リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「光捕集アンテナ「クロロゾーム」を模倣したクロロフィル集積体の形成」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

光捕集アンテナ「クロロゾーム」を模倣したクロロフィル集積体の形成

松原 翔吾 立命館大学 DOI:info:doi/10.34382/00013394

2020.07.20

概要

緑色光合成細菌はクロロゾームと呼ばれる特殊な光捕集アンテナを持っている。このクロロゾームは、集積性のクロロフィル色素(バクテリオクロロフィル-c,d,e;BChl-c,d,e)が自己集積して形成したチューブ状のクロロフィル集積体から構成されている。本論文では、クロロゾームを模倣した「クロロフィル集積体の形成」について報告する。

生体内では、前駆体から集積性のクロロフィルが生合成され、それがトランスポーターによってクロロゾームとなる場所に輸送され、そこで徐々にクロロフィル集積体を形成すると考えられている。そこで、本論文の第2章と第3章では、そのような生体システムを模倣して、徐々にクロロフィルが集積・成長する人工システムを作成した。この人工システムでは光解離性保護基を導入したケージドクロロフィルと呼ぶ合成クロロフィルを用いた。ケージドクロロフィル自身は集積性がないが、そこに紫外光を照射することで集積性のあるクロロフィルに変換される。そのため、生体内でクロロフィルが生合成され、BChl-c,d,e分子が徐々に集積・成長する過程を光という刺激で人工的に再現した。従来の研究では天然のクロロフィル集積体に近いチューブ状構造を直ちに形成することはできなかったが、生体模倣した本システムを用いることで、チューブ状のクロロフィル集積体を直接的に形成させることに成功した。

第3章ではチューブ状のクロロフィル集積体の1次元的な成長を観測したが、天然のクロロゾーム内では、チューブ状のクロロフィル集積体がさらに集積して束になった構造を形成している。第4章では、チューブ状集積体の多段階の成長モデルを報告する。第3章で用いた集積性クロロフィル誘導体は水溶液中およびヘキサン溶液でチューブ状の集積体を形成する。それらの集積体は時間経過によって水溶液中ではリボン状の集積体へ、ヘキサン溶液中では束になった集積体へ変化することが明らかとなった。このように、本研究ではクロロフィル集積体の多段階成長をモデル的に観測することに成功した。

この論文で使われている画像

参考文献

第一章

[1]垣谷俊昭,三室守,民秋均(三室守編集),クロロフィルー構造•反応•機能-,裳華房,pp. 31-35 (2011).

[2] H. Tamiaki and M. Kunieda, Photochemistry of chlorophylls and their synthetic analogs; In Handbook of Porphyrin Science (Eds.: K. M. Kadish, K. M. Smith, and R. Guilard), vol.11, World Scientific, Singapore, pp. 223-290 (2011).

[3] A. A. Ryan and M. O. Senge, How green is green chemistry? Chlorophyll as a bioresource from biorefineries and their commercial potential in medicine and photovoltaics. Photochem. Photohiol. Sci.14, 638-660 (2015).

[4] N. Wakao, N. Yokoi, N. Isoyama, A. Hiraishi, K. Shimada, M. Kobayashi, H. Kise, M. Iwaki S.,Itoh, S. Takaichi, and Y. Sakurai, Discovery of natural photosynthesis using Zn- containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum. Plant Cell Physiol. 37, 889-893 (1996).

[5] V. V. Klimov, A. V. Klevanik, V. A. Shuvalov, and A. A. Krasnovsky, Reduction of pheophytin in the primary light reaction of photosystem II. FEBS Lett. 82,183-186 (1977).

[6] J. Deisenhofer, O. Epp, K. Miki, R. Huber, and H. Michel, Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 A resolution. Nature 318,618-624(1985).

[7] Z. Adam and N. E. Hoffman, Biogenesis of a photosystem I light-harvesting complex. Evidence for a membrane intermediate. Plant Physiol. 102, 35-43 (1993).

[8] P. Jordan, P. Fromme, H. T. Witt, O. Klukas, W. Saenger, and N. KrauB, Three-dimensional structure of cyanobacteria! photosystem I at 2.5 A resolution. Nature 411, 909-917 (2001).

[9] A. Zouni, H.-T. Witt, J. Kern, P. Fromme, N. KrauB, W. Saenger, and P. Orth, Crysta structure of photosystem 11 from Synechococcus elongates at 3.8 A resolution. Nature 409, 739-743 (2001).

[10] K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber, and S. Iwata, Architecture of the photosynthetic oxygen-evolving center. Science 303,1831-1837 (2004).

[11] M.-L. Groot, N. P. Pawlowicz, L. J. G. W. van der Wilderen, J. Breton, I. H. M. van Stokkum, and R. van Grondelle, Initial electron donor and acceptor in isolated photosyslem II reaction centers identified with femtosecond mid-IR spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 102, 13087-13092 (2005).

[12] I. Grotjohann and P. Fromme, Structure of cyanobacterial photosystem I. Photosynth. Res.85.51-72 (2005).

[13] G. Renger and T. Renger, Photosystem II: The machinery of photosynthetic water splitting. Photosynth. Res. 98. 53-80 (2008).

[14] A. Guskov, J. Kern, A. Gabdulkhakov, M. Broser, A. Zouni, and W. Saenger, Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride. Nat. Struct. Mol. Biol.16. 334-342 (2009).

[15] Y. Umena, K. Kawakami, J.-R. Shen, and N. Kamiya, Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 A. Nature 473, 55-60 (2011).

[16] C. Gisriel, I. Sarrou, B. Ferlez, J. H. Golbeck, K. E. Redding, and R. Fromme, Structure of a symmetric photosynthetic reaction center-photosystem. Science 357, 1021-1025 (2017).

[17] A. W. Roszak, T. D. Howard, J. Southall, A. T. Gardiner, C. J. Law, N. W. Isaacs, and R. J. Cogdell. Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302.1969-1972 (2003).

