リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Organometallic Ionic Liquids Containing Sandwich Complexes: Molecular Design, Physical Properties, and Chemical Reactivities」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Organometallic Ionic Liquids Containing Sandwich Complexes: Molecular Design, Physical Properties, and Chemical Reactivities

Mochida, Tomoyuki 持田, 智行 モチダ, トモユキ 神戸大学

2023.08

概要

Ionic liquids (ILs) are salts with low melting points and are useful as electrolytes and solvents. We have developed ILs containing cationic metal complexes, which form a family of functional liquids that exhibit unique physical properties and chemical reactivities originating from metal complexes. Our study explores the liquid chemistry in the field of coordination chemistry, where solid-state chemistry is currently the main focus. This review describes the molecular design, physical properties, and reactivities of organometallic ILs containing sandwich or half-sandwich complexes. This paper mainly covers stimuli-responsive ILs, whose magnetic properties, solvent polarities, colors, or structures change by the application of external fields, such as light, heat, and magnetic fields, or by reaction with coordinating molecules.

この論文で使われている画像

参考文献

[12]

[1]

[2]

[3]

[4]

a) M. Kar, K. Matuszek, D. R. MacFarlane. Ionic Liquids. in Kirk-Othmer

Encyclopedia of Chemical Technology, John Wiley & Sons, Inc (Ed.),

2023, https://doi.org/10.1002/0471238961.ionisedd.a01.pub2; b) T.

Welton, Biophys. Rev. 2018, 10, 691–706; c) M. Watanabe, M. L.

Thomas, S. Zhang, K. Ueno, T. Yasuda, K. Dokko, Chem. Rev. 2017,

117, 7190–7239; d) H. Ohno, M. Yoshizawa-Fujita, Y. Kohno, Bull.

Chem. Soc. Jpn. 2019, 92, 852−868; e) Y. Yoshida, H. Kitagawa, ACS

Appl. Electron. Mater. 2021, 3, 2468–2482; f) J. P. Hallett, T. Welton,

Chem. Rev. 2011, 111, 3508–3576; g) N. V. Plechkova, K. R. Seddon,

Chem. Soc. Rev. 2008, 37, 123–150.

M. Watanabe, K. Dokko, K. Ueno, M. L. Thomas, Bull. Chem .Soc. Jpn.

2018, 91, 1660–1682.

a) Yoshida, Y.; Saito, G. Progress in Paramagnetic Ionic Liquids.

In Ionic Liquids: Theory, Properties, New Approaches; Kokorin, A.,

Ed.; InTech, 2011, pp. 723–738; b) A.-V. Mudring, S. Tang, Eur. J.

Inorg. Chem. 2010, 2569–2581; c) P. Nockemann, B. Thijs, N.

Postelmans, K. Van Hecke, L. Van Meervelt, K. Binnemans, J. Am.

Chem. Soc. 2006, 128, 13658–13659; d) R. J. C. Brown, T. Welton, P.

J. Dyson, D. J. Ellis, Chem. Commun. 2001, 18, 1862–1863.

a) P. Zhang, Y. Gong, Y. Lv, Y. Guo, Y. Wang, C. Wang, H. Li, Chem.

Commun. 2012, 48, 2334–2336; b) S.Schaltin, N. R. Brooks, L.

Stappers, K. Van Hecke, L. Van Meervelt, K. Binnemans, J. Fransaer,

Phys. Chem. Chem. Phys. 2012, 14, 1706–1715; c) H. D. Pratt III, A. J.

Rose, C. L. Staiger, D. Ingersoll, T. M. Anderson, Dalton Trans. 2011,

40, 11396–11401;

d) A. Branco, L.C. Branco, F. Pina, Chem. Commun. 2011, 47, 2300–

2302; e) M. Iida, C. Baba, M. Inoue, H. Yoshida, E. Taguchi,

H. Furusho, Chem. -Eur J. 2008, 14, 5047–5056; f) T. Ogawa,

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

M. Yoshida, H. Ohara, A. Kobayashi, M. Kato, Chem. Commun.

2015, 51, 13377–13380; g) B. Monteiro, M. Outis, H. Cruz, J. P. Leal, C.

