リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Statistical analysis of flash flood events for designing water harvesting systems in an extremely arid environment」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Statistical analysis of flash flood events for designing water harvesting systems in an extremely arid environment

Unami, Koichi Mohawesh, Osama Fadhil, Rasha M. 京都大学 DOI:10.1002/hyp.14370

2021.09

概要

A water harvesting system for research purposes has been established in the Lisan Peninsula of the Dead Sea in the middle of the Jordan Rift Valley, where no authorized guideline is available for designing water harvesting systems. Rainfall and runoff, which occurred as flash floods, were observed at the downstream end of a gorge with a 1.12 km2 barren catchment area from October 2014 through July 2019. Due to the extremely arid environment, runoff from the catchment is ephemeral, and the flash flood events can be clearly distinguishable from each other. Thirteen flash flood events with a total runoff volume of more than 100 m3 were successfully recorded during the five rainy seasons. Pearson and Spearman correlations between duration, total rainfall depths at two points, total runoff volume, maximum runoff discharge, bulk runoff coefficient, total variation in runoff discharge and maximum variation in runoff discharge of each flash flood event were examined, revealing no straightforward relationship between rainfall and runoff. The performance of the conventional SCS runoff curve number method was also deficient in reproducing any rainfall–runoff relationship. Therefore, probability distribution fitting was performed for each random variable, focusing on the lognormal distribution with three parameters and the generalized extreme value distribution. The maximum goodness-of-fit estimation turns out to be a more rational and efficient method in obtaining the parameter values of those probability distributions rather than the standard maximum likelihood estimation, which has known disadvantages. Results support the design of the water harvesting system and provide quantitative information for designing and operating similar systems in the future.

この論文で使われている画像

参考文献

Al-Weshah, R. A. (2000). Optimal use of irrigation water in the Jordan Valley: A case study. Water

Resources Management, 14(5), 327-338. doi:10.1023/A:1011152318711

Closson, D., LaMoreaux, P. E., Abou Karaki, N., & al-Fugha, H. (2007). Karst system developed

in salt layers of the Lisan Peninsula, Dead Sea, Jordan. Environmental Geology, 52(1),

155-172. doi:10.1007/s00254-006-0469-9

Fadhil, R. M., & Unami, K. (2021). A multi-state Markov chain model to assess drought risks in

rainfed agriculture: a case study in the Nineveh Plains of Northern Iraq. Stochastic

Environmental Research and Risk Assessment, 35, 1931–1951. doi:10.1007/s00477-02101991-5

Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philosophical

Transactions of the Royal Society A, 222(594-604), 309-368. doi:10.1098/rsta.1922.0009

Jenkinson, A. F. (1955). The frequency distribution of the annual maximum (or minimum) values

of meteorological elements. Quarterly Journal of the Royal Meteorological Society,

81(348), 158-171. doi:10.1002/qj.49708134804

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Levy, H., & Kroll, Y. (1976). Stochastic dominance with riskless assets. Journal of Financial and

Quantitative Analysis, 11(5), 743-777. doi:10.2307/2330579

Luceño, A. (2006). Fitting the generalized Pareto distribution to data using maximum goodnessof-fit estimators. Computational Statistics & Data Analysis, 51(2), 904-917.

doi:10.1016/j.csda.2005.09.011

Makkonen, L., & Tikanmäki, M. (2019). An improved method of extreme value analysis. Journal

of Hydrology X, 100012, 1-7. doi:10.1016/j.hydroa.2018.100012

Martins, E. S., & Stedinger, J. R. (2000). Generalized maximum-likelihood generalized extremevalue quantile estimators for hydrologic data. Water Resources Research, 36(3), 737-744.

doi:10.1029/1999wr900330

Pearson, K. (1896). VII. Mathematical contributions to the theory of evolution.—III. Regression,

heredity, and panmixia. Philosophical Transactions of the Royal Society of London. Series

A, containing papers of a mathematical or physical character, 187(187), 253-318.

doi:10.1098/rsta.1896.0007

Rumman, M. A., Hiyassat, M., Alsmadi, B., Jamrah, A., & Alqam, M. (2009). A surface water

management model for the Integrated Southern Ghor Project, Jordan. Construction

Innovation, 9(3), 298-322. doi:10.1108/14714170910973510

Rural Development Bureau. (2015). Design guideline for agricultural land improvement projects:

irrigation dam development (MAFF, Japan ed.): The Japanese Society of Irrigation,

Drainage and Rural Engineering.