[18] S. Niwa, L.-J. Yu, K. Takeda, Y. Hirano, T. Kawakami, Z.-Y. Wang-Otomo, and K. Miki, Structure of the LH1-RC complex from Thermochromatium tepidum at 3.0 A. Nature 508, 228-232 (2014).

[19] R. G. Saer and R. E. Blankenship, Light harvesting in phototrophic bacteria: structure and function. Biochem. J. 474,2107-2131(2017).

[20] G. McDermott, S. M. Prince, A. A. Freer, A. M. Hawthornthwaite-Lawless, M. Z. Papiz, R. J. Cogdell, and N. W. Isaacs, Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374, 517-521(1995).

[21] J. Koepke, X. Hu, C. Muenke, K. Schulten, and H. Michel, The crystal structure of the light- harvesting complex II (B800—850) from Rhodospirilium molischianum. Structure 4, 581 — 597(1996).

[22] V. Cherezov, J. Clogston, M. Z. Papiz, and M. Caffrey, Room to move: Crystallizing membrane proteins in swollen lipidic mesophases. J. Mol. Biol. 357, 1605-1618 (2006).

[23] Z. Liu, H. Yan, K. Wang, T. Kuang, J. Zhang, L. Gui, X. An, and W. Chang, Crystal structure of spinach major light-harvesting complex at 2.72 A resolution. Nature 428,287-292 (2004).

[24] X. Wei, X. Su, P. Cao, X. Liu, W. Chang, M. Li, X. Zhang, and Z. Liu, Structure of spinach photosystem II-LHCII supercomplex at 3.2 A resolution. Nature 534, 69—74 (2016).

[25] A. R. Holzwarth, K. Griebenow, and K. Schaffner, Chlorosomes, photosynthetic antennae with novel self-organized pigment structures. J. Photochem. Photobiol. A: Chern. 65, 61-71 (1992).

[26] P. Hildebrandt, H. Tamiaki, A. R. Holzwarth, and K. Schaffner, Resonance Raman spectroscopic study of metallochlorin aggregates. J. Phys. Chern. 98, 2192-2197 (1994).

[27] J. M. Olson, Chlorophyll organization and function in green photosynthetic bacteria. Photochem. Photobiol. 67, 61-75 (1998).

[28] R. E. Blankenship and K. Matsuura. Antenna complexes from green photosynthetic bacteria; In Advances in Photosynthesis and Respiration (Eds.: B. R. Green and W. W. Parson), vol. 13, Springer, Netherlands, pp.195-217 (2003).

[29] G. S. Orf and R・ E. Blankenship, Chlorosome antenna complexes from green photosynthetic bacteria. Photosynth. Res. 116,315-331(2013).

[30] L. M. Gunther, M. Jendrny, E. A. Bloemsma, M. Tank, G. T. Oostergetel, D. A. Bryant, J. Knoester, and J. Kohler, Structure of light-harvesting aggregates in individual chlorosomes. J. Phys. Chem. B 120, 5367- 5376 (2016).

[31] R. E. Fenna and B. W. Matthews, Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorohium limicola. Nature 258, 573-577 (1975).

[32] M. 0. Pedersen, J. Linnanto, N.-U. Frigaard, N. C. Nielsen, and M. Miller, A model of the protein-pigment baseplate complex in chlorosomes of photosynthetic green bacteria. Photosynth. Res. 104, 233-243 (2010).

[33] C. R. Larson, C. O. Seng, L. Lauman, H. J. Matthies, J. Wen, R. E. Blankenship, and J. P. Allen, The three-dimensional structure of the FMO protein from Pelodictyon phaeum and the implications for energy transfer. Photosynth. Res. 107, 139—150 (2011).

[34] G. He, H. Zhang, J. D. King, and R. E. Blankenship, Structural analysis of the homodimeric reaction center complex from the photosynthetic green sulfur bacterium Chlorobaculum tepidum. Biochemistry 53, 4924-4930 (2014).

[35] S. Savikhin, Y. Zhu, R. E. Blankenship, and W. S. Struve, Ultrafast energy transfer in chlorosomes from the green photosynthetic bacterium Chloroflexus aurantiacus. J. Phys. Chem.100, 3320-3322 (1996).

[36] J. Huh, S. K. Saikin, J. C. Brookes, S. Valleau, T. Fujita, and A. Aspuru-Guzik, Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria. J. Am. Chem. Soc. 136, 2048-2057 (2014).

[37] S. Valleau, S. K. Saikin, D. Ansari-Oghol-Beig, M. Rostami, H. Mossallaei, and A. Aspuru- Guzik, Electromagnetic study of the chlorosome antenna complex of Chlorobium tepidum. ACS Nano 8, 3884-3894 (2014).

[38] J. T. Nielsen, N. V. Kulminskaya, M. Bjerring, J. M. Linnanto, M. Ratsep, M. 0. Pedersen, P. H. Lambrev, M. Dorogi, G. Garab, K. Thomsen, C. Jegerschold, N.-U. Frigaard, M. Lindahl, and N. C. Nielsen, In situ high-resolution structure of the baseplate antenna complex in Chlorobaculum tepidum. Nat. Commun. 7,12454 (2016).

[39] J. Dostal, J. Psendik, and D. Zigmantas, In situ mapping of the energy flow through the entire photosynthetic apparatus. Nat. Chern. 8, 705—710 (2016).

[40] A. K. Manske, J. Glaeser, M. M. M. Kuypers, and J. Overmann, Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the black sea. Appl. Environ. Microbiol. 71,8049-8060 (2005).

[41] J. T. Beatty, J. Overmann, M. T. Lince, A. K. Manske, A. S. Lang, R. E. Blankenship, C. L. V. Dover, T. A. Martinson, and F. G. Plumley, An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc. Natl. Acad. Sci. U. S. A. 102, 9306—9310 (2005).

[42] V. I. Prokhorenko, D. B. Steensgaard, and A. R. Holzwarth, Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum. Biophys. J. 79, 2105—2120 (2000).

[43] T. Fujita, J. Huh, S. K. Saikin, J. C. Brookes, and A. Aspuru-Guzik, Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria. Photosynth. Res.120, 273-289 (2014).

