リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Characterization of Nanoscopic Cu/Diamond Interfaces Prepared by Surface-Activated Bonding: Implications for Thermal Management」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Characterization of Nanoscopic Cu/Diamond Interfaces Prepared by Surface-Activated Bonding: Implications for Thermal Management

Jianbo Liang Yutaka Ohno Yuichiro Yamashita Yasuo Shimizu Shinji Kanda Naoto Kamiuchi Seongwoo Kim Koyama Koji Yasuyoshi Nagai Makoto Kasu Naoteru Shigekawa 東北大学 DOI:10.1021/acsanm.9b02558

2020.02.25

概要

The microstructures of Cu/diamond interfaces prepared by surface-activated bonding at room temperature are examined by cross-sectional scanning transmission electron microscopy (STEM). A crystalline defect layer composed of Cu and diamond with a thickness of approximately 4.5 nm is formed at the as-bonded interface, which is introduced by irradiation with an Ar beam during the bonding process. No crystalline defect layer is observed at the 700 °C-annealed interface, which is attributed to the recrystallization of the defect layer due to the high-temperature annealing process. Instead of the defect layer, a mating interface layer and a copper oxide layer are formed at the interface. The mating interface layer and the copper oxide layer play a role in relieving the residual stress caused by the different thermal expansion coefficients of diamond and Cu. The thermal boundary resistance (TBR) of the as-bonded interface is measured to be 1.7± 0.2×10-8 m2K/W by the time domain pulsed-light-heating thermoreflectance technique. These results indicate that the direct bonding of diamond and Cu is a very effective technique for improving the heat-dissipation performance of power devices.

この論文で使われている画像

参考文献

(1) Chu, K.; Jia, C.; Liang, X.; Chen. H.; Guo, H.; Yin, F. et al., Experimental and Modeling Study of the Thermal Conductivity of SiCp/Al Composites with Bimodal Size Distribution. J. Mater. Sci. 2009, 44, 4370 – 4378.

(2) Kida, M.; Weber, L.; Monachon, C.; Mortensen, A. Thermal Conductivity and Interfacial Conductance of AlN Particle Reinforced Metal Matrix Composites. J. Appl. Phys. 2011, 109, No. 064907.

(3) Ullbrand, J. M.; Cόrdoba, J. M.; Tamayo-Ariztondo, J.; Elizalde, M. R