リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study on chemical compounds for the development of anti-ebolavirus drugs [an abstract of entire text]」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study on chemical compounds for the development of anti-ebolavirus drugs [an abstract of entire text]

磯野, 真央 北海道大学

2021.03.25

概要

Following the EVD outbreaks in Africa, there has been an increased necessity of effective therapies against EBOV. Several candidate drugs have been clinically tested until now but an antibody therapy has only been approved by FDA in 2020. Thus, more treatment options including chemical compound-based drugs for EVD are needed. This chapter focuses on chemical compounds for the development of anti-EBOV drugs, especially inhibitors of viral genome transcription/replication and budding. I screened a chemical compound library from ITbM and discovered several compounds that inhibited the EBOV minigenome-derived luciferase activity and/or the egress of virions. Here I discuss that EBOV replication and budding steps are good targets for therapeutic agents although such drugs have never been approved yet. Candidate compounds that were discovered in this study are expected to provide novel perspectives for the development of anti-EBOV drugs in the future.

この論文で使われている画像

参考文献

1. Sahul Hameed, A. S., Ninawe, A. S., Nakai, T., Chi, S. C. & Johnson, K. L. ICTV virus taxonomy profile: Filoviridae. J. Gen. Virol. 100, 911–912 (2019).

2. Goldstein, T. et al. The discovery of Bombali virus adds further support for bats as hosts of ebolaviruses. Nat. Microbiol. 3, 1084–1089 (2018).

3. Rollin, P. E. et al. Ebola (Subtype Reston) Virus among Quarantined Nonhuman Primates Recently Imported from the Philippines to the United States. J. Infect. Dis. 179, S108–S114 (1999).

4. Emanuel, J., Marzi, A. & Feldmann, H. Filoviruses: Ecology, Molecular Biology, and Evolution. Adv. Virus Res. 100, 189–221 (2018).

5. Mbala-Kingebeni, P. et al. Medical countermeasures during the 2018 Ebola virus disease outbreak in the North Kivu and Ituri Provinces of the Democratic Republic of the Congo: a rapid genomic assessment. Lancet Infect. Dis. 3099, 1– 10 (2019).

6. Mbala-Kingebeni, P. et al. 2018 Ebola virus disease outbreak in Équateur Province, Democratic Republic of the Congo: a retrospective genomic characterisation. Lancet Infect. Dis. 3099, 1–7 (2019).

7. Tariq, A., Roosa, K., Mizumoto, K. & Chowell, G. Assessing reporting delays and the effective reproduction number: The Ebola epidemic in DRC, May 2018– January 2019. Epidemics 26, 128–133 (2019).

8. WHO. Ebola | Ebola situation reports: Democratic Republic of the Congo. WHO (2020). doi:https://www.who.int/ebola/situation-reports/drc-2018/en/

9. World Health Organization. Ebola in the Democratic Republic of the Congo 2020 - Équateur Province. (2020). doi:https://www.who.int/emergencies/diseases/ebola/ebola-health-update--- équateur-province-democratic-republic-of-the-congo-2020

10. FDA. Drug Trials Snapshots: INMAZEB | FDA. FDA (2020). doi:https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials- snapshots-inmazeb

11. Hunt, C. L., Lennemann, N. J. & Maury, W. Filovirus entry: A novelty in the viral fusion world. Viruses 4, 258–275 (2012).

12. Takada, A. et al. A system for functional analysis of Ebola virus glycoprotein. Proc. Natl. Acad. Sci. 94, 14764–9 (1997).

13. Alvarez, C. P. et al. C-Type Lectins DC-SIGN and L-SIGN Mediate Cellular Entry by Ebola Virus in cis and in trans . J. Virol. 76, 6841–6844 (2002).

14. Kondratowicz, A. S. et al. T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proc. Natl. Acad. Sci. 108, 8426–8431 (2011).