[44] S. Jun, C. Yang, T. W. Kim, M. Isaji, H. Tamiaki, H. Ihee, and J. Kim, Role of thermal excitation in ultrafast energy transfer in chlorosomes revealed by two-dimensional electronic spectroscopy. Phys. Chern. Chern. Phys.17,17872-17879 (2015).

[45] A. Martinez-Planells, J. B. Arellano, C. M. Borrego, C. Lopez-Iglesias, F. Gich, and J. Garcia-Gil, Determination of the topography and biometry of chlorosomes by atomic force microscopy. Photosynth. Res. 71,83-90 (2002).

[46] G. A. Montano, B. P. Bowen, J. T. LaBelle, N. W. Woodbury, V. B. Pizziconi, and R. E. Blankenship, Characterization of Chlorohium tepidum chlorosomes: A calculation of bacteriochlorophyll c per chlorosome and oligomer modeling. Biophys. J. 85, 2560—2565 (2003).

[47] Y. Saga, Y. Shibata. S. Itoh, and H. Tamiaki, Direct counting of submicrometer-sized photosynthetic apparatus dispersed in medium at cryogenic temperature by confocal laser fluorescence microscopy: Estimation of the number of bacteriochlorophyll c in single light­ harvesting antenna complexes chlorosomes of green photosynthetic bacteria. J. Phys. Chem. 8 111, 12605-12609 (2007).

[48] N.-U. Friggard, G. D. Voigt, and D. A. Bryant, Chlorohium tepidum mutant lacking bacteriochlorophyll c made by inactivation of the hchK gene, encoding bacteriochlorophyll c synthase. J. Bacteriol. 184, 3368—3376 (2002).of green Tamiaki, Supramolecular structure in extramembraneous antennae H.

[49]photosynthetic bacteria. Coord. Chern. Rev. 148. 183-197(1996).

[50] T. Miyatake and H. Tamiaki, Self-aggregates of bacteriochlorophylls-c, d and e in a light­ harvesting antenna system of green photosynthetic bacteria: Effect of stereochemistry at the chiral 3-(1-hydroxyethyl) group on the supramolecular arrangement of chlorophyllous pigments. J. Photochem. Photobiol. C: Photochem. Rev. 6, 89-107 (2005).

[51] T. S. Balaban, Tailoring porphyrins and chlorins for self-assembly in biomimetic artificial antenna systems. Acc. Chern. Res. 38. 612-623 (2005).

[52] A. Egawa, T. Fujiwara, T. Mizoguchi, Y. Kakitani, Y. Koyama, and H. Akutsu, Structure of the light-harvesting bacteriochlorophyll c assembly in chlorosomes from Chlorobium limicola determined by solid-state NMR. Proc. Natl. Acad. Sci. U. S. A. 104,790-795 (2007).

[53] S. Ganapathy, G. T. Oostergetel,P. K. Wawrzyniak, M. Reus, A. G. M. Chew, F. Buda, E. J. Boekema, D. A. Bryant, A. R. Holzwarth, and H. J. M. de Groot, Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes. Proc. Natl. Acad. Sci. U. S. A. 106. 8525-8530 (2009).

[54] Y. Tian, R. Camacho, D. Thomsson, M. Reus, A. R. Holzwarth, and I. G. Scheblykin, Organization of bacteriochlorophylls in individual chlorosomes from Chlorobaculum tepidum studied by 2-dimensional polarization fluorescence microscopy. J. Am. Chern. Soc. 133. 17192-17199 (2011).

[55] A. Pandit, K. Ocakoglu, F. Buda, T. van Marie, A. R. Holzwarth, and J. M. de Groot, Structure determination of a bio-inspired self-assembled light-harvesting antenna by solid-state NMR and molecular modeling. J. Phys. Chern. B 117, 11292-11298 (2013).

[56] L. A. Staehelin, J. R. Golecki, and G. Drews, Supramolecular organization of chlorosomes (Chlorobium vesicles) and their membrane attachment sites in Chlorobium limicola. Biochim. Biophys. Acta 589. 30-45 (1980).

[57] J. Psencik, T. P. Ikonen, P. Laurinmaki, M. C. Merckel, S. J. Butcher, R. E. Serimaa, and R. Tuma, Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. Biophys. J. 87.1165-1172 (2004).

[58] Y. Saga and H. Tamiaki, Transmission electron microscopic study on supramolecular ofgreen nanostructures of bacteriochlorophyll self-aggregates in chlorosomes photosynthetic bacteria. J. Biosci. Bioeng. 102, 118-123 (2006).

[59] G. T. Oostergetel, M. Reus, A. G. M. Chew, D. A. Bryant, E. J. Boekema, and A. R. Holzwarth, Long-range organization of bacteriochlorophyll in chlorosomes of Chlorobium tepidum investigated by cryo-electron microscopy. FEBS Lett. 581, 5435-5439 (2007).

[60] A. R. Holzwarth and K. Schaffner, On the structure of bacteriochlorophyll molecular aggregates in the chlorosomes of green bacteria. A molecular modelling study. Photosynth. Res. 41,225-233 (1994).

[61] J. M. Linnanto and J. E. I. Korppi-Tommola, Investigation on chlorosomal antenna geometries: tube, lamella and spiral-type self-aggregates. Photosynth. Res. 96. 227-245 (2008).

[62] Y. Shibata. Y. Saga, H. Tamiaki, and S. Itoh, Anisotropic distribution of emitting transition dipoles in chlorosome from Chlorobium tepidum'. fluorescence polarization anisotropy study of single chlorosomes. Photosynth. Res.100. 67-78 (2009).

[63] A. Lohner, T. Kunsel, M. I. S. Rohr, T. L. C. Jansen, S. Sengupta, F. Wurthner, J. Knoester, and J. Kohler, Spectral and structural variations of biomimetic light-harvesting nanotubes. J. Phys. Chern. Lett.10, 2715-2724 (2019).

