リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A multi-state Markov chain model to assess drought risks in rainfed agriculture: a case study in the Nineveh Plains of Northern Iraq」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A multi-state Markov chain model to assess drought risks in rainfed agriculture: a case study in the Nineveh Plains of Northern Iraq

Fadhil, Rasha M. Unami, Koichi 京都大学 DOI:10.1007/s00477-021-01991-5

2021.09

概要

The occurrence of prolonged dry spells and the shortage of precipitation are two different hazardous factors affecting rainfed agriculture. This study investigates a multi-state Markov chain model with the states of dry spell length coupled with a probability distribution of positive rainfall depths. The Nineveh Plains of Northern Iraq is chosen as the study site, where the rainfed farmers are inevitably exposed to drought risks, for demonstration of applicability to real-time drought risk assessment. The model is operated on historical data of daily rainfall depths observed at the city Mosul bordering the Nineveh Plains during the period 1975–2018. The methodology is developed in the context of contemporary probability theory. Firstly, the Kolmogorov–Smirnov tests are applied to extracting two sub-periods where the positive rainfall depths obey to respective distinct gamma distributions. Then, empirical estimation of transition probabilities determining a multi-state Markov chain results in spurious oscillations, which are regularized in the minimizing total variation flow solving a singular diffusion equation with a degenerating coefficient that controls extreme values of 0 and 1. Finally, the model yields the statistical moments of the dry spell length in the future and the total rainfall depth until a specified terminal day. Those statistical moments, termed hazard futures, can quantify drought risks based on the information of the dry spell length up to the current day. The newly defined hazard futures are utilized to explore measures to avert drought risks intensifying these decades, aiming to establish sustainable rainfed agriculture in the Nineveh Plains.

この論文で使われている画像

参考文献

701

702

703

704

705

706

707

Agha OMM, Şarlak N (2016) Spatial and temporal patterns of climate variables in Iraq. Arab

J Geosci 9:302 doi:10.1007/s12517-016-2324-y

Al-Ansari N (2013) Management of water resources in Iraq: perspectives and prognoses.

Engineering 5:667-684 doi:10.4236/eng.2013.58080

Al-Khayat BYT, Al-Sulaiman MSS (2013) Forecasting of rainy conditions in Mosul city. Iraqi

Journal of Statistical Sciences 13:19-32

31

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

708

Al-Najafee EH, Rashad EM (2012) Rainfall levels and their impact on wheat productivity: a

709

comparative study between rainfall assured and semi-assured regions in Nineveh.

710

Tanmyat al-Rafidain 34:161-170

711

Anagnostopoulou C, Maheras P, Karacostas T, Vafiadis M (2003) Spatial and temporal

712

analysis of dry spells in Greece. Theor Appl Climatol 74:77-91 doi:10.1007/s00704-

713

002-0713-5

714

Angelidis P, Maris F, Kotsovinos N, Hrissanthou V (2012) Computation of drought index SPI

715

with alternative distribution functions. Water Resour Manage 26:2453-2473

716

doi:10.1007/s11269-012-0026-0

717

718

719

720

Awchi TA, Kalyana MM (2017) Meteorological drought analysis in northern Iraq using SPI

and GIS. Sustain Water Resour Manag 3:451-463 doi:10.1007/s40899-017-0111-x

Azooz A, Talal S (2015) Evidence of climate change in Iraq. Journal of Environment Protection

and Sustainable Development 1:66-73

721

Barron J, Rockstrom J, Gichuki F, Hatibu N (2003) Dry spell analysis and maize yields for two

722

semi-arid locations in east Africa. Agr Forest Meteorol 117:23-37 doi:10.1016/S0168-

723

1923(03)00037-6

724

725

726

727

728

729

730

731

Cabrera BL, Odening M, Ritter M (2013) Pricing rainfall futures at the CME. J Bank Financ

37:4286-4298 doi:10.1016/j.jbankfin.2013.07.042

Cavus Y, Aksoy H (2019) Spatial drought characterization for Seyhan River basin in the

