リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Myogenetic Oligodeoxynucleotides as Anti-Nucleolin Aptamers Inhibit the Growth of Embryonal Rhabdomyosarcoma Cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Myogenetic Oligodeoxynucleotides as Anti-Nucleolin Aptamers Inhibit the Growth of Embryonal Rhabdomyosarcoma Cells

Nohira, Naoki Shinji, Sayaka Nakamura, Shunichi Nihashi, Yuma Shimosato, Takeshi Takaya, Tomohide 信州大学 DOI:10.3390/biomedicines10112691

2022.10.26

概要

Embryonal rhabdomyosarcoma (ERMS) is the muscle-derived tumor retaining myogenic ability. iSN04 and AS1411, which are myogenetic oligodeoxynucleotides (myoDNs) serving as anti-nucleolin aptamers, have been reported to inhibit the proliferation and induce the differentiation of myoblasts. The present study investigated the effects of iSN04 and AS1411 in vitro on the growth of multiple patient-derived ERMS cell lines, ERMS1, KYM1, and RD. RT-PCR and immunostaining revealed that nucleolin was abundantly expressed and localized in nucleoplasm and nucleoli in all ERMS cell lines, similar to myoblasts. Both iSN04 and AS1411 at final concentrations of 10–30 μM significantly decreased the number of all ERMS cells; however, their optimal conditions were different among the cell lines. In all ERMS cell lines, iSN04 at a final concentration of 10 μM markedly reduced the ratio of EdU+ cells, indicating the inhibition of cell proliferation. Quantitative RT-PCR or immunostaining of phosphorylated histone H3 and myosin heavy chain demonstrated that iSN04 suppressed the cell cycle and partially promoted myogenesis but did not induce apoptosis in ERMS cells. Finally, both iSN04 and AS1411 at final concentrations of 10–30 μM disrupted the formation and outgrowth of RD tumorspheres in three-dimensional culture mimicking in vivo tumorigenesis. In conclusion, ERMS cells expressed nucleolin, and their growth was inhibited by the anti-nucleolin aptamers, iSN04 and AS1411, which modulates several cell cycle-related and myogenic gene expression. The present study provides evidence that anti-nucleolin aptamers can be used as nucleic acid drugs for chemotherapy against ERMS.

この論文で使われている画像

参考文献

1. Sun, X.; Guo, W.; Shen, J.K.; Mankin, H.J.; Hornicek, F.J.; Duan, Z. Rhabdomyosarcoma: Advances in molecular and cellular biology. Sarcoma 2015,2015, 232010.

2. LaQuaglia, M.P.; Gerstle, J.T. Advances in the treatment of pediatric solid tumors: A 50-year perspective. J. Surg. Oncol.2022,126, 933-942.

3. Langenau, D.M.; Keefe, M.D.; Storer, N.Y.; Guyon, J.R.; Kutok, J.L.; Le, X.; Goessling, W.; Neuberg, D.S.; Kunkel, L.M.; Zon,L.I. Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev. 2007,21,1382-1395.

4. Kohashi, K.; Oda, Y.; Yamamoto, H.; Tamiya, S.; Takahira, T.; Takahashi, Y.; Tajiri, T.; Taguchi, T.; Suita, S.; Tsuneyoshi, M. Alterations of RBI gene in embryonal and alveolar rhabdomyosarcoma: Special reference to utility of pRB immunoreactiv­ ity in differential diagnosis of rhabdomyosarcoma subtype. J. Cancer Res. Clin. Oncol. 2008,134,1097-1103.

5. Nishimura, R.; Takita, J.; Sato-Otsubo, A.; Kato, M.; Koh, K.; Hanada, R.; Tanaka, Y.; Kato, K.; Maeda, D.; Fukayama, M.; et al. Characterization of genetic lesions in rhabdomyosarcoma using a high-density single nucleotide polymorphism array. Cancer Sci. 2013,104, 856-864.

6. Rubin, B.P.; Nishijo, K.; Chen, H.I.; Yi, X.; Schuetze, D.P.; Pal,R.; Prajapati, S.L; Abraham, J.; Arenkiel, B.R.; Chen, Q.R.; et al. Evidence for an unanticipated relationship between undifferentiated pleomorphic sarcoma and embryonal rhabdomy­ osarcoma. Cancer Cell 2011,19,177-191.