[64] S. Shoji, E Mizoguchi, and H. Tamiaki, In vitro self-assemblies of bacteriochlorophylls-c from Chlorobaculum tepidum and their supramolecular nanostructures. J. Photochem. Photobiol. A: Chern. 331, 190-196 (2016).

[65] G. S. Orf, A. M. Collins, D. M. Niedzwiedzki, M. Tank, V. ThieL A. Kell,D. A. Bryant, G. A. Montano, and R. E. Blankenship, Polymer-chlorosome nanocomposites consisting of non-native combinations of self-assembling bacteriochlorophylls. Langmuir 33, 6427-6438(2017).

[66] R. Nishimori, H. Tamiaki, S. Kashimura, and Y. Saga, In vitro self-assembly of bacteriochlorophyll c derivatives monoesterified with a,co-diols isolated from the green sulfur photosynthetic bacterium Chlorobaculum tepidum. SupramoL Chern. 27, 28-36 (2015).

[67] H. Tamiaki, R. Shibata, and T. Mizoguchi, The 17-propionate function of in long chains Biological implication their esterifying of (bacterio)chlorophylls: photosynthetic systems. Photochem. Photobiol. 83,152-162 (2007).

[68] S. Matsubara, M. Kunieda, A Wada, S. Sasaki, and H. Tamiaki, Visible and near-infrared spectra of chlorosomal zinc chlorin self-aggregates dependent on their peripheral substituents at the 8-position. J. Photochem. Photobiol. A: Chern. 330, 195-199 (2016).

[69] S. Matsubara, S. Shoji, and H. Tamiaki, Self-Aggregation of synthetic chlorophyll-c derivative and effect of C17-acrylate residue on bridging green gap in chlorosomal model../ Photochem. Photobiol. A: Chern. 340, 53-61(2017).

[70] H. Tamiaki, A. Wada, and S. Matsubara, 20-Substitution effect on self-aggregation of synthetic zinc bacteriochlorophyll-d analogs. J. Photochem. Photobiol. A: Chern. 353, 581- 590 (2018).

[71] S. Matsubara and H. Tamiaki, Synthesis and self-aggregation of 兀-expanded chlorophyll derivatives to construct light-harvesting antenna models. J. Org. Chern. 83, 4355ロ364 (2018).

[72] S. Snoji,E Hashishin, and H. Tamiaki, Construction of chlorosomal rod self-aggregates in the solid state on any substrates from synthetic chlorophyll derivatives possessing an oligomethylene chain at the 17-propionate residue. Chern. Eur. J.18, 13331-13341(2012).

[73] S. Shoji, T. Ogawa, T. Hashishin, S. Ogasawara, H. Watanabe, H. Usami, and H. Tamiaki, Nanotubes of biomimetic supramolecules constructed by synthetic metal chlorophyll derivatives. Nano Lett.16, 3650-3654 (2016).

[74] S. Shoji, T. Ogawa, T. Hashishin, and H. Tamiaki, Self-assemblies of zinc bacteriochlorophyll-" analogs possessing amide, ester and urea groups in the 17-substituent and observation of lamellar supramolecular nanostructures. ChemPhysChem 19, 913—920 (2018).

[75] S. Snoji, E Ogawa, S. Matsubara, and H. Tamiaki, Bioinspired supramolecular nanosheets of zinc chlorophyll assemblies. Sci. Rep. 9,14006 (2019).

[76] V. Huber, M. Katterle, M. Lysetska, and F. Wiirthner, Reversible self-organization of semisynthetic zinc chlorins into well-defined rod antennae. Angew. Chem. Int. Ed. 44,3147— 3151(2005).

[77] V. Huber, M. Lysetska, and F. Wiirthner, Self-assembled single- and double-stack K- aggregates of chlorophyll derivatives on highly ordered pyrolytic graphite. Small 3,1007— 1014(2007).

[78] V. Huber, S. Sengupta, and F. Wiirthner, Structure-property relationships for self-assembled zinc chlorin light-harvesting dye aggregates. Chem. Eur. J.14, 7791-7807 (2008).

[79] S. Ganapathy, S. Sengupta, P. K. Wawrzyniak, V. Huber, F. Buda, U. Baumeister, F. Wurthner, and H. J. M. de Groot, Zinc chlorins for artificial light-harvesting self-assemble into antiparallel stacks forming a microcrj stalline solid-state material. Proc. Natl. Acad. Sci. U. S. A. 106. 11472-11477 (2009).

[80] S. Sengupta and F. Wiirthner, Chlorophyll J-aggregates: From bioinspired dye stacks to nanotubes, liquid crystals, and biosupramolecular electronics. Acc. Chem. Res. 46, 2498- 2512(2013).

[81] C. Roger, M. G. Muller, M. Lysetska, Y. Miloslavina. A. R. Holzwarth, and F. Wurthner, Efficient energy transfer from peripheral chromophores to the self-assembled zinc chlorin rod antenna: A bioinspired light-harvesting system to bridge the “green gap”. J. Am. Chem. Soc. 128, 6542-6543 (2006).

[82] C. Roger, Y. Miloslavina, D. Brunner, A. R. Holzwarth. and F. Wurthner, Self-assembled zinc chlorin rod antennae powered by peripheral light-harvesting chromophores. J. Am. Chem. Soc. 130, 5929-5939 (2008).

[83] S. Sengupta, D. Ebeling, S. Patwardhan, X. Zhang, H. von Berlepsch, C. Bottcher, V. Stepanenko, S. Uemura, C. Hentschel, H. Fuchs, F. C. Grozema, L. D. A. Siebbeles, A. R. Holzwarth, L. Chi, and F. Wiirthner, Biosupramolecular nanowires from chlorophyll dyes with exceptional charge-transport properties. Angew. Chem. Int. Ed. 51,6378—6382 (2012).