A. T. Laia, C. C. L. Pereira, Chem. Commun. 2017, 53, 850–853; h) Y.

Kohno, M. G. Cowan, M. Masuda, I. Bhowmick, M. P. Shores, D. L. Gin,

R. D. Noble, Chem. Commun. 2014, 50, 6633–6636; i) N. Aoyagi, K.

Shimojo, N. R. Brooks, R. Nagaishi, H. Naganawa, K. Van Hecke, L. V.

Meervelt, K. Binnemans, T. Kimura, Chem. Commun. 2011, 47, 4490–

4492; j) S. Gago, L. Cabrita, J. C. Lima, L. C. Branco, F. Pina, Dalton

Trans. 2013, 42, 6213–6218; k) L. Ma, C. J. E. Haynes, A. B. Grommet,

A. Walczak, C. C. Parkins, C. M. Doherty, L. Longley, A. Tron, A. R.

Stefankiewicz, T. D. Bennett, J. R. Nitschke, Nat. Chem. 2020, 12,

270−275.

a) S. J. Osborne, S. Wellens, C. Ward, S. Felton, R.M. Bowman, K.

Binnemans, M. Swadźba-Kwaśny, H. Q. N. Gunaratne, P. Nockemann,

Dalton Trans. 2015, 44, 11286−11289; b) F. Billeci, H. Q. N. Gunaratne,

P. Licence, K. R. Seddon, N. V. Plechkova, F. D’Anna, ACS

Sustainable Chem. Eng. 2021, 9, 4064−4075.

a) Klingele, J. Coord. Chem. Rev. 2015, 292, 15– 29; b) P. Kübler J.

Sundermeyer, Dalton Trans. 2014, 43, 3750–3766; c) Y. Miura, F.

Shimizu, T. Mochida, Inorg. Chem. 2010, 49, 10032–10040.

a) Ferrocenes: Ligands, Materials and Biomolecules, ed. by

P.Stepnicka, John Wiley & Sons, 2008; b) Ferrocenes: Homoge-neous

Catalysis, Organic Synthesis, MaterialsScience, ed. by A.Togni, T.

Hayashi, Wiley-VCH, Weinheim, 1995.

a) J. S. Miller, A. J. Epstein, W. M. Reiff, Chem. Rev. 1988, 88, 201; b)

T. Mochida, T. Koinuma, T. Akasaka, M. Sato, Y. Nishio, K. Kajita, H.

Mori, Chem. Eur. J. 2007, 13, 1872–1881; c) T. Mochida, T. Akasaka,

Y. Funasako, Y. Nishio, H. Mori, Cryst. Growth Des. 2013, 13, 4460–

4468.

a) T. Inagaki, T. Mochida, M. Takahashi, C. Kanadani, T. Saito, D.

Kuwahara, Chem. Eur. J. 2012, 18, 6795–6804; b) T. Inagaki, T.

Mochida, Chem. Lett. 2010, 39, 572–573.

a) Y. Funasako, T. Inagaki, T. Mochida, T. Sakurai, H. Ohta, K.

Furukawa, T. Nakamura, Dalton Trans. 2013, 42, 8317–8327; b) Y.

Funasako, K. Abe, T. Mochida, Thermochim. Acta 2012, 532, 78–82; c)

S. Hamada, T. Mochida, J. Organomet. Chem. 2013, 725, 34–36.

A. Komurasaki, Y. Funasako, T. Mochida, Dalton. Trans. 2015, 44,

7595–7605.

R. Sumitani, D. Kuwahara, T. Mochida, Inorg. Chem. 2023, 62, 2169–

2180.

S. Hamada, T. Mochida, Inorg. Chem. 2022, 61, 8160–8167.

a) T. Inagaki, T. Mochida, Chem. Eur. J. 2012, 18, 8070–8075; b) T.