7. Keller, C.; Guttridge, D.C. Mechanisms of impaired differentiation in rhabdomyosarcoma. FEBS /. 2013, 280, 4323-4334.

8. Storer, N.Y.; White, R.M.; Uong, A.; Price, E.; Nielsen, G.P.; Langenau, D.M.; Zon, L.I. Zebrafish rhabdomy osa rcoma reflects the developmental stage of oncogene expression during myogenesis. Development 2013,140,3040-3050.

9. De Vita, A.; Ferrari, A.; Miserocchi, G.; Vanni, S.; Domizio, C.; Fonzi, E.; Fausti, V.; Recine, F.; Bassi, M.; Campobassi, A.; etal. Identification of a novel RAB3IP-HMGA2 fusion transcript in an adult head and neck rhabdomyosarcoma. Oral Dis.2022,28, 2052-2054.

10. De Vita, A.; Vanni, S.; Fausti, V.; Cocchi, C.; Recine, F.; Miserocchi, G.; Liverani, C.; Spadazzi, C.; Bassi, M.; Gessaroli, M.; et al. Deciphering the genomic landscape and pharmacological profile of uncommon entities of adult rhabdomyosarcomas. Int. /. Mol. Sci. 2021,22,11564.

11. Lagha, M.; Sato, T.; Bajard, L.; Daubas, P.; Esner, M.; Montarras, D.; Relaix, F.; Buckingham, M. Regulation of skeletalmuscle stem cell behavior by Pax3 and Pax7. Cold Spring Harb. Symp. Quant. Biol. 2008, 73, 307-315.

12. Ramadan, F.; Saab, R.; Hussein, N.; Clezardin, P.; Cohen, P.A.; Ghayad, S.E. Non-coding RNA in rhabdomyosarcoma pro­ gression and metastasis. Front. Oncol. 2022,12, 971174.

13. Malempati, S.; Hawkins, D.S. Rhabdomyosarcoma: Review of the Children's Oncology Group (COG) Soft-Tissue Sarcoma Committee experience and rationale for current COG studies. Pediatr. Blood Cancer 2012, 59, 5-10.

14. Chen, C.; Garcia, H.D.; Scheer, M.; Henssen, A.G. Current and future treatment strategies for rhabdomyosarcoma. Front. Oncol. 2019, 9,1458.

15. Li, Z.; Fu, X.; Huang, J.; Zeng, P.; Huang, Y.; Chen, X.; Liang, C. Advances in screening and development of therapeutic aptamers against cancer cells. Front. Cell Dev. Biol. 2021,9, 662791.

16. Shinji, S.; Umezawa, K.; Nihashi, Y.; Nakamura, S.; Shimosato, T.; Takaya, T. Identification of the myogenetic oligodeox­ ynucleotides (myoDNs) that promote differentiation of skeletal muscle myoblasts by targeting nucleolin. Front. Cell Dev. Biol. 2021,8, 616706.

17. Nakamura, S.; Yonekura, S.; Shimosato, T.; Takaya, T. Myogenetic oligodeoxynucleotide (myoDN) recovers the differenti­ ation of skeletal muscle myoblasts deteriorated by diabetes mellitus. Front. Physiol. 2021,72, 679152.

18. Nihashi, Y.; Shinji, S.; Umezawa, K.; Shimosato, T.; Ono, T.; Kagami, H.; Takaya, T. Myogenetic oligodeoxynucleotide com­ plexed with berberine promotes differentiation of chicken myoblasts. Anim. Sci. /. 2021,92, el3597.

19. Nihashi, Y.; Yamamoto, M.; Shimosato, T.; Takaya, T. Myogenetic oligodeoxynucleotide restores differentiation and re­ verses inflammation of myoblasts aggravated by cancer-conditioned medium. Muscles 2022,1,111-120.

20. Jia, W.; Yao, Z.; Zhao, J.; Guan, Q.; Gao, L. New perspectives of physiological and pathological functions of nucleolin (NCL).Life Sci. 2017,186,1-10.

21. Berger, C.M.; Gaume, X.; Bouvet, P. The roles of nucleolin subcellular localization in cancer. Biochimie 2015,113, 78-85.

22. Farin, K.; Schokoroy, S.; Haklai, R.; Cohen-Or, 1.; Elad-Sfadia, G.; Reyes-Reyes, M.E.; Bates, P.J.; Cox, A.D.; Kloog, Y.; Pinkas- Kramarski, R. Oncogenic synergism between ErbBl, nucleolin, and mutant Ras. Cancer Res. 2011,77, 2140-2151.