15. Takada, A. et al. Human macrophage C-type lectin specific for galactose and N- acetylgalactosamine promotes filovirus entry. J. Virol. 78, 2943–7 (2004).

16. Nanbo, A. et al. Ebolavirus Is Internalized into Host Cells via Macropinocytosis in a Viral Glycoprotein-Dependent Manner. PLoS Pathog. 6, e1001121 (2010).

17. Saeed, M. F., Kolokoltsov, A. A., Albrecht, T. & Davey, R. A. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog. 6, e1001110 (2010).

18. Bhattacharyya, S. et al. Ebola virus uses clathrin-mediated endocytosis as an entry pathway. Virology 401, 18–28 (2010).

19. Schornberg, K. et al. Role of Endosomal Cathepsins in Entry Mediated by the Ebola Virus Glycoprotein. J. Virol. 80, 4174–4178 (2006).

20. Carette, J. E. et al. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477, 340–343 (2011).

21. Côté, M. et al. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 477, 344–348 (2011).

22. Basler, C. F. et al. The Ebola virus VP35 protein functions as a type I IFN antagonist. Proc. Natl. Acad. Sci. 97, 12289–12294 (2000).

23. Zhang, A. P. P. et al. The ebolavirus VP24 interferon antagonist: Know your enemy. Virulence 3, 440–445 (2012).

24. Jasenosky, L. D. & Kawaoka, Y. Filovirus budding. Virus Res. 106, 181–188 (2004).

25. Noda, T. et al. Ebola Virus VP40 Drives the Formation of Virus-Like Filamentous Particles Along with GP. J. Virol. 76, 4855–4865 (2002).

26. The PREVAIL II Writing Group. A Randomized, Controlled Trial of ZMapp for Ebola Virus Infection. N. Engl. J. Med. 375, 1448–1456 (2016).

27. WHO. Ebola | Ebola treatments approved for compassionate use in current outbreak. WHO (2018). doi:https://www.who.int/ebola/drc-2018/treatments- approved-for-compassionate-use/en/

28. Cardile, A. P., Downey, L. G., Wiseman, P. D., Warren, T. K. & Bavari, S. Antiviral therapeutics for the treatment of Ebola virus infection. Curr. Opin. Pharmacol. 30, 138–143 (2016).

29. Nakkazi, E. Randomised controlled trial begins for Ebola therapeutics. Lancet 392, 2338 (2018).

30. Sissoko, D. et al. Experimental Treatment with Favipiravir for Ebola Virus Disease (the JIKI Trial): A Historically Controlled, Single-Arm Proof-of-Concept Trial in Guinea. PLoS Med. 13, 1–36 (2016).

31. NIH. Clinical Trial of Investigational Ebola Treatments Begins in the Democratic Republic of the Congo | NIH: National Institute of Allergy and Infectious Diseases. (2019). doi:https://www.niaid.nih.gov/news-events/clinical-trial- investigational-ebola-treatments-begins-democratic-republic-congo

32. Aleksandrowicz, P. et al. Ebola virus enters host cells by macropinocytosis and clathrin-mediated endocytosis. J. Infect. Dis. 204, 957–967 (2011).

33. Ng, M. et al. Cell entry by a novel European filovirus requires host endosomal cysteine proteases and Niemann-Pick C1. Virology 468, 637–646 (2014).

34. Kondoh, T. et al. Single-Nucleotide Polymorphisms in Human NPC1 Influence Filovirus Entry Into Cells. J. Infect. Dis. 218, S397–S402 (2018).

35. Furuyama, W., Miyamoto, H., Yoshida, R. & Takada, A. Quantification of filovirus glycoprotein-specific antibodies. Methods Mol. Biol. 1628, 309–320 (2017).

36. Nakayama, E. et al. Antibody-dependent enhancement of marburg virus infection. J. Infect. Dis. 204, (2011).

37. Takada, A. et al. Identification of Protective Epitopes on Ebola Virus Glycoprotein at the Single Amino Acid Level by Using Recombinant Vesicular Stomatitis Viruses. J. Virol. 77, 1069–1074 (2003).