Inagaki, K. Abe, K. Takahashi, T. Mochida, Inorg. Chim. Acta 2015, 438,

112–117.

a) Sato, H. Nakano, J. Noguchi, T. Mochida, H. Sato, J. Phys. Chem.

A. 2015, 119, 5181–5188; b) C. E. S. Bernardes, T. Mochida, J. N. C.

Lopes, Phys. Chem. Chem. Phys. 2015, 17, 10200–10208; c) A.

Chakraborty, T. Inagaki, M. Banno, T. Mochida, K. Tominaga, J. Phys.

Chem. A 2011, 115, 1313–1319; d) C. Tei, D. Kuwahara, T. Higashi, T.

Mochida, Bull. Chem. Soc. Jpn. 2018, 91, 571–576.

I. López-Martin, E. Burello, P. N Davey, K. R Seddon, G. Rothenberg,

ChemPhysChem, 2007, 8, 690–695.

T. Tominaga, T. Ueda, T. Mochida, Phys. Chem. Chem. Phys. 2017, 19,

4352–4359; b) H. Kimata, T. Mochida, Cryst. Growth Des., 2018, 18,

7562–7569.

T. Higashi, T. Ueda, T. Mochida, Phys. Chem. Chem. Phys. 2016, 18,

10041–10048.

T. Mochida, R. Sumitani, T. Yamazoe, Phys. Chem. Chem.

Phys. 2020, 22, 25803–25810.

T. Ueda, T. Mochida, Organometallics 2015, 34, 1279–1286.

A. Joseph, G. Żyła, V. I. Thomas, P. R. Nair, A. S. Padmanabhan, S.

Mathew, J. Mol. Liq. 2016, 218, 319–331.

Y. Funasako, T. Mochida, T. Inagaki, T. Sakurai, H. Ohta, K. Furukawa,

T. Nakamura, Chem. Commun. 2011, 47, 4475–4477.

a) D. N. Hendrickson, in Mixed Valency Systems: Applications in

Chemistry, Physics and Biology; Nato Science Series; Prassides, C. K.,

Ed., Kluwer, Dordrecht, 1991, 343, pp. 67–90; b) H. Kimata, T. Inagaki,

PERSONAL ACCOUNT

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

The Chemical Record, 23, e202300041 (2023)

T. Mochida, ACS Omega 2021, 6, 21139–21146; c) T. Mochida, Y.

Funasako, T. Tominaga, H. Kimata, T. Sakurai, H. Ohta, Cryst. Growth

Des. 2017, 17, 6020–6029; d) T. Mochida, K. Takazawa, M. Takahashi,

M. Takeda, Y. Nishio, M. Sato, K. Kajita, H. Mori, M. M. Matsushita, T.

Sugawara, J. Phys. Soc. Jpn. 2005, 74, 2214–2216.

a) R. Breuer, M. Schmittel, Organometallics 2013, 32, 5980–5987; b) D.

O. Cowan, C. Levanda, J. Am. Chem. Soc. 1972, 94, 9271–9272.

M. A. Ab Rani, A. Brant, L. Crowhurst, A. Dolan, M. Lui, N. H. Hassan,

J. P. Hallett, P. A. Hunt, H. Niedermeyer, J. M. Perez-Arlandis,

M. Schrems,

T. Welton,

R. Wilding,

Phys.

Chem.

Chem.

Phys. 2011, 13, 16831–16840.

C. Reichardt, Green Chem. 2005, 7, 339– 351.

J.-M. Lee, S. Ruckes, J. M. Prausnitz, J. Phys. Chem.

B 2008, 112, 1473–1476.

a) M. Rosenblum, J. Organomet. Chem. 1986, 300, 191–218; b) R. D.

Theys, M. E. Dudley, M. M. Hossain, Coord. Chem. Rev. 2009, 253,

180–234.

a) J. M. Gichumbi, H. B. Friedrich, J. Organomet. Chem. 2018, 866,

123–143; b) P. Kumar, R. K. Gupta, D. S. Pandey, Chem. Soc. Rev.