Sharifi, E., Unami, K., Mohawesh, O., Nakamichi, T., Kinjo, N., & Fujihara, M. (2015). Design

and construction of a hydraulic structure for rainwater harvesting in arid environment.

Proceedings of the 36th IAHR World Congress, 3375-3386.

Spearman, C. (1910). Correlation calculated from faulty data. British Journal of Psychology,

1904‐1920, 3(3), 271-295. doi:10.1111/j.2044-8295.1910.tb00206.x

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Tarawneh, Q., & Kadıoğlu, M. (2003). An analysis of precipitation climatology in Jordan.

Theoretical and Applied Climatology, 74(1-2), 123-136. doi:10.1007/s00704-002-0705-5

Unami, K., Fadhil, R. M., & Mohawesh, O. (2021). Bounding linear rainfall-runoff models with

fractional derivatives applied to a barren catchment of the Jordan Rift Valley. Journal of

Hydrology, 593. doi:10.1016/j.jhydrol.2020.125879

Unami, K., & Kawachi, T. (2005). Systematic assessment of flood mitigation in a tank irrigated

paddy fields area. Paddy and Water Environment, 3(4), 191-199. doi:10.1007/s10333-0050022-6

Unami, K., Kawachi, T., Kranjac-Berisavljevic, G., Abagale, F. K., Maeda, S., & Takeuchi, J.

(2009). Case study: hydraulic modeling of runoff processes in Ghanaian inland valleys.

Journal of Hydraulic Engineering, 135(7), 539-553. doi:10.1061/(ASCE)HY.19437900.0000041

Unami, K., & Mohawesh, O. (2018). A unique value function for an optimal control problem of

irrigation water intake from a reservoir harvesting flash floods. Stochastic Environmental

Research and Risk Assessment, 32(11), 3169-3182. doi:10.1007/s00477-018-1527-z

Unami, K., Mohawesh, O., & Fadhil, R. M. (2019). Time periodic optimal policy for operation of

a water storage tank using the dynamic programming approach. Applied Mathematics and

Computation, 353, 418-431. doi:10.1016/j.amc.2019.02.005

Unami, K., Mohawesh, O., & Fujihara, M. (2020). Prototype and model of solar driven

desalination

plant

in

arid

environment.

Thermal

Science,

24(2),

903-914.

doi:10.2298/Tsci180604097u

Unami, K., Mohawesh, O., Sharifi, E., Takeuchi, J., & Fujihara, M. (2015). Stochastic modelling

and control of rainwater harvesting systems for irrigation during dry spells. Journal of

Cleaner Production, 88, 185-195. doi:10.1016/j.jclepro.2014.03.100

Vetterling, W. T., Teukolsky, S. A., Press, W. H., & Flannery, B. P. (1999). Numerical recipes in

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

C: the art of scientific computing: Cambridge University Press.

Walsh, T. C., Pomeroy, C. A., & Burian, S. J. (2014). Hydrologic modeling analysis of a passive,

residential rainwater harvesting program in an urbanized, semi-arid watershed. Journal of

Hydrology, 508, 240-253. doi:10.1016/j.jhydrol.2013.10.0

Zakaria, S., Al-Ansari, N., Ezz-Aldeen, M., & Knutsson, S. (2012). Rain water harvesting at

eastern Sinjar mountain, Iraq. Geoscience Research, 3(2), 100-108.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Table 1. Primary data of the rainfall depth D (mm) at the observation system during the period from October 2014 through July 2019

Maximum

Mean

Minimum

AUG

0.06

0.02

0.00

SEP

1.09

0.33

0.00

OCT

27.47

8.29

0.03

NOV

10.51

4.94

0.47

DEC

21.11

8.87

1.20

JAN

29.35

13.56

1.53

FEB

26.27

23.06

15.07

MAR

29.21

11.71

0.17

APR

23.79

12.73

1.65

MAY

4.60

1.00

0.00

JUN

0.89

0.24

0.00

JUL

0.16

0.04

0.00

Annual

109.98

84.82

63.39

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Table 2. Observed rainfall-runoff events with total runoff volume more than 100 m3