38. Ebihara, H. et al. In Vitro and In Vivo Characterization of Recombinant Ebola Viruses Expressing Enhanced Green Fluorescent Protein. J. Infect. Dis. 196, S313–S322 (2007).

39. Furuyama, W. et al. Discovery of an antibody for pan-ebolavirus therapy. Sci. Rep. 6, 20514 (2016).

40. Miller, E. H. et al. Ebola virus entry requires the host-programmed recognition of an intracellular receptor. EMBO J. 31, 1947–1960 (2012).

41. Cagigi, A. et al. Vaccine Generation of Protective Ebola Antibodies and Identification of Conserved B-Cell Signatures. J. Infect. Dis. 218, S528–S536 (2018).

42. Saito, S. et al. IgA tetramerization improves target breadth but not peak potency of functionality of anti-influenza virus broadly neutralizing antibody. PLoS Pathog. 15, 1–23 (2019).

43. Tiller, T. et al. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J. Immunol. Methods 329, 112–24 (2008).

44. Kuroda, M. et al. Interaction between TIM-1 and NPC1 Is Important for Cellular Entry of Ebola Virus. J. Virol. 89, 6481–6493 (2015).

45. Misasi, J. et al. Structural and molecular basis for Ebola virus neutralization by protective human antibodies. Science (80-. ). 351, 1343–1346 (2016).

46. King, L. B., West, B. R., Schendel, S. L. & Saphire, E. O. The structural basis for filovirus neutralization by monoclonal antibodies. Curr. Opin. Immunol. 53, 196– 202 (2018).

47. Bai, C. Q. et al. Clinical and Virological Characteristics of Ebola Virus Disease Patients Treated with Favipiravir (T-705) - Sierra Leone, 2014. Clin. Infect. Dis. 63, 1288–1294 (2016).

48. Johansen, L. M. et al. A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity. Sci. Transl. Med. 7, 290ra89 (2015).

49. Zhao, Y. et al. Toremifene interacts with and destabilizes the Ebola virus glycoprotein. Nature 535, 169–172 (2016).

50. Shaikh, F. et al. Structure-based In Silico Screening Identifies a Potent Ebolavirus Inhibitor from a Traditional Chinese Medicine Library. J. Med. Chem. 62, 2928–2937 (2019).

51. Zhao, Y. et al. Structures of Ebola Virus Glycoprotein Complexes with Tricyclic Antidepressant and Antipsychotic Drugs. J. Med. Chem. 61, 4938–4945 (2018).

52. Shoemaker, C. J. et al. Multiple Cationic Amphiphiles Induce a Niemann-Pick C Phenotype and Inhibit Ebola Virus Entry and Infection. PLoS One 8, e56265 (2013).

53. Ren, J., Zhao, Y., Fry, E. E. & Stuart, D. I. Target Identification and Mode of Action of Four Chemically Divergent Drugs against Ebolavirus Infection. J. Med. Chem. 61, 724–733 (2018).

54. Salata, C. et al. Ebola Virus Entry: From Molecular Characterization to Drug Discovery. Viruses 11, 274 (2019).

55. Takamatsu, Y., Kolesnikova, L. & Becker, S. Ebola virus proteins NP, VP35, and VP24 are essential and sufficient to mediate nucleocapsid transport. Proc. Natl. Acad. Sci. 115, 1075–1080 (2018).

56. Geisbert, T. W. et al. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet 375, 1896–1905 (2010).

57. Warren, T. K. et al. Advanced antisense therapies for postexposure protection against lethal filovirus infections. Nat. Med. 16, 991–994 (2010).

58. Cardile, A. P., Downey, L. G., Wiseman, P. D., Warren, T. K. & Bavari, S. Antiviral therapeutics for the treatment of Ebola virus infection. Curr. Opin. Pharmacol. 30, 138–143 (2016).