[84] M. Suga, F. Akita, M. Sugahara, M. Kubo, Y. Nakajima, T. Nakane, K. Yamashita, Y. Umena, M. Nakabayashi, T. Yamane, T. Nakano, M. Suzuki, T. Masuda, S. Inoue, T. Kimura, T. Nomura, S. Yonekura, L.-J. Yu, T. Sakamoto, T. Motomura, J.-H. Chen, Y. Kato, T. Noguchi, K. Tono, Y. Joti, T. Kameshima, T. Hatsui, E. Nango, R. Tanaka, H. Naitow, Y. Matsuura, A. Yamashita, M. Yamamoto, O. Nureki, M. Yabashi, T. Ishikawa, S. Iwata, and J.-R. Shen, Light-induced structural changes and the site of 0=0 bond formation in PSII caught by XFEL. Nature 543, 131-135 (2017).

[85] A. Tanaka, Y. Fukushima, and N. Kamiya, Two different structures of the oxygen-evolving complex in the same polypeptide frameworks of photosystem II. J. Am. Chem. Soc. 139, 1718-1721(2017).

[86] J. Kern, R. Chatteijee, I. D. Young, F. D. Fuller, L. Lassalle, M. Ibrahim, S. Gul,T. Fransson, A. S. Brewster, R. Alonso-Mori, R. Hussein, M. Zhang, L. Douthit, C. de Lichtenberg, M. H. Cheah, D. Shevela, J. Wersig, I. Seuffert, D. Sokaras, E. Pastor, C. Weninger, T. Kroll,R. G. Sierra, P. Aller, A. Butryn, A. M. Orville, M. Liang, A. Batyuk. J. E. Koglin. S. Carbajo, S. Boutet, N. W. Moriarty, J. M. Holton, H. Dobbek, P. D. Adams, U. Bergmann, N. K. Sauter, A. Zouni, J. Messinger, J. Yano, and V. K. Yachandra, Structures of the intermediates of Kok's photosynthetic water oxidation clock. Nature 563, 421T25 (2018).

[87] M. Suga, F. Akita, K. Yamashita, Y. Nakajima, G. Ueno, H. Li, T. Yamane, K. Hirata, Y. Umena, S. Yonekura, L.-J. Yu, H. Murakami, T. Nomura, T. Kimura, M. Kubo, S. Baba, T. Kumasaka, K. Tono, M. Yabashi, H. Isobe, K. Yamaguchi, M. Yamamoto, H. Ago, and J.-R. Shen, An oxyl/oxo mechanism for oxygen-oxygen coupling in PSII revealed by an x-ray free-electron laser. Science 366, 334-338 (2019).

第二章

[1] G. S. Orf and R. E. Blankenship, Chlorosome antenna complexes from green photosynthetic bacteria. Photosynth. Res. 116, 315-331(2013).

[2] Y. Tsukatani, T. Mizoguchi, J. Thweatt, M. Tank, D. A. Bryant, and H. Tamiaki, Glycolipid envelope protein mutants from analyses of light-harvesting chlorosomes of Chlorobaculum tepidum. Photosynth. Res. 128, 235—241(2016).

[3] S. Shoji,E Hashishin, and H. Tamiaki, Construction of chlorosomal rod self-aggregates in the solid state on any substrates from synthetic chlorophyll derivatives possessing an oligomethylene chain at the 17-propionate residue. Chern. Eur. J.18,13331-13341(2012).

[4] S. Ogi, C. Grzeszkiewicz, and F. Wiirthner, Pathway complexity in the self-assembly of a zinc chlorin model system of natural bacteriochlorophyll J-aggregates. Chern. Sci. 9, 2768- 2773 (2018).

[5] G. T. Oostergetel,M. Reus, A. G. M. Chew, D. A. Bryant, E. J. Boekema, and A. R. Holzwarth, Long-range organization of bacteriochlorophyll in chlorosomes of Chlorobium tepidum investigated by cryo-electron microscopy. FEBS Lett. 581, 5435-5439 (2007).

[6] A. Egawa, T. Fujiwara, T. Mizoguchi, Y. Kakitani, Y. Koyama, and H. Akutsu, Structure of the light-harvesting bacteriochlorophyll c assembly in chlorosomes from Chlorobium limicola determined by solid-state NMR. Proc. Natl. Acad. Sci. U. S. A. 104,790-795 (2007).

[7] S. Gan叩athy, G. T. Oostergetel,P. K. Wawrzyniak, M. Reus, A. G. M. Chew, F. Buda, E. J. Boekema, D. A. Bryant, A. R. Holzwarth, and H. J. M. de Groot, Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes. Proc. Natl. Acad. Sci. U. S. A. 106. 8525-8530 (2009).

[8] S. Shoji, T. Ogawa, T. Hashishin, S. Ogasawara, H. Watanabe, H. Usami, and H. Tamiaki, Nanotubes of biomimetic supramolecules constructed by synthetic metal chlorophyll derivatives. Nano Lett.16, 3650-3654 (2016).

[9] L. M. Gunther, A. Lohner, C. Reiher, T. Kunsel,T. L. C. Jansen, M. Tank, D. A. Bryant, J. Knoester, and J. Kohler, Structural variations in chlorosomes from wild-type and a bchQR mutant of Chlorobaculum tepidum revealed by single-molecule spectroscopy. J. Phys. Chern. 4122, 6712-6723 (2018).

[10] S. Matsubara and H. Tamiaki, Phototriggered dynamic and biomimetic growth of chlorosomal self-aggregates. J. Am. Chern. Soc. 141, 1207-1211(2019).

[11]H. Tamiaki, M. Amakawa, Y. Shimono, R. Tanikaga, A. R. Holzwarth, and K. Schaffner, Synthetic zinc and magnesium chlorin aggregates as models for supramolecular antenna complexes in chlorosomes of green photosynthetic bacteria. Photochem. Photobiol. 63, 92- 99(1996).

[12] Y. Saga, Y. Nakai, and H. Tamiaki, Temperature-dependent spectral changes of self­ aggregates of zinc chlorophylls esterified by different linear alcohols at the 17-propionate. Supramol. Chern. 21,738-746 (2009).

[13] H. Tamiaki, R. Shibata, and T. Mizoguchi, The 17-propionate function of in Biological implication chains esterifying long their of (bacterio)chlorophylls: photosynthetic systems. Photochem. Photobiol. 83, 152-162 (2007).

