リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Multi-k spin ordering in CaFe₃Ti₄O₁₂ stabilized by spin-orbit coupling and further-neighbor exchange」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Multi-k spin ordering in CaFe₃Ti₄O₁₂ stabilized by spin-orbit coupling and further-neighbor exchange

Amano Patino, Midori Denis Romero, Fabio Goto, Masato Saito, Takashi Orlandi, Fabio Manuel, Pascal Szabó, Attila Kayser, Paula Hong, Ka H. Alharbi, Khalid N. Attfield, J. Paul Shimakawa, Yuichi 京都大学 DOI:10.1103/PhysRevResearch.3.043208

2021.12

概要

Orthogonal spin ordering is rarely observed in magnetic oxides because nearest-neighbor symmetric Heisenberg superexchange interactions usually dominate. We have discovered that in the quadruple perovskite CaFe₃Ti₄O₁₂, where only the S = 2 Fe²⁺ ion is magnetic, long-range magnetic order consisting of an unusual arrangement of three interpenetrating orthogonal sublattices is stabilized. Each magnetic sublattice corresponds to a set of FeO₄ square planes sharing a common orientation. This multi-k magnetic spin ordering is the result of fourth-neighbor spin couplings with a strong easy-axis anisotropy. In an applied magnetic field, each sublattice tends towards ferromagnetic alignment, but remains polarized by internal magnetic fields generated by the others, thus stabilizing in a noncollinear canted ferromagnetic structure. CaFe₃Ti₄O₁₂ provides a rare example of how nontrivial long-range spin order can arise when near-neighbor Heisenberg superexchange is quenched.

この論文で使われている画像

参考文献

1. J. B. Goodenough, Magnetism and the Chemical Bond (Inter- science Publishers, John Wiley & Sons, New York, 1963).

2. D. I. Khomskii, Transition Metal Compounds (Cambridge Uni- versity Press, Cambridge, 2014).

3. M. Kargarian and G. A. Fiete, Topological Crystalline Insula- tors in Transition Metal Oxides, Phys. Rev. Lett. 110, 156403 (2013).

4. S. Ishiwata, T. Nakajima, J. H. Kim, D. S. Inosov, N. Kanazawa, J. S. White, J. L. Gavilano, R. Georgii, K. M. Seemann, G. Brandl, P. Manuel, D. D. Khalyavin, S. Seki, Y. Tokunaga, M. Kinoshita, Y. W. Long, Y. Kaneko, Y. Taguchi, T. Arima, B. Keimer, and Y. Tokura, Emergent topological spin structures in the centrosymmetric cubic perovskite SrFeO3, Phys. Rev. B 101, 134406 (2020).

5. S. V. Vonsovskii, Magnetism (John Wiley & Sons, New York, 1974).

6. Y. Kei, Theory of Magnetism, 1st ed. (Springer-Verlag, Berlin, 1996).

7. R. M. White, Quantum Theory of Magnetism, 3rd ed. (Springer- Verlag, Berlin, (2007).

8. T. Moriya, New Mechanisms of Anisotropic Superexchange Interaction, Phys. Rev. Lett. 4, 228 (1960).

9. Y. Shimakawa and M. Mizumaki, Multiple magnetic interac- tions in A-site-ordered perovskite-structure oxides, J. Phys.: Condens. Matter 26, 473203 (2014).

10. C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, Optical response of high-dielectric-constant perovskite-related oxide, Science 293, 673 (2001).

11. H. Shiraki, T. Saito, T. Yamada, M. Tsujimoto, M. Azuma, H. Kurata, S. Isoda, M. Takano, and Y. Shimakawa, Ferromagnetic cuprates CaCu3Ge4O12 and CaCu3Sn4O12 with a-site ordered perovskite structure, Phys. Rev.B 76, 140403 (2007).

12. M. Toyoda, K. Yamauchi, and T. Oguchi, Ab initio study of magnetic coupling in CaCu3B4O12 (B = Ti, Ge, Zr, and Sn), Phys. Rev. B 87, 224430 (2013).

13. M. Toyoda, T. Saito, K. Yamauchi, Y. Shimakawa, and T. Oguchi, Superexchange interaction in the A-site or- dered perovskite YMn3Al4O12, Phys. Rev. B 92, 014420 (2015).

14. T. Saito, M. Toyoda, C. Ritter, S. Zhang, T. Oguchi, J. P. Attfield, and Y. Shimakawa, Symmetry-breaking 60o-spin order in the a -site-ordered perovskite LaMn3V4O12, Phys. Rev.B 90, 214405 (2014).