23. Wise, J.F.; Berkova, Z.; Mathur, R.; Zhu, H.; Braun, F.K.; Tao, R.H.; Sabichi, A.L.; Ao, X.; Maeng, H.; Samaniego, F. Nucleolininhibits Fas ligand binding and suppresses Fas-mediated apoptosis in vivo via a surface nucleolin-Fas complex. Blood 2013,121, 4729-4739.

24. Bates, P.J.; Laber, D.A.; Miller, D.M.; Thomas, S.D.; Trent, J.O. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp. Mol. Pathol. 2009, 86,151-164.

25. Willmer, T.; Damerell,V.; Smyly, S.; Sims, D.; Du Toit, M.; Ncube, S.; Sinkala, M.; Govender, D.; Sturrock, E.; Blackburn, J.M.; et al. Targeting the oncogenic TBX3: Nucleolin complex to treat multiple sarcoma subtypes. Am. /. Cancer Res. 2021, 77,5680-5700.

26. Nihashi, Y.; Miyoshi, M.; Umezawa, K.; Shimosato, T.; Takaya, T. Identification of a novel osteogenetic oligodeoxynucleo­ tide (osteoDN) that promotes osteoblast differentiation in a TLR9-independent manner. Nanomaterials 2022,12,1680.

27. Girvan, A.C.; Teng, Y.; Casson, L.K.; Thomas, S.D.; Juliger, S.; Ball, M.W.; Klein, J.B.; Pierce, W.M., Jr.; Barve, S.S.; Bates, P.J. AGRO100 inhibits activation of nuclear factor-KB (NF-KB) by forming a complex with NF-KB essential modulator (NEMO) and nucleolin. Mol. Cancer Ther. 2006,5,1790-1799.

28. Sekiguchi, M.; Shiroko, Y.; Suzuki, T.; Imada, M.; Miyahara, M.; Fujii, G. Characterization of a human rhabdomyosarcoma cell strain in tissue culture. Biomed. Pharmacother. 1985, 39, 372-380.

29. McAllister, R.M.; Melnyk, J.; Finkelstein, J.Z.; Adams, E.C., Jr.; Gardner, M.B. Cultivation in vitro of cells derived from a human rhabdomyosarcoma. Cancer 1969, 24, 520-526.

30. Shinji, S.; Nakamura, S.; Nihashi, Y.; Umezawa, K.; Takaya, T. Berberine and palmatine inhibit the growth of human rhab­ domyosarcoma cells. Biosci. Biotechnol. Biochem. 2020, 84, 63-75.

31. Nihashi, Y.; Umezawa, K.; Shinji, S.; Hamaguchi, Y.; Kobayashi, H.; Kono, T.; Ono, T.; Kagami, H.; Takaya, T. Distinct cellproliferation, myogenic differentiation, and gene expression in skeletal muscle myoblasts of layer and broiler chickens. Sci. Rep. 2019, 9,16527.

32. Yosef, R.; Pilpel,N.; Tokarsky-Amiel,R.; Biran, A.; Ovadya, Y.; Cohen, S.; Vadai, E.; Dassa, L.; Shahar, E.; Condiotti, R.; et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat. Commun. 2016, 7,11190.

33. He, J.; Xiong, L.; Li, Q.; Lin, L.; Miao, X.; Yan, S.; Hong, Z.; Yang, L.; Wen, Y.; Deng, X. 3D modeling of cancer stem cellniche. Oncotarget 2017, 9,1326-1345.

34. Sengupta, T.K.; Bandyopadhyay, S.; Fernandes, D.J.; Spicer, E.K. Identification of nucleolin as an AU-rich element binding protein involved in bcl-2 mRNA stabilization. /. Biol. Chern. 2004, 279,10855-10863.

35. Zhang, J.; Tsaprailis, G.; Bowden, G.T. Nucleolin stabilizes BCI-XL messenger RNA in response to UVA irradiation. Cancer Res. 2008, 68,1046-1054.

36. Cong, R.; Das, S.; Ugrinova, 1.; Kumar, S.; Mongelard, F.; Wong, J.; Bouvet, P. Interaction of nucleolin with ribosomal RNAgenes and its role in RNA polymerase I transcription. Nucleic Acids Res. 2012,40, 9441-9454.

37. Cheng, D.D.; Zhao, H.G.; Yang, Y.S.; Hu, T.; Yang, Q.C. GSK3P negatively regulates HIFla mRNA stability via nucleolin in the MG63 osteosarcoma cell line. Biochem. Biaphys. Res. Commun. 2014,443, 598-603.