Mediterranean region of Turkey. Water 11 doi:10.3390/w11071331

Cavus Y, Aksoy H (2020) Critical drought severity/intensity-duration-frequency curves based

on precipitation deficit. J Hydrol 584 doi:10.1016/j.jhydrol.2019.124312

Evans JP (2009) 21st century climate change in the Middle East. Clim Change 92:417-432

doi:10.1007/s10584-008-9438-5

32

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

732

Fadhil RM Markovian properties and distribution of daily rainfall in northern Iraq. In: Al-

733

Zyoud F, Abdel-Ghani, A. (ed) The Eighth Scientific Agricultural Conference ESAC-

734

2018, Karak, Jordan, 2018. National Agricultural Research Center, Baqa', Jordan, p 57

735

Farr TG et al. (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004

736

doi:10.1029/2005RG000183

737

Fischer BMC, Mul ML, Savenije HHG (2013) Determining spatial variability of dry spells: a

738

Markov-based method, applied to the Makanya catchment, Tanzania. Hydrol Earth Syst

739

Sci 17:2161-2170 doi:10.5194/hess-17-2161-2013

740

Gao C, Booij MJ, Xu YP (2020) Development and hydrometeorological evaluation of a new

741

stochastic daily rainfall model: Coupling Markov chain with rainfall event model. J

742

Hydrol 589 doi:10.1016/j.jhydrol.2020.125337

743

Giga Y, Muszkieta M, Rybka P (2019) A duality based approach to the minimizing total

744

variation flow in the space H-s. Jpn J Ind Appl Math 36:261-286 doi:10.1007/s13160-

745

018-00340-4

746

Hajim AY, Al-Dabagh AY, Yaseen HI, Dawud AF, Shayth AH (1996) Analysis of irrigation

747

in fields and orchards in Nineveh. Department of Irrigation and Drainage, College of

748

Engineering, University of Mosul, Mosul, Iraq (in Arabic)

749

IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working

750

Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate

751

Change. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.

752

Tignor, and H.L. Miller (eds.).

753

Jimoh OD, Webster P (1999) Stochastic modelling of daily rainfall in Nigeria: intra-annual

754

variation of model parameters. J Hydrol 222:1-17 doi:10.1016/S0022-1694(99)00088-

755

33

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

756

Kadim AA (2013) The negative and positive divergence of the heat and the rain refraction from

757

their common average at Mosul, Baghdad and Basra stations. Adab al-Basrah 67:309-

758

334

759

760

761

762

Kalyan MM, Awchi TA (2015) Investigating the meteorological drought in Northern Iraq using

deciles method. Al-Rafdain Engineering 23:12-21

Leobacher G, Ngare P (2011) On modelling and pricing rainfall derivatives with seasonality.

Appl Math Finance 18:71-91 doi:10.1080/13504861003795167

763

Loucks DP, van Beek E (2005) Water Resource Systems Planning and Management: An

764

Introduction to Methods, Models and Applications. Studies and Reports in Hydrology.

765

UNESCO PUBLISHING, Paris

766

Martin-Vide J, Gomez L (1999) Regionalization of peninsular Spain based on the length of dry

767

spells. Int J Climatol 19:537-555 doi:10.1002/(Sici)1097-0088(199904)19:5<537::Aid-

768

Joc371>3.0.Co;2-X

769

Masala G (2014) Rainfall derivatives pricing with an underlying semi-Markov model for

770

precipitation

771

doi:10.1007/s00477-013-0784-0

772

773

occurrences.

Stoch

Environ

Res

Risk

Assess

28:717-727

Mustafa LMF (2012) Spatial and Temporal Variation of Rainfall in Ninava Governorate.

