, 633– 641.

[45]Hubbe, M. A.; Pizzi, A.; Zhang, H. Y.; Halis, R. Critical Links Governing Performance of Self-binding and Natural Binders for Hot-pressed Reconstituted Lignocellulosic Board without Added Formaldehyde: A Review. BioResources 2018, 13, 2049–2115.

[46]Chen, Y. P.; Dang, B. K.; Fu, J. Z.; Wang, C.; Li, C. C.; Sun, Q. F.; Li, H. Q. Cellulose-Based Hybrid Structural Material for Radiative Cooling. Nano Lett. 2021, 21, 397–404.

[47]Kong, L. J.; Tian, S. H.; He, C.; Du, C. M.; Tu, Y. T.; Xiong, Y. Effect of waste wrapping paper fiber as a “solid bridge” on physical characteristics of biomass pellets made from wood sawdust. Appl. Energy 2012, 98, 33–39.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る