2014, 43, 707–733; c) B. Therrien, Coord. Chem. Rev. 2009, 253, 493–

519

S. Mori, T. Mochida, Organometallics 2013, 32, 780–787.

T. Mochida, S. Maekawa, R. Sumitani, submitted.

J. Burmeister, Coord. Chem. Rev. 1990, 105, 77–133.

T. Mochida, S. Maekawa, R. Sumitani, Inorg. Chem. 2021, 60, 12386–

12391.

P. M. Treichel, L.D. Rosenhein, Inorg. Chem., 1984, 23, 4018–4022.

T. Inagaki, T. Mochida, K. Takahashi, T. Sakurai, H. Ohta, J. Mol. Liq.

2018, 269, 882–885.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

10

a) Inorganic Chromotropism, ed. Y. Fukuda, Kodansha/Springer, Tokyo,

2007; b) R. Horikoshi, Y. Funasako, T. Yajima, T. Mochida, Y.

Kobayashi, H. Kageyama, Polyhedron, 2013, 50, 66–74.

S. Kitagawa, R. Kitaura, S.-i. Noro, Angew. Chem., Int. Ed., 2004, 43,

2334–2375.

a) T. P. Gill and K. R. Mann, Organometallics 1982, 1, 485–488; b) B.

M. Trost and C. M. Older, Organometallics, 2002, 21, 2544–2546.

R. Sumitani, T. Mochida, Macromolecules 2020, 53, 6968–6974.

R. Sumitani, T. Mochida, J. Mol. Liq. 2021, 342, 117510.

Y. Funasako, S. Mori, T. Mochida, Chem. Commun. 2016, 52, 6277–

6279.

R. Sumitani, H. Yoshikawa, T. Mochida, Chem. Commun. 2020, 56,

6189–6192.

a) S. Mori, T. Mochida, Organometallics 2013, 32, 283–288; b) R.

Sumitani, Y. Funasako, T. Mochida, J. Mol. Liq. 2020, 318, 114071; c)

R. Fan, R. Sumitani, T. Mochida, ACS Omega 2020, 5, 2034–2040; d)

R. Sumitani, T. Mochida, J. Mol. Liq. 2021, 344, 117784.

R. Sumitani, T. Mochida, Soft Matter 2020, 16, 9946–9954.

T. Ueda, T. Tominaga, T. Mochida, K. Takahashi, S. Kimura, Chem.

Eur. J. 24, 9490–9493 (2018).

a) T. Tominaga, T. Mochida, Chem. Eur. J., 2018, 24, 6239–6247; b) S.

-Y. Cho, T. Mochida, Chem. Lett. 2021, 50, 1740–1742; c) Y. Funasako,

T. Mochida, K. Takahashi, T. Sakurai, H. Ohta, Chem. Eur. J., 2012, 18,

11929–11936.

a) H. Kimata, T. Mochida, Chem. Eur. J., 2019, 25, 10111–10117; b) T.

Mochida, Y. Qiu, R. Sumitani, H. Kimata, Y. Furushima, Inorg. Chem.

2022, 61, 14368–14376; c) T. Mochida, Y. Qiu, Y. Funasako, M.

Inokuchi, M. Noguchi, H. Fujimori, Y. Furushima, Chem. Commun.,

2022, 58, 6725–6728.

PERSONAL ACCOUNT

The Chemical Record, 23, e202300041 (2023)

Table of Contents

The Chemical Record PERSONAL ACCOUNT

Prof. Dr. T. Mochida*

This review describes the molecular

design, synthesis, physical properties,

and reactivities of organometallic ionic

liquids containing sandwich or halfsandwich complexes. The major topics

covered are stimuli-responsive ionic

liquids, whose physical properties,

chemical properties, and structures

change by the application of external

stimuli.

Organometallic Ionic Liquids

Containing Sandwich

Complexes: Molecular Design,

Physical Properties, and

Chemical Reactivities

11

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る