38. Liverani, C.; Mercatali, L.; Spadazzi, C.; La Manna, F.; De Vita, A.; Riva, N.; Calpona, S.; Ricci, M.; Bongiovanni, A.; Gunelli, E.; et al. CSF-1 blockade impairs breast cancer osteoclastogenic potential in co-culture systems. Bone 2014, 66, 214-222.

39. Evans, J.; Giles, A.; Reid, C.; Kaplan, R. CSF-1R inhibition blocks rhabdomyoscarcoma metastasis by polarizing macrophage differentiation. Cancer Res. 2015, 75 (15 Suppl.), 4126.

40. Woo, H.H.; Baker, T.; Laszlo, C.; Chambers, S.K. Nucleolin mediates microRNA-directed CSF-1 mRNA deadenylation but increases translation of CSF-1 mRNA. Mol. Cell. Proteom. 2013,12,1661-1677.

41. Woo, H.H.; Lee, S.C.; Gibson, S.J.; Chambers, S.K. Expression of the cytoplasmic nucleolin for post-transcriptional regula­ tion of macrophage colony-stimulating factor mRNA in ovarian and breast cancer cells. Biochim. Biophys. Acta Gene Regul. Meeh. 2017,1860, 337-348.

42. Hawash, M.; Jaradat, N.; Eid, A.M.; Abubaker, A.; Mufleh, O.; Al-Hroub, Q.; Sobuh, S. Synthesis of novel isoxazole-carbox-amide derivatives as promising agents for melanoma and targeted nano-emulgel conjugate for improved cellular permea­ bility. BMC Chem. 2022,16,47.

43. Codenotti, S.; Zizioli, D.; Mignani, L.; Rezzola, S.; Tabellini, G.; Parolini, S.; Giacomini, A.; Asperti, M.; Poli, M.; Mandrac-chia, D.; et al. Hyperactive Aktl signaling increases tumor progression and DNA repair in embryonal rhabdomyosarcoma RD line and confers susceptibility to glycolysis and mevalonate pathway inhibitors. Cells 2022;11,2859.

44. Lavoie, R.R.; Gargollo, P.C.; Ahmed, M.E.; Kim, Y.; Baer, E.; Phelps, D.A.; Charlesworth, C.M.; Madden, B.J.; Wang, L.; Houghton, P.J.; et al. Surfaceome profiling of rhabdomyosarcoma reveals B7-H3 as a mediator of immune evasion. Cancers 2021,13, 4528.

45. Wang, T.; Chen, C.; Larcher, L.M.; Barrero, R.A.; Veedu, R.N. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol. Adv. 2019,37, 28-50.

46. Lee, G.; Jang, G.H.; Kang, H.Y.; Song, G. Predicting aptamer sequences that interact with target proteins using an aptamer­ protein interaction classifier and a Monte Carlo tree search approach. PLoS ONE 2021,16, e0253760.

47. Juliano, R.L. Intracellular trafficking and endosomal release of oligonucleotides: What we know and what we donzt. Nucleic Acid Ther. 2018,28,166-177.

48. Teng, Y.; Girvan, A.C.; Casson, L.K.; Pierce, W.M., Jr.; Qian, M.; Thormas, S.D.; Bates, P.J. AS1411 alters the localization of a complex containing protein arginine methyltransferase 5 and nucleolin. Cancer Res. 2007, 67,10491-10500.

49. Hagiwara, H.; Saito, F.; Masaki, T.; Ikeda, M.; Nakamura-Ohkuma, A.; Shimizu, T.; Matsumura, K. Histone deacetylase inhibitor trichostatin A enhances myogenesis by coordinating muscle regulatory factors and myogenic repressors. Biochem. Biophys. Res. Commun. 2011, 414, 826-831.

50. Marampon, F.; Di Nisho, V.; Pietrantoni, 1.; Petragnano, F.; Fasciani, 1.; Scicchitano, B.M.; Ciccarelli, C.; Gravina, G.L.; Festuccia, C.; Del Fattore, A.; et al. Pro-differentiating and radiosensitizing effects of inhibiting HDACs by PXD-101 (Beli- nostat) in in vitro and in vivo models of human rhabdomyosarcoma cell lines. Cancer Lett. 2019, 461, 90-101.

51. Nohira, N.; Shinji, S.; Nakamura, S.; Nihashi, Y.; Shimosato, T.; Takaya, T. Myogenetic oligodeoxynucleotides as anti-nu­ cleolin aptamers inhibit the growth of embryonal rhabdomyosarcoma cells. bioRxiv 2021.https://doi.org/10.1101/2021.10.18.464889.

参考文献をもっと見る