59. Mulangu, S. et al. A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics. N. Engl. J. Med. 381, 2293–2303 (2019).

60. Watanabe, S., Noda, T., Halfmann, P., Jasenosky, L. & Kawaoka, Y. Ebola virus (EBOV) VP24 inhibits transcription and replication of the EBOV genome. J. Infect. Dis. 196 Suppl, S284–S290 (2007).

61. Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).

62. Raymond, C. et al. A simplified polyethylenimine-mediated transfection process for large-scale and high-throughput applications. Methods 55, 44–51 (2011).

63. Watanabe, S. et al. Production of Novel Ebola Virus-Like Particles from cDNAs : an Alternative to Ebola Virus Generation by Reverse Genetics. J. Virol. 78, 999–1005 (2004).

64. Cardile, A. P., Warren, T. K., Martins, K. A., Reisler, R. B. & Bavari, S. Will there be a cure for Ebola? Annu. Rev. Pharmacol. Toxicol. 57, 329–348 (2017).

65. Cross, R. W., Mire, C. E., Feldmann, H. & Geisbert, T. W. Post-exposure treatments for Ebola and Marburg virus infections. Nat. Rev. Drug Discov. 17, 413–434 (2018).

66. Warren, T. K. et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 531, 381–385 (2016).

67. Shiraki, K. & Daikoku, T. Favipiravir, an anti-influenza drug against life- threatening RNA virus infections. Pharmacol. Ther. 209, 107512 (2020).

68. Lo, M. K. et al. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci. Rep. 7, 1–7 (2017).

69. Licata, J. M., Johnson, R. F., Han, Z. & Harty, R. N. Contribution of Ebola Virus Glycoprotein, Nucleoprotein, and VP24 to Budding of VP40 Virus-Like Particles. J. Virol. 78, 7344–7351 (2004).

70. Kajihara, M. et al. Inhibition of Marburg Virus Budding by Nonneutralizing Antibodies to the Envelope Glycoprotein. J. Virol. 86, 13467–13474 (2012).

71. Hoenen, T., Groseth, A. & Feldmann, H. Therapeutic strategies to target the Ebola virus life cycle. Nat. Rev. Microbiol. 17, 593–606 (2019).

72. Nicholson, K. G. et al. Efficacy and safety of oseltamivir in treatment of acute influenza: A randomised controlled trial. Lancet 355, 1845–1850 (2000).

73. Treanor, J. J. et al. Efficacy and safety of the oral neuraminidase inhibitor oseltamivir in treating acute influenza: A randomized controlled trial. J. Am. Med. Assoc. 283, 1016–1024 (2000).

74. Noda, T. et al. Assembly and budding of Ebolavirus. PLoS Pathog. 2, 0864–0872 (2006).

75. Licata, J. M. et al. Overlapping Motifs (PTAP and PPEY) within the Ebola Virus VP40 Protein Function Independently as Late Budding Domains: Involvement of Host Proteins TSG101 and VPS-4. J. Virol. 77, 1812–1819 (2003).

76. Martin-Serrano, J., Zang, T. & Bieniasz, P. D. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat. Med. 7, 1313–1319 (2001).

77. Han, Z. et al. ITCH E3 Ubiquitin Ligase Interacts with Ebola Virus VP40 To Regulate Budding. J. Virol. 90, 9163–9171 (2016).

78. Harty, R. N., Brown, M. E., Wang, G., Huibregtse, J. & Hayes, F. P. A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: Implications for filovirus budding. Proc. Natl. Acad. Sci.U. S. A. 97, 13871–13876 (2000).

79. Nanbo, A. & Ohba, Y. Budding of Ebola Virus Particles Requires the Rab11- Dependent Endocytic Recycling Pathway. in Journal of Infectious Diseases 218, S388–S396 (2018).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る