[14] S. Matsubara, M. Kunieda, A Wada, S. Sasaki, and H. Tamiaki, Visible and near-infrared spectra of chlorosomal zinc chlorin self-aggregates dependent on their peripheral substituents at the 8-position. J. Photochem. Photobiol. A: Chern. 330, 195-199 (2016).

[15] S. Matsubara, S. Shoji, and H. Tamiaki, Self-Aggregation of synthetic chlorophyll-c derivative and effect of CI7-acrylate residue on bridging green gap in chlorosomal model. J. Photochem. Photobiol. A: Chern. 340, 53—61(2017).

[16] H. Tamiaki, A. Wada, and S. Matsubara, 20-Substitution effect on self-aggregation of synthetic zinc bacteriochlorophyll-" analogs. J. Pho toe hem. Photobiol. A: Chern. 353, 581- 590 (2018).

[17] S. Matsubara and H. Tamiaki, Synthesis and self-aggregation of 兀-expanded chlorophyll derivatives to construct light-harvesting antenna models. J. Org. Chern. 83, 4355—4364 (2018).

[18] S. Shoji, rE Mizoguchi, and H. Tamiaki, In vitro self-assemblies of bacteriochlorophylls-c from Chlorobaculum tepidum and their supramolecular nanostructures. J. Photochem. Photobiol. A: Chern. 331, 190-196 (2016).

[19] P. Klan, T. Solomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, and J. Wirz, Photoremovable protecting groups in chemistry and biology: Reaction mechanisms and efficacy. Chern. Rev. 113,119-191(2013).

[20] A. Patchornik, B. Amit, and R. B. Woodward, Photosensitive protecting groups. J. Am. Chern.Soc. 92, 6333-6335 (1970).

[21] J. H. Kaplan, B. J. Forbush, and F. Hoffman, Rapid photolytic release of adenosine 3'- triphosphate from a protected analogue: Utilization by the Na:K pump of human red blood cell ghosts. Biochemistry 17,1929-1935 (1929).

[22] J. F. Cameron and J. M. J. Frechet, Photogeneration of organic bases from o-nitrobenzyl- derived carbamates. J. Am. Chern. Soc. 113, 4303ロ313 (1991).

[23] A. Momotake, N. Lindegger, E. Niggli, R. J. Barsotti, and G. C. R. Ellis-Davies, The nitrodibenzofuran chromophore: A new caging group for ultra-efficient photolysis in living cells. Nat. Methods 3, 35To (2006).

[24] J. W. Walker, G. P. Reid, J. A. McCray, and D. R. Trentham, Photolabile 1-(2- nitrophenyl)ethyl phosphate esters of adenine nucleotide analogs. Synthesis and mechanism of photolysis. J Am. Chem. Soc.110, 7170-7177 (1988).

[25] Y. V. Il'ichev and J. Wirz, Rearrangements of 2-nitrobenzyl compounds.1.Potential energy surface of2-nitrotoluene and its isomers explored with ab initio and density functional theory methods. J. Phys. Chem. A 104, 7856-7870 (2000).

[26] J. E. T. Corrie, A. Barth, V. R. N. Munasinghe, D. R. Trentham, and M. C. Hutter, Photolytic cleavage of l-(2-nitrophenyi)ethyl ethers involves two parallel pathways and product release is rate-limited by decomposition of a common hemiacetal intermediate. J. Am. Chem. Soc. 125, 8546-8554 (2003).

[27] Y. V.Il'ichev, M. A. Schworer, and J. Wirz, Photochemical reaction mechanisms of 2- nitrobenzyl compounds: Methyl ethers and caged ATP. J. Am. Chem. Soc. 126, 4581ロ595 (2004).

[28] T. Kobayashi, T. Komatsu, M. Kamiya, C. Campos, M. Gonzalez-Gaitan, T. Terai, K. Hanaoka, T. Nagano, and Y. Urano, Highly activatable and environment-insensitive optical highlighters for selective spatiotemporal imaging of target proteins. J. Am. Chem. Soc. 134, 11153-11160 (2012).

[29] F. W. Wassmundt and R. P. Pedemonte, An improved synthesis of dibenzofurans by a free- radical cyclization. J. Org. Chem. 60, 4991994 (1995).

[30] D. P. Kennedy, D. C. Brown, and S. C. Burdette, Probing nitrobenzhydrol uncaging mechanisms using ferricast. Org. Lett.12, 4486-4489 (2010).

[31] S. Kantevari, Y. Buskila, and G. C. R. Ellis-Davies, Synthesis and characterization of cell­ permeant 6-nitrodibenzofuranyl-caged IP3. Photochem. Photobiol. Sei.11,508-513 (2012).

第三章

[1] L. A. Staehelin, J. R. Golecki, and G. Drews, Supramolecular organization of Chlorosomes (Chlorobium vesicles) and their membrane attachment sites in Chlorobium limicola. Biochim. Biophys. Acta 589, 30-45 (1980).

[2] J. Psencik, T. P. Ikonen, P. Laurinmaki, M. C. Merckel,S. J. Butcher, R. E. Serimaa, and R. Tuma, Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. Biophys.87,1165—1172 (2004).

[3] A. Egawa, T. Fiyiwara,'r. Mizoguchi, Y. Kakitani, Y. Koyama, and H. Akutsu, Structure of the light-harvesting bacteriochlorophyll c assembly in chlorosomes from Chlorobium limicola determined by solid-state NMR. Proc. Natl. Acad. Sci. U. S. A. 104,790-795 (2007).

[4] S. Ganapathy, G. T. Oostergetel, P. K. Wawrzyniak, M. Reus, A. G. M. Chew, F. Buda, E. J. Boekema, D. A. Bryant, A. R. Holzwarth, and H. J. M. de Groot, Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes. Proc. Natl. Acad. Sci. U. S. A. 106. 8525-8530 (2009).

[5] S. Snqji,「. Ogawa, T. Hashishin, S. Ogasawara, H. Watanabe, H. Usami, and H. Tamiaki, Nanotubes of biomimetic supramolecules constructed by synthetic metal chlorophyll derivatives. Nano Lett.16, 3650-3654 (2016).