Journal of Education and Science 25:98-114 doi:10.33899/edusj.2012.66773

774

Nop C, Fadhil RM, Unami K (2021) A multi-state Markov chain model for rainfall to be used

775

in optimal operation of rainwater harvesting systems. J Clean Prod 285:124912

776

doi:10.1016/j.jclepro.2020.124912

777

Ojara MA, Lou YS, Aribo L, Namumbya S, Uddin MJ (2020) Dry spells and probability of

778

rainfall occurrence for Lake Kyoga Basin in Uganda, East Africa. Nat Hazards

779

100:493-514 doi:10.1007/s11069-019-03822-x

34

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

780

Onof C, Chandler RE, Kakou A, Northrop P, Wheater HS, Isham V (2000) Rainfall modelling

781

using Poisson-cluster processes: a review of developments. Stoch Environ Res Risk

782

Assess 14:384-411 doi:DOI 10.1007/s004770000043

783

Osher S, Burger M, Goldfarb D, Xu JJ, Yin WT (2005) An iterative regularization method for

784

total

785

doi:10.1137/040605412

786

787

variation-based

image

restoration.

Multiscale

Model

Sim

4:460-489

Rasheed AMM (2010) Analysis of rainfall drought periods in the North of Iraq using standard

precipitation index (SPI). Al-Rafdain Engineering 18 60-72

788

Richardson CW, Wright DA (1984) WGEN: A model for generating daily weather variables.

789

US Department of Agriculture, Agricultural Research Service Washington, DC, USA,

790

Robaa SM, AL-Barazanji ZJ (2013) Trends of annual mean surface air temperature over Iraq.

791

792

793

794

795

Nature and Science 11:138-145

Rockström J et al. (2010) Managing water in rainfed agriculture—The need for a paradigm

shift. Agric Water Manage 97:543-550 doi:10.1016/j.agwat.2009.09.009

Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms.

Physica D 60:259-268 doi:10.1016/0167-2789(92)90242-F

796

Salman SA, Shahid S, Ismail T, Ahmed K, Wang XJ (2018a) Selection of climate models for

797

projection of spatiotemporal changes in temperature of Iraq with uncertainties. Atmos

798

Res 213:509-522 doi:10.1016/j.atmosres.2018.07.008

799

Salman SA, Shahid S, Ismail T, bin Abd Rahman N, Wang XJ, Chung ES (2018b)

800

Unidirectional trends in daily rainfall extremes of Iraq. Theor Appl Climatol 134:1165-

801

1177 doi:10.1007/s00704-017-2336-x

802

Sharifi E, Unami K, Yangyuoru M, Fujihara M (2016) Verifying optimality of rainfed

803

agriculture using a stochastic model for drought occurrence. Stoch Environ Res Risk

804

Assess 30:1503-1514 doi:10.1007/s00477-015-1129-y

35

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

805

Sirangelo B, Caloiero T, Coscarelli R, Ferrari E (2015) A stochastic model for the analysis of

806

the temporal change of dry spells. Stoch Environ Res Risk Assess 29:143-155

807

doi:10.1007/s00477-014-0904-5

808

Sirangelo B, Caloiero T, Coscarelli R, Ferrari E (2017) Stochastic analysis of long dry spells

809

in Calabria (Southern Italy). Theor Appl Climatol 127:711-724 doi:10.1007/s00704-

810

015-1662-0

811

Taha MAQ (2014) Selecting the best models in calculating the amount of rainfall in Sinjar and

812

Mosul stations. Journal of University of Babylon for Pure and Applied Sciences

813

22:2015-2022

814

Tatano H, Okada N, Kawai H (1992) Optimal operation model of a single reservoir with

815

drought

816

doi:10.1007/BF01591334

817

818

819

820

duration

explicitly

concerned.