Date

12DEC2014

11JAN2015

14JAN2015

26OCT2015

09JAN2016

13APR2016

16FEB2017

10MAR2017

17FEB2018

26APR2018

07FEB2019

25MAR2019

25MAR2019

Start

19:15

01:15

22:52

08:08

02:39

15:32

10:46

21:33

07:48

16:58

05:41

01:30

09:59

End

04:38+

08:32

03:18+

10:42

04:36

16:40

20:34

01:14+

09:53

04:55+

11:27

03:58

12:03

T (min)

564

390

267

155

118

69

589

222

126

718

347

149

125

Do (mm)

13.81

8.52

8.59

10.28

6.79

8.47

16.97

10.85

6.38

23.40

6.00

8.86

3.36

Da (mm)

12.0

10.5

8.4

7.8

2.7

3.4

10.4

5.4

4.4

14.7

6.0

6.0

3.6

V (m3)

307.49

289.23

309.39

593.02

191.19

917.84

323.32

316.78

290.12

865.60

174.38

365.69

135.90

Qmax (L/s)

66

54

93

243

141

1816

87

153

169

283

55

263

55

C (%)

1.99

3.03

3.22

5.15

2.51

9.68

1.70

2.61

4.06

3.30

2.59

3.69

3.61

TV[Q] (L/s)

519

621

339

803

358

6655

349

593

550

971

304

642

220

MV[Q] (L/s)

31

10

11

118

56

1156

18

48

120

51

15

66

14

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Table 3. Results of correlation analysis among the eight random variables

Pearson’s correlation coefficients

T (min)

Spearman's rank correlation

coefficients

T (min)

Do (mm)

Da (mm)

V (m3)

Qmax (L/s)

C (%)

TV[Q] (L/s)

MV[Q] (L/s)

0.833

0.916

0.154

−0.325

−0.511

−0.283

−0.366

0.827

0.548

−0.023

−0.203

−0.021

−0.099

0.286

−0.295

−0.379

−0.254

−0.345

0.730

0.691

0.717

0.667

0.925

0.994

0.992

0.912

0.926

Do (mm)

0.678

Da (mm)

0.909

0.716

V (m3)

0.157

0.673

0.288

Qmax (L/s)

−0.222

0.355

−0.109

0.814

C (%)

−0.460

−0.200

−0.246

0.433

0.604

TV[Q] (L/s)

0.004

0.448

0.181

0.790

0.754

0.561

MV[Q] (L/s)

−0.419

0.101

−0.338

0.571

0.834

0.571

0.993

0.642

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Table 4. Results of probability distribution fitting with maximum likelihood estimation

Distribution

Lognormal

with three

parameters

(LN3)

Generalized

extreme

value

(GEV)

Parameter

T (min)

Do (mm)

Da (mm)

V (m3)

Qmax (L/s)

C (%)

TV[Q] (L/s)

MV[Q] (L/s)

µLN3

5.16301

2.20939

1.70731

5.41270

2.81730

0.596690

5.70378

2.88152

σ LN3

0.916120

0.471100

0.594090

0.786280

4.58172

0.711930

1.28020

2.33610

ξ LN3

42.1510

−0.009210

0.832810

89.6068

54.0000

1.27461

200.213

9.81461

DE

0.144846

0.138071

0.130864

0.210453

0.251232

0.140335

0.153611

0.164577

inf α

0.947908

0.965321

0.979172

0.612377

0.384731

0.959986

0.918896

0.872911

− log L

84.4264

37.3833

33.8718

85.6856

73.6632

21.7861

95.8066

66.9363

µGEV

182.314

7.78439

5.55130

264.926

79.4597

2.73008

406.419

22.4402

σ GEV

118.253

3.42315

2.70683

124.834

61.2649

0.934180

210.007

21.3527

ξ GEV

0.470720

0.109170

0.0759941

0.344930

2.31550

0.282070

0.690560

1.45587

DE

0.182691

0.135505

0.137564

0.206040

0.248055

0.125288

0.146506

0.143037

inf α

0.778415

0.970789

0.966450

0.639151

0.400545

0.986860

0.942972

0.952986

− log L

84.9072

37.3475

34.1111

85.8357

78.3715

21.7335

95.3514

67.9867

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Table 5. Results of probability distribution fitting with maximum goodness-of-fit estimation

Distribution

Lognormal

with three

parameters

(LN3)

Generalized

extreme

value

(GEV)

Parameter

T (min)

Do (mm)

Da (mm)

V (m3)

Qmax (L/s)

C (%)

TV[Q] (L/s)

MV[Q] (L/s)