[6] L. M. Gunther, A. Lohner, C. Reiher, T. Kunsel,T. L. C. Jansen, M. Tank, D. A. Bryant, J. Knoester, and J. Kohler, Structural variations in chlorosomes from wild-type and a bchQR mutant of Chlorobaculum tepidum revealed by single-molecule spectroscopy. J. Phys. Chern. 4122, 6712-6723 (2018).

[7] S. Ogi, K. Sugiyasu, S. Manna, S. Samitsu, and M. Takeuchi, Living supramolecular polymerization realized through a biomimetic approach. Nat. Chern. 2014, 6,188—195 (2014)

[8] J. Kang, D. Miyajima, T. Mori, Y. Inoue, Y. Itoh, and T. Aida, A rational strategy for the realization of chain-growth supramolecular polymerization. Science 347, 646-651(2015).

[9] A. Pal,M. Malakoutikhah, G. Leonetti, M. Tezcan, M. Colomb-Delsuc, V. D. Nguyen, J. van der Gucht, and S. Otto, Controlling the structure and length of self-synthesizing supramolecular polymers through nucleated growth and disassembly. An^ew. Chern. Int. Ed. 54, 7852-7856 (2015).

[10] X. Ma, Y. Zhang, Y. Zhang, Y. Liu, Y. Che, and J. Zhao, Fabrication of chiral-selective nanotubular heterojunctions through living supramolecular polymerization. Angew. Chem. Int. Ed. 55, 9539-9543 (2016).

[11]S. Ogi, V. Stepanenko, J. Thein, and F. Wurthner, Impact of alkyl spacer length on aggregation pathways in kinetically controlled supramolecular polymerization. J. Am. Chem. Soc. 138, 670-678 (2016).

[12] K. Zhang, M. C.-L. Yeung, S. Y.-L. Leung, and V. W.-W. Yam, Living supramolecular polymerization achieved by collaborative assembly of platinum(II) complexes and block copolymers. Proc. Natl. Acad. Sci. U. S. A.114,11844-11849 (2017).

[13] S. Ogi, K. Matsumoto, and S. Yamaguchi, Seeded polymerization through the interplay of folding and aggregation of an amino-acid-based diamide. Angew. Chem. Int. Ed. 57, 2339- 2343 (2018).

[14] T. Miyatake, H. Tamiaki, H. Shinoda, H. Fujiwara, and T. Matsushita, Synthesis and self­ assembly of amphiphilic zinc chlorins possessing a 3'-hydroxy group. Tetrahedron 58,9989- 10000 (2002).

[15] G. Lu and K. Burgess, A diversity oriented synthesis of 3'-O-modified nucleoside triphosphates for DNA 'sequencing by synthesis9. Bioorg. Med. Chem. Lett.16, 3902—3905 (2006).

[16] S. Matsubara and H. Tamiaki, Phototriggered dynamic and biomimetic growth of chlorosomal self^aggregates. J. Am. Chern. Soc. 141, 1207-1211(2019).

[17] H. Watanabe, Y. Kamatani, and H. Tamiaki, Coordination-driven dimerization of zinc chlorophyll derivatives possessing a dialkylamino group. Chem. Asian J.12,759—767 (2017).

[18] H. Watanabe, S. Nakamura, and H. Tamiaki, Ring-size controlled dimerization of synthetic zinc chlorophyll derivatives possessing a 1-azacycloalkyl group through mutual coordination of amino moiety to central zinc atom. Tetrahedron 75, 3977—3981(2019).

[19] S. Shoji,'E Ogawa, S. Matsubara, and H. Tamiaki, Bioinspired supramolecular nanosheets of zinc chlorophyll assemblies. Sci. Rep. 9.14006 (2019).

[20] H. Tamiaki, M. Amakawa, Y. Shimono, R. Tanikaga, A. R. Holzwarth, and K. Schaffner, Synthetic zinc and magnesium chlorin aggregates as models for supramolecular antenna complexes in chlorosomes of green photosynthetic bacteria. Photochem. Photobiol. 63, 92- 99(1996).

[21] Y Saga, Y Nakai, and H. Tamiaki, Temperature-dependent spectral changes of self­ aggregates of zinc chlorophylls esterified by different linear alcohols at the 17-propionate. Supramol. Chem. 21,738—746 (2009).

[22] H. Tamiaki, R. Shibata, and T. Mizoguchi, The 17-propionate function of in chains esterifying long Biological implication their of (bacterio)chlorophylls:photosynthetic systems. Photochem. Photobiol. 83,152-162 (2007).

[23] S. Matsubara, M. Kunieda, A Wada, S. Sasaki, and H. Tamiaki, Visible and near-infrared spectra of chlorosomal zinc chlorin self-aggregates dependent on their peripheral substituents at the 8-position. J. Photochem. Photobiol. A: Chern. 330, 195-199 (2016).

[24] S. Matsubara, S. Shoji, and H. Tamiaki, Self-Aggregation of synthetic chlorophyll-c derivative and effect of C17-acrylate residue on bridging green gap in chlorosomal model.ノ Photochem. Photobiol. A: か.340, 53-61(2017).

[25] H. Tamiaki, A. Wada, and S. Matsubara, 20-Substitution effect on self-aggregation of synthetic zinc bacteriochlorophyll-^ analogs. J Photochem. Photobiol. A: Chern. 353, 581- 590 (2018).

[26] S. Matsubara and H. Tamiaki, Synthesis and self-aggregation of 兀-expanded chlorophyll derivatives to construct light-harvesting antenna models. J. Org. Chern. 83, 4355ロ364 (2018).

[27] S. Shqp, T. Mizoguchi, and H. Tamiaki, In vitro self-assemblies of bacteriochlorophylls-c from Chlorobaculum tepidum and their supramolecular nanostructures. J. Photochem. Photobiol. A: Chern. 331, 190-196 (2016).