Stoch

Hydrol

Hydraul

6:123-134

Tong Z, Liu A (2021) A censored Ornstein-Uhlenbeck process for rainfall modeling and

derivatives pricing. Physica A 566:125619 doi:10.1016/j.physa.2020.125619

Turvey CG (2001) Weather derivatives for specific event risks in agriculture. Rev Agric Econ

23:333-351

821

Unami K, Abagale F, Yangyuoru M, Alam A, Kranjac-Berisavljevic G (2010) A stochastic

822

differential equation model for assessing drought and flood risks. Stoch Environ Res

823

Risk Assess 24:725-733 doi:10.1007/s00477-009-0359-2

824

Unami K, Mohawesh O (2018) A unique value function for an optimal control problem of

825

irrigation water intake from a reservoir harvesting flash floods. Stoch Environ Res Risk

826

Assess 32:3169-3182 doi:10.1007/s00477-018-1527-z

827

Unami K, Mohawesh O, Fadhil RM (2019) Time periodic optimal policy for operation of a

828

water storage tank using the dynamic programming approach. Appl Math Comput

829

353:418-431 doi:10.1016/j.amc.2019.02.005

36

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

830

Vicente-Serrano SM, Beguería-Portugués S (2003) Estimating extreme dry‐spell risk in the

831

middle Ebro valley (northeastern Spain): a comparative analysis of partial duration

832

series with a general Pareto distribution and annual maxima series with a Gumbel

833

distribution. International Journal of Climatology: A Journal of the Royal

834

Meteorological Society 23:1103-1118 doi:10.1002/joc.934

835

Wilby RL, Prudhomme C, Parry S, Muchan K (2015) Persistence of hydrometeorological

836

droughts in the United Kingdom: A regional analysis of multi-season rainfall and river

837

flow anomalies. J Extreme Events 2:1550006 doi:10.1142/S2345737615500062

838

Williams D (1991) Probability with Martingales. Cambridge Mathematical Textbooks.

839

840

841

Cambridge University Press, Cambridge, UK

World Meteorological Organization (2012) Standardized Precipitation Index User Guide vol

WMO-No.1090. WMO, Geneva

842

Yadeta D, Kebede A, Tessema N (2020) Climate change posed agricultural drought and

843

potential of rainy season for effective agricultural water management, Kesem sub-

844

basin, Awash Basin, Ethiopia. Theor Appl Climatol 140:653-666 doi:10.1007/s00704-

845

020-03113-7

846

Yang LC, Franzke CLE, Fu ZT (2020) Power-law behaviour of hourly precipitation intensity

847

and dry spell duration over the United States. Int J Climatol 40:2429-2444

848

doi:10.1002/joc.6343

849

Zakaria S, Al-Ansari N, Knutsson S (2013) Historical and future climatic change scenarios for

850

temperature and rainfall for Iraq. Journal of Civil Engineering and Architecture 7:1574-

851

1594

852

37

Fig. 1

Click here to access/download;colour figure;Fig1-NINEVEHmap.eps

37N

fold mountains

Mo

Rabea

sul

Da

Ri

ve

Nineveh Plains

Za

Telafer

Sinjar

re

at

Mosul

Tigris R

36N

iver

41E

1000

2000

3000

Elevation above sea level (m)

42E

10

20

Distance (km)

30

43E

44E

Fig. 2

Click here to access/download;colour figure;Fig2-RainChart.eps

700

600

Accumulated rainfall depth (mm)

500

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1990

1991

1992

1994

1995

1996

1997

1998

1999

2000

2001

2002

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2018

400

300

200

100

JAN

FEB

MAR

APR

MAY

JUN

Time t

JUL

AUG

SEP

OCT

NOV

DEC

Fig. 3

Click here to access/download;colour figure;Fig3-FlowChart.eps

Time series data of daily rainfall

Multi-state Markov chain: definition by (9)

Positive rainfall depths

Transition probabilities for DSL

Extraction of sub-periods by K-S tests

Empirical estimation

Parameters of gamma distributions

Regularization by MTVF

Drought risk assessment

Hazard futures

E[S ], SD[S]

E[L], SD[L]

