リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Orthogonal antiferromagnetism to canted ferromagnetism in CaCo₃Ti₄O₁₂ quadruple perovskite driven by underlying kagome lattices」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Orthogonal antiferromagnetism to canted ferromagnetism in CaCo₃Ti₄O₁₂ quadruple perovskite driven by underlying kagome lattices

Amano Patino, Midori Denis Romero, Fabio Koo, Hyun-Joo Avdeev, Maxim Injac, Sean D. A. Goto, Masato Whangbo, Myung-Hwan Shimakawa, Yuichi 京都大学 DOI:10.1038/s43246-022-00274-y

2022

概要

AA′₃B₄O₁₂ quadruple perovskites, with magnetic A′ and non-magnetic B cations, are characterized by a wide range of complex magnetic structures. These are due to a variety of competing spin-exchange interactions up to the fourth nearest neighbours. Here, we synthesize and characterize the magnetic behaviour of the CaCo₃Ti₄O₁₂ quadruple perovskite. We find that in the absence of an external magnetic field, the system undergoes antiferromagnetic ordering at 9.3 K. This magnetic structure consists of three interpenetrating mutually orthogonal magnetic sublattices. Under an applied magnetic field, this antiferromagnetic structure evolves into a canted ferromagnetic structure. In explaining these magnetic structures, as well as the seemingly unrelated magnetic structures found in other quadruple perovskites, we suggest a crucial role played by the underlying kagome lattices in these systems. All observed magnetic structures of these materials represent indeed one of the three possible ways to reduce spin frustration in the A′ site kagome layers. More specifically, our survey of the magnetic structures observed for quadruple perovskites AA′₃B₄O₁₂ reveals the following three ways to reduce spin frustration, namely to make each layer ferromagnetic, to adopt a compromise 120° spin arrangement in each layer, or to have a magnetic structure with a vanishing sum of all second nearest-neighbour spin exchanges.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

George, G., Ede, S. R. & Luo, Z. Fundamentals of Perovskite Oxides (CRC

Press, 2020).

Glazer, A. M. The classification of tilted octahedra in perovskites. Acta

Crystallogr. B Struct. Crystallogr. Cryst. Chem. 28, 3384–3392 (1972).

Kim, Y. J., Wakimoto, S., Shapiro, S. M., Gehring, P. M. & Ramirez, A. P.

Neutron scattering study of antiferromagnetic order in CaCu3Ti4O12. Solid

State Commun. 121, 625–629 (2002).

Tohyama, T., Saito, T., Mizumaki, M., Agui, A. & Shimakawa, Y.

Antiferromagnetic interaction between A′-site Mn spins in A-site-ordered

perovskite YMn3Al4O12. Inorg. Chem. 49, 2492–2495 (2010).

Shimakawa, Y. & Saito, T. A-site magnetism in A-site-ordered perovskitestructure oxides. Phys. Status Solidi B 249, 423–434 (2012).

Toyoda, M., Saito, T., Yamauchi, K., Shimakawa, Y. & Oguchi, T.

Superexchange interaction in the A-site ordered perovskite YMn3Al4O12. Phys.

Rev. B 92, 014420 (2015).

Saito, T. et al. Symmetry-breaking 60°-spin order in the A-site-ordered

perovskite LaMn3V4O12. Phys. Rev. B 90, 214405 (2014).

COMMUNICATIONS MATERIALS | (2022)3:51 | https://doi.org/10.1038/s43246-022-00274-y | www.nature.com/commsmat

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-022-00274-y

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Ovsyannikov, S. V. et al. New antiferromagnetic perovskite CaCo3V4O12

prepared at high-pressure and high-temperature conditions. Inorg. Chem. 52,

11703–11710 (2013).

Ovsyannikov, S. V. et al. Structural and magnetic transitions in CaCo3V4O12

perovskite at extreme conditions. Inorg. Chem. 56, 6251–6263 (2017).

Amano Patino, M. et al. Multi-k spin ordering in CaFe3Ti4O12 stabilized by

spin-orbit coupling and further-neighbor exchange. Phys. Rev. Res. 3, 043208

(2021).

Shiraki, H. et al. Ferromagnetic cuprates CaCu3Ge4O12 and CaCu3Sn4O12 with

A-site ordered perovskite structure. Phys. Rev. B 76, 140403 (2007).

Brese, N. E. & O’Keeffe, M. Bond-valence parameters for solids. Acta

Crystallogr. Section B Struct. Sci. 47, 192–197 (1991).