µLN3

4.91581

1.84277

1.86760

5.43546

4.46005

0.812416

6.23104

3.52357

σ LN3

1.16979

0.457032

0.608888

0.511063

1.19553

0.430577

0.586062

1.39746

ξ LN3

68.8622

2.62107

0.0104740

87.3835

33.8576

0.831299

6.80639

3.67047

DE

0.114420

0.125828

0.0891584

0.170383

0.111443

0.0932289

0.121203

0.112188

inf α

0.995679

0.986221

0.999949

0.844769

0.997004

0.999865

0.991026

0.996707

− log L

94.6349

43.9408

34.2804

88.7423

79.9660

23.1412

69.5114

µGEV

170.239

8.02932

5.28000

281.316

103.336

2.78526

425.485

31.6440

σ GEV

127.638

2.44079

3.18422

94.0019

77.0699

0.840122

249.585

34.9721

ξ GEV

0.230487

0.0699960

0.186238

0.130905

0.112806

0.107889

0.0519790

0.0106120

DE

0.138085

0.125888

0.0904005

0.169084

0.143217

0.0937528

0.117581

0.154496

inf α

0.965291

0.986148

0.999930

0.851266

0.952494

0.999848

0.993825

0.915568

− log L

85.4008

39.6504

34.6077

88.0383

85.9461

22.3367

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Table 6. Verification of the reservoir capacity of the desalination plant

Distribution

F(300)

Pres (300)

1 Pres (300)

LN3 with MLE

0.467704

0.202526

4.93764

GEV with MLE

0.465437

0.201153

4.97134

LN3 with MGE

0.440914

0.186886

5.35086

GEV with MGE

0.439624

0.186164

5.37161

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Table 7. Verification of the spillway capacity

Distribution

F(1000)

F(1816)

Pspill (1000)

Pspill (1816)

1 Pspill (1000) 1 Pspill (1816)

LN3 with MLE

0.810749

0.845283

0.433202

0.371332

2.30839

2.69301

GEV with MLE

0.807924

0.849523

0.437985

0.363283

2.28318

2.75267

LN3 with MGE

0.978234

0.994308

0.063211

0.016930

15.8201

59.0657

GEV with MGE

0.999408

0.999985

0.001775

0.000044

563.359

22563.5

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Table 8. Contrasting MLE and MGE in terms of the spillway capacity design

Distribution

Q200

( Q200 × 1.2/1,000)2/5

LN3 with MLE

11547793

45.3599

GEV with MLE

71124056

93.8597

LN3 with MGE

2921

1.65166

GEV with MGE

825

0.996213

Accepted Article

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 1. Photo of the gorge in the barren catchment area

This article is protected by copyright. All rights reserved.

iew

ev

rR

ee

rP

Fo

Accepted Article

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 2. Photo of the observation system including VAISALA WXT536 weather transmitter and SR50A

acoustic distance sensor for measurement of runoff discharge

This article is protected by copyright. All rights reserved.

Accepted Article

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 3. Photographs taken during the flash flood event on April 13, 2016, with an interval of 1 hour

This article is protected by copyright. All rights reserved.

Accepted Article

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 4. Comparison of the observed total runoff depths with the estimations by the SCS runoff curve

number method

This article is protected by copyright. All rights reserved.

Accepted Article

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 5. Empirical and fitted probability distributions for the duration

This article is protected by copyright. All rights reserved.

Accepted Article

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 6. Empirical and fitted probability distributions for total rainfall depth at the observation system

This article is protected by copyright. All rights reserved.

Accepted Article

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 7. Empirical and fitted probability distributions for total rainfall depth at the auxiliary raingauge

This article is protected by copyright. All rights reserved.

Accepted Article

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 8. Empirical and fitted probability distributions for total runoff volume

This article is protected by copyright. All rights reserved.

Accepted Article

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 9. Empirical and fitted probability distributions for maximum runoff discharge

This article is protected by copyright. All rights reserved.

Accepted Article

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 10. Empirical and fitted probability distributions for bulk runoff coefficient

This article is protected by copyright. All rights reserved.

Accepted Article

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 11. Empirical and fitted probability distributions for total variation in runoff discharge

This article is protected by copyright. All rights reserved.

Accepted Article

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 12. Empirical and fitted probability distributions for maximum variation in runoff discharge

http://mc.manuscriptcentral.com/hyp

This article

is protected by copyright. All rights reserved.

...

参考文献をもっと見る