15. K. Leinenweber and J. Parise, High-pressure synthesis and crys- tal structure of CaFeTi2O6, a new perovskite structure type, J. Solid State Chem. 114, 277 (1995).

16. W. M. Reiff, K. Leinenweber, and J. Parise, Low tempera- ture magnetic properties of some new high-pressure perovskite phases of iron II: Observation of novel slow paramagnetic re- laxation in CaFe2Ti2O6 and CaFe3Ti4O12, MRS Proc. 453, 387 (1997).

17. See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevResearch.3.043208 for details on the estima- tion of the magnetic coherence length.

18. R. I. Smith, S. Hull, M. G. Tucker, H. Y. Playford, D. J. McPhail, S. P. Waller, and S. T. Norberg, The upgraded polaris powder diffractometer at the ISIS neutron source, Rev. Sci. Instrum. 90, 115101 (2019).

19. L. C. Chapon, P. Manuel, P. G. Radaelli, C. Benson, L. Perrott, S. Ansell, N. J. Rhodes, D. Raspino, D. Duxbury, E. Spill, and J. Norris, Wish: The new powder and single crystal magnetic diffractometer on the second target station, Neutron News 22, 22 (2011).

20. A. C. Larson and R. B. Von Dreele, General structure analysis system (GSAS), Los Alamos Natl. Lab. Rep. LAUR 86, 154 (1994).

21. H. T. Stokes, D. M. Hatch, and B. J. Campbell, ISOTROPY Software Suite, iso.byu.edu.

22. B. J. Campbell, H. T. Stokes, D. E. Tanner, and D. M. Hatch, ISODISPLACE: A web-based tool for exploring structural dis- tortions, J. Appl. Crystallogr. 39, 607 (2006).

23. P. Manuel, L. C. Chapon, P. G. Radaelli, H. Zheng, and J. F. Mitchell, Magnetic Correlations in the Extended Kagome YBaCo4O7 Probed by Single-Crystal Neutron Scattering, Phys. Rev. Lett. 103, 037202 (2009).

24. N. E. Brese, M. Okeeffe, and M. O’Keeffe, Bond-valence pa- rameters for solids, Acta Crystallogr. Sect. B: Struct. Sci. 47, 192 (1991).

25. R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A 32, 751 (1976).

26. S. D. Bhame, V. L. J. Joly, and P. A. Joy, Effect of disorder on the magnetic properties of LaMn0.5Fe0.5O3, Phys. Rev. B 72, 054426 (2005).

27. Y. Shimakawa and T. Saito, A-site magnetism in a-site-ordered perovskite-structure oxides, Phys. Status Solidi Basic Res. 249, 423 (2012).

28. S. T. Bramwell, in Introduction to Frustrated Magnetism, edited by C. Lacroix, P. Mendels, and F. Mila (Springer, Berlin, 2010), pp. 45–78.

29. D. Billington, D. Ernsting, T. E. Millichamp, C. Lester, S. B. Dugdale, D. Kersh, J. A. Duffy, S. R. Giblin, J. W. Taylor, P. MIDORI AMANO PATINO et al. PHYSICAL REVIEW RESEARCH 3, 043208 (2021) Manuel, D. D. Khalyavin, and H. Takatsu, Magnetic frustration, short-range correlations and the role of the paramagnetic fermi surface of PdCrO2, Sci. Rep. 5, 12428 (2015).

30. A. P. Cracknell, M. F. Cracknell, and B. L. Davies, Lan- dau’s theory of second-order phase transitions and the magnetic phase transitions in some antiferromagnetic oxides, Phys. Status Solidi 39, 463 (1970).

31. M.-H. Whangbo, E. E. Gordon, H. Xiang, H.-J. Koo, and C. Lee, Prediction of spin orientations in terms of HOMO-LUMO interactions using spin-orbit coupling as perturbation, Acc. Chem. Res. 48, 3080 (2015).

32. K. Tomiyasu, H. Kageyama, C. Lee, M. H. Whangbo, Y. Tsujimoto, K. Yoshimura, J. W. Taylor, A. Llobet, F. Trouw, K. Kakurai, and K. Yamada, Magnetic excitations in infinite- layer antiferromagnetic insulator, J. Phys. Soc. Jpn. 79, 034707 (2010).

33. C. Tassel and H. Kageyama, Square planar coordinate iron oxides, Chem. Soc. Rev. 41, 2025 (2012).

参考文献をもっと見る