Koo, H.-J., Xiang, H. J., Lee, C. & Whangbo, M.-H. Effect of magnetic dipole

−dipole interactions on the spin orientation and magnetic ordering of the

spin-ladder compound Sr3Fe2O5. Inorg. Chem. 48, 9051–9053 (2009).

Koo, H.-J. & Whangbo, M.-H. Spin exchange and magnetic dipole–dipole

Interactions leading to the magnetic superstructures of MAs2O6 (M = Mn,

Co, Ni). Inorg. Chem. 53, 3812–3817 (2014).

Xiang, H. J., Lee, C., Koo, H.-J., Gong, X. & Whangbo, M.-H. Magnetic

properties and energy-mapping analysis. Dalton Trans. 42, 823–853

(2012).

Whangbo, M. H. & Xiang, H. Handbook of Solid State Chemistry, Vol. 5,

285–343 (John Wiley & Sons, 2017).

Li, X. et al. Spin Hamiltonians in magnets: Theories and computations.

Molecules 26, 803 (2021).

Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism.

Phys. Rev. 120, 91–98 (1960).

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979

(1994).

Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector

augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186

(1996).

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation

made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P.

Electron-energy-loss spectra and the structural stability of nickel oxide: An

LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

Toyoda, M., Yamauchi, K. & Oguchi, T. Ab initio study of magnetic coupling

in CaCu3B4O12 (B= Ge, Zr, and Sn). Phys. Rev. B 87, 224430 (2013).

Rhee, H. B. & Pickett, W. E. Strong interactions, narrow bands, and dominant

spin-orbit coupling in Mott insulating quadruple perovskite CaCo3V4O12.

Phys. Rev. B 90, 205119 (2014).

Whangbo, M.-H., Canadell, E., Foury, P. & Pouget, J.-P. Hidden Fermi surface

nesting and charge density wave instability in low-dimensional metals. Science

252, 96–98 (1991).

Avdeev, M. & Hester, J. R. ECHIDNA: A decade of high-resolution neutron

powder diffraction at OPAL. J. Appl. Crystallogr. 51, 1597–1604 (2018).

Toby, B. H. & Von Dreele, R. B. GSAS-II: The genesis of a modern opensource all purpose crystallography software package. J. Appl. Crystallogr. 46,

544–549 (2013).

Perez-Mato, J. M. et al. Symmetry-based computational tools for magnetic

crystallography. Annu. Rev. Mater. Res. 45, 217–248 (2015).

Kuneš, J., Novák, P., Schmid, R., Blaha, P. & Schwarz, K. Electronic structure

of fcc Th: Spin-orbit calculation with 6p1/2 local orbital extension. Phys. Rev. B

64, 153102 (2001).

ARTICLE

Acknowledgements

We thank Shogo Kawaguchi and Anucha Koedtruad for help in synchrotron X-ray

diffraction measurements. The synchrotron radiation experiments were performed at the

Japan Synchrotron Radiation Research Institute, Japan (proposal Nos. 2020A1137 and

2020A1671). This work was partly supported by Grants-in-Aid for Scientific Research

(Nos. 19K15585, 19H05823, 20K20547, and 20H00397) and by grant for the International Collaborative Research Programme of Institute for Chemical Research in Kyoto

University from MEXT of Japan. This work was also supported by the Japan Society for

the Promotion of Science Core-to-Core Programme (A) Advanced Research Networks.

The work at KHU was financially supported by the Basic Science Research Programme

through the National Research Foundation (NRF) of Korea, which was funded by the

Ministry of Education (2020R1A6A1A03048004).

Author contributions

The study was designed by M.A.P., F.D.R., and Y.S. Sample synthesis was carried out by

M.A.P. and F.D.R. Structural and physical property characterisation was performed by

M.A.P. and F.D.R. with contributions from S.D.I. and M.G. M.A. collected neutron powder

diffraction data and analysis of these was carried out by M.A.P. and F.D.R. DFT calculations were carried out and analyzed by H.-J.K. and M.-H.W. to find the role of the

underlying kagome lattice. The manuscript was written with contributions from all authors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s43246-022-00274-y.

Correspondence and requests for materials should be addressed to Fabio Denis Romero,

Hyun-Joo Koo or Yuichi Shimakawa.

Peer review information Communications Materials thanks the anonymous reviewers

for their contribution to the peer review of this work. Primary Handling Editors: Alannah

Hallas and Aldo Isidori.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2022

COMMUNICATIONS MATERIALS | (2022)3:51 | https://doi.org/10.1038/s43246-022-00274-y | www.nature.com/commsmat

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る