λt

Measures of risk aversion

Crop management

Supplementary irrigation

Fig. 4

Click here to access/download;colour figure;Fig4-alphaL.eps

1974-1989

1975-1990

1976-1991

1977-1992

1978-1993

1979-1994

1980-1995

1981-1996

1982-1997

1983-1998

1984-1999

1985-2000

1986-2001

1987-2002

1988-2003

1989-2004

1990-2005

1991-2006

1992-2007

1993-2008

1994-2009

1995-2010

1996-2011

1997-2012

1998-2013

1999-2014

2000-2015

2001-2016

2002-2017

2003-2018

2004-2019

α L -value

0.0

0.5

1.0

2004-2019

2003-2018

2002-2017

2001-2016

2000-2015

1999-2014

1998-2013

1997-2012

1996-2011

1995-2010

1994-2009

1993-2008

1992-2007

1991-2006

1990-2005

1989-2004

gamma

2009-2019

2008-2018

2007-2017

2006-2016

2005-2015

2004-2014

2003-2013

2002-2012

2001-2011

2000-2010

1999-2009

1998-2008

1997-2007

1996-2006

1995-2005

1994-2004

1993-2003

1992-2002

1991-2001

1990-2000

1989-1999

1988-1998

1987-1997

1986-1996

1985-1995

1984-1994

gamma

1974-1984

1975-1985

1976-1986

1977-1987

1978-1988

1979-1989

1980-1990

1981-1991

1982-1992

1983-1993

1984-1994

1985-1995

1986-1996

1987-1997

1988-1998

1989-1999

1990-2000

1991-2001

1992-2002

1993-2003

1994-2004

1995-2005

1996-2006

1997-2007

1998-2008

1999-2009

2000-2010

2001-2011

2002-2012

2003-2013

2004-2014

2005-2015

2006-2016

2007-2017

2008-2018

2009-2019

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Fig. 5

Click here to access/download;colour figure;Fig5-mosulCDF.eps

CDF

1.0

0.8

0.6

0.4

: 1977-1992, gamma

: 1977-1992, empirical

: 2004-2019, gamma

: 2004-2019, empirical

0.2

0.0

20

40

60

r (mm)

80

100

Fig. 6

Click here to access/download;colour figure;Fig6-empP5mm7792.eps

200

Pi0

1.0

State x (DSL up to t ) (day)

150

0.8

0.6

100

0.4

0.2

50

0.0

JAN

FEB

MAR

APR

MAY

JUN

Time t

JUL

AUG

SEP

OCT

NOV

DEC

Fig. 7

Click here to access/download;colour figure;Fig7-regP5mm7792.eps

200

Pi0

1.0

State x (DSL up to t ) (day)

150

0.8

0.6

100

0.4

0.2

50

0.0

JAN

FEB

MAR

APR

MAY

JUN

Time t

JUL

AUG

SEP

OCT

NOV

DEC

Fig. 8

Click here to access/download;colour figure;Fig8-regP5mm0419.eps

200

Pi0

1.0

State x (DSL up to t ) (day)

150

0.8

0.6

100

0.4

0.2

50

0.0

JAN

FEB

MAR

APR

MAY

JUN

Time t

JUL

AUG

SEP

OCT

NOV

DEC

Fig. 9

Click here to access/download;colour figure;Fig9-E[L]7792.eps

200

E[L] (day)

400

State x (DSL up to t ) (day)

150

300

100

200

100

50

JAN

FEB

MAR

APR

MAY

JUN

Time t

JUL

AUG

SEP

OCT

NOV

DEC

Fig. 10

Click here to access/download;colour figure;Fig10-SD[L]7792.eps

200

SD[L] (day)

160

State x (DSL up to t ) (day)

150

120

100

80

40

50

JAN

FEB

MAR

APR

MAY

JUN

Time t

JUL

AUG

SEP

OCT

NOV

DEC

Fig. 11

Click here to access/download;colour figure;Fig11-E[L]0419.eps

200

E[L] (day)

400

State x (DSL up to t ) (day)

150

300

100

200

100

50

JAN

FEB

MAR

APR

MAY

JUN

Time t

JUL

AUG

SEP

OCT

NOV

DEC

Fig. 12

Click here to access/download;colour figure;Fig12-SD[L]0419.eps

200

SD[L] (day)

160

State x (DSL up to t ) (day)

150

120

100

80

40

50

JAN

FEB

MAR

APR

MAY

JUN

Time t

JUL

AUG

SEP

OCT

NOV

DEC

Fig. 13

Click here to access/download;colour figure;Fig13-lambda.eps

State x (DSL up to t ) (day)

50

Sub-period 1977-1992

40

Sub-period 2004-2019

30

20

10

JAN

FEB

MAR

APR

MAY

JUN

Time t

JUL

AUG

SEP

OCT

NOV

DEC

Fig. 14

Click here to access/download;colour figure;Fig14-E[S]7792.eps

200

E[S ] (mm)

400

State x (DSL up to t ) (day)

150

300

100

200

100

50

JAN

FEB

MAR

APR

MAY

JUN

Time t

JUL

AUG

SEP

OCT

NOV

DEC

Fig. 15

Click here to access/download;colour figure;Fig15-SD[S]7792.eps

200

SD[S] (mm)

160

State x (DSL up to t ) (day)

150

120

100

80

40

50

JAN

FEB

MAR

APR

MAY

JUN

Time t

JUL

AUG

SEP

OCT

NOV

DEC

Fig. 16

Click here to access/download;colour figure;Fig16-E[S]0419.eps

200

E[S ] (mm)

400

State x (DSL up to t ) (day)

150

300

100

200

100

50

JAN

FEB

MAR

APR

MAY

JUN

Time t

JUL

AUG

SEP

OCT

NOV

DEC

Fig. 17

Click here to access/download;colour figure;Fig17-SD[S]0419.eps

200

SD[S] (mm)

160

State x (DSL up to t ) (day)

150

120

100

80

40

50

JAN

FEB

MAR

APR

MAY

JUN

Time t

JUL

AUG

SEP

OCT

NOV

DEC

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Table 1

Click here to access/download;table;NinevehSERR_Table1.docx

Table 1: Basic statistics of the data sets for the whole period and for the disjoint sub-periods including the selected ones.

Water years

Total number of

days in data set

Number of

observation days

Number of wet

days

Number of dry

days

Mean of positive

rainfall depths

(mm)

Unbiassed

sample variance

of positive

rainfall depths

(mm2)

1974-2019

(The whole period)

16071

15191

2988 (19.7 %)

12203 (80.3 %)

4.809

66.03

1974-1977

943

943

221 (23.4 %)

722 (76.6 %)

4.335

45.41

1977-1992

(The Selected sub-period)

5479

4901

974 (19.9 %)

3927 (80.1 %)

5.018

68.08

1992-2004

4383

4234

827 (19.5 %)

3407 (80.5 %)

4.980

70.73

2004-2019

(The Selected sub-period)

5266

5113

966 (18.9 %)

4147 (81.1 %)

4.560

64.67

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Table 2

Click here to access/download;table;NinevehSERR_Table2.docx

Table 2: The depths and numbers of irrigation (Depth (mm) : Number (times)) in a water year for major annual crops in Nineveh Governorate, adapted

from Hajim et al. (1996).

Crop

Date of

planting

Date of

harvesting

AUG

SEP

OCT

NOV

DEC

JAN

FEB

MAR

APR

MAY

JUN

JUL

Total

Wheat

Early NOV

Mid-MAY

60 : 1

40 : 2

0:0

0:0

0:0

0:0

20 : 1

40 : 1

200

Barley

Early NOV

Early MAY

60 : 1

40 : 2

0:0

0:0

0:0

0:0

0:0

0:0

140

Clover

Early OCT

Late MAY

40 : 1

40 : 3

20 : 1

0:0

0:0

0:0

0:0

20 : 1

40 : 3

340

Flax

Early NOV

Late MAY

60 : 1

60 : 1

0:0

0:0

0:0

0:0

30 : 1

60 : 1

210

Sugar beet

Mid-OCT

Mid-JUN

60 : 1

40 : 2

20 : 1

0:0

0:0

0:0

0:0

40 : 1

60 : 3

60 : 2

500

Potato

Mid-AUG

Mid-DEC

30 : 5

30 : 5

30 : 4

30 : 2

0:0

480

Onion

SEP

MAY

20 : 2

20 : 2

20 : 1

0:0

0:0

0:0

0:0

20 : 2

20 : 3

200

Cabbage

SEP

MAY

25 : 1

25 : 6

25 : 3

25 : 1

0:0

0:0

0:0

0:0

0:0

0:0

275

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Table 3

Click here to access/download;table;NinevehSERR_Table3.docx

Table 3: Statistical analysis of each dry season during the sub-period 1977-1992, assuming the Gumbel distribution for the length L.

Year

Onset

E[L]

SD[L]

βGum

μGum =

Mode

Observed L

CDF

Return

period

Significance

level

1978

March 15th

150.027

123.183

96.045

94.588

262

0.839

6.229

0.481

1979

March 25th

163.262

114.272

89.098

111.834

217

0.736

3.781

0.652

1980

April 29th

193.766

55.999

43.663

168.563

193

0.565

2.297

0.907

1981

April 29th

193.766

55.999

43.663

168.563

165

0.338

1.510

0.773

1982

May 7th

186.542

53.645

41.827

162.399

146

0.228

1.295

0.590

1983

May 15th

191.327

12.614

9.835

185.650

182

0.235

1.307

0.602

1984

May 10th

183.770

52.874

41.226

159.974

160

0.368

1.583

0.819

1985

April 25th

196.654

58.331

45.480

170.402

200

0.594

2.460

0.873

1986

May 1st

191.918

55.481

43.258

166.949

153

0.251

1.336

0.630

1987

March 28th

171.751

108.753

84.794

122.806

205

0.684

3.168

0.737

1989

July 2nd

139.314

13.514

10.537

133.232

131

0.291

1.410

0.695

1990

April 12th

199.231

73.914

57.630

165.966

211

0.633

2.723

0.818

1991

April 11th

201.770

74.269

57.907

168.345

207

0.599

2.492

0.866

1992

May 11th

182.847

52.616

41.025

159.167

179

0.540

2.173

0.933

No data was available to determine the dry season in the year 1988 due to the Iran-Iraq War

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Table 4

Click here to access/download;table;NinevehSERR_Table4.docx

Table 4: Statistical analysis of each dry season during the sub-period 2004-2019, assuming the Gumbel distribution for the length L.

Year

Onset

E[L]

SD[L]

βGum

μGum =

Mode

Observed L

CDF

Return

period

Significance

level

2004

April 20th

202.671

86.211

67.219

163.872

198

0.548

2.211

0.925

2005

May 3rd

192.300

80.997

63.153

155.847

202

0.618

2.617

0.840

2006

April 27th

196.861

83.616

65.195

159.229

181

0.489

1.956

0.956

2007

May 16th

212.723

14.753

11.503

206.083

258

0.989

91.735

0.282

2008

March 14th

225.342

106.851

83.311

177.253

224

0.565

2.300

0.907

2009

April 18th

204.357

86.930

67.779

165.233

194

0.520

2.083

0.950

2010

May 4th

198.859

72.803

56.764

166.094

221

0.684

3.162

0.738

2011

April 23rd

200.190

85.092

66.346

161.894

207

0.602

2.516

0.861

2012

March 29th

221.844

93.526

72.922

179.752

207

0.502

2.010

0.962

2013

May 28th

178.835

15.172

11.830

172.007

164

0.140

1.163

0.450

2014

April 18th

204.357

86.930

67.779

165.233

181

0.453

1.827

0.926

2015

May 11th

198.239

63.570

49.565

169.630

118

0.059

1.062

0.338

2017

April 15th

206.877

88.014

68.624

167.266

207

0.571

2.331

0.900

2018

May 13th

215.723

14.752

11.502

209.084

161

0.000

1.000

0.270

No data was available to determine the dry season in the year 2016 due to the Iraqi Civil War

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る