[28] S. Shoji, T. Hashishin, and H. Tamiaki, Construction of chlorosomal rod self-aggregates in the solid state on any substrates from synthetic chlorophyll derivatives possessing an oligomethylene chain at the 17-propionate residue. Chern. Eur. J.18,13331—13341(2012).

[29] S. Ogi, C. Grzeszkiewicz, and F. Wurthner, Pathway complexity in the self-assembly of a zinc chlorin model system of natural bacteriochI orophy 11 J-aggregates. Chern. Sci. 9,2768- 2773 (2018).

[30] S. Sengupta, D. Ebeling, S. Patwardhan, X. Zhang, H. Berlepsch, C. Bottcher, V. Stepanenko, S. Uemura, C. Hentschel,H. Fuchs, F. C. Grozema, L. D. Siebbeles, A. R. Holzwarth, L. Chi, and F. Wiirthner, Biosupramolecular nanowires from chlorophyll dyes with exceptional charge-transport properties. Angew. Chern. Int. Ed. 51,6378-6382 (2012).

第四章

[1] L. A. Staehelin, J. R. Golecki, and G. Drews, Supramolecular organization of chlorosomes (Chlorobium vesicles) and their membrane attachment sites in Chlorobium limicola. Biochim. Biophys. Acta 589, 30-45 (1980).

[2] J. M. Olson, Chlorophyll organization and function in green photosynthetic bacteria. Photochem. Photobiol. 67, 61-75 (1998).

[3] R. E. Blankenship and K. Matsuura, Antenna complexes from green photosynthetic bacteria; In Advances in Photosynthesis and Respiration (Eds.: B. R. Green and W. W. Parson), vol. 13, Springer, Netherlands, pp.195-217 (2003).

[4] J. P§endik, T. P. Ikonen, P. Laurinmaki, M. C. Merckel,S. J. Butcher, R. E. Serimaa, and R. Tuma, Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. Biophys. J. 87,1165-1172 (2004).

[5] G. S. Orf and R. E. Blankenship, Chlorosome antenna complexes from green photosynthetic bacteria. Photosynth. Res. 116, 315-331(2013).

[6] S. Sengupta, D. Ebeling, S. Patwardhan, X. Zhang, H. Berlepsch, C. Bottcher, V. Stepanenko, S. Uemura, C. Hentschel,H. Fuchs, F. C. Grozema, L. D. Siebbeles, A. R. Holzwarth, L. Chi, and F. Wurthner, Biosupramolecular nanowires from chlorophyll dyes with exceptional charge-transport properties. Angew. Chem. Int. Ed. 51,6378-6382 (2012).

[7] S. Shoji, T. Ogawa, T. Hashishin, S. Ogasawara, H. Watanabe, H. Usami, and H. Tamiaki, Nanotubes of biomimetic supramolecules constructed by synthetic metal chlorophyll derivatives. Nano Lett.16, 3650-3654 (2016).

[8] S. Matsubara and H. Tamiaki, Phototriggered dynamic and biomimetic growth of chlorosomal self-aggregates. J. Am. Chem. Soc. 141, 1207-1211(2019).

[9] H. Tamiaki, R. Shibata, and T. Mizoguchi, The 17-propionate function of their in Biological implication chains long esterifying of (bacterio)chlorophylls: photosynthetic systems. Photochem. Photobiol. 83,152-162 (2007).

[10] S. Matsubara, M. Kunieda, A Wada, S. Sasaki, and H. Tamiaki, Visible and near-infrared spectra of chlorosomal zinc chlorin self-aggregates dependent on their peripheral substituents at the 8-position. J. Photochem. Photobiol. A: Chern. 330, 195-199 (2016).

[11] S. Matsubara, S. Shoji, and H. Tamiaki, Self-Aggregation of synthetic chlorophyll-c derivative and effect of C17-acrylate residue on bridging green gap in chlorosomal model../ Photochem. Photobiol. A: Chern. 340, 53-61(2017).

[12] H. Tamiaki, A. Wada, and S. Matsubara, 20-Substitution effect on self-aggregation of synthetic zinc bacteriochlorophyll-d analogs. J. Photochem. Photobiol. A: Chern. 353, 581- 590 (2018).

[13] S. Matsubara and H. Tamiaki, Synthesis and self-aggregation of 兀-expanded chlorophyll derivatives to construct light-harvesting antenna models. J. Org. Chern. 83, 4355ロ364 (2018).

[14] G. T. Oostergetel, M. Reus, A. G. M. Chew, D. A. Bryant, E. J. Boekema, and A. R. Holzwarth, Long-range organization of bacteriochlorophyll in chlorosomes of Chlorobium tepidum investigated by cryo-electron microscopy. FEBS Lett. 581, 5435-5439 (2007).

[15] L. M. Gunther, M. Jendrny, E. A. Bloemsma, M. Tank, G. T. Oostergetel,D. A. Bryant, J. Knoester, and J. Kohler, Structure of light-harvesting aggregates in individual chlorosomes. J. Phys. Chern. B 120, 5367-5376 (2016).

[16] H. Tamiaki, R. Shibata, and T. Mizoguchi, The 17-propionate function of their in long Biological implication esterifying chains of (bacterio)chlorophylls:photosynthetic systems. Photochem. Photobiol. 83,152—162 (2007).

[17] S. Shoji, T. Hashishin, and H. Tamiaki, Construction of chlorosomal rod self-aggregates in the solid state on any substrates from synthetic chlorophyll derivatives possessing an oligomethylene chain at the 17-propionate residue. Chem. Eur. J.18,13331-13341(2012).

[18] V. Huber, M. Katterle, M. Lysetska, and F. Wiirthner, Reversible Self-organization of semisynthetic zinc chlorins into well-defined rod antennae. Angew. Chem. Int. Ed. 44,3147— 3151(2005).

[19] A. Lohner, T. Kunsel, M. I. S. Rohr, T. L. C. Jansen, S. Sengupta, F. Wurthner, J. Knoester, and J. Kohler, Spectral and structural variations of biomimetic light-harvesting nanotubes. J. Phys. Chem. Lett.10, 2715-2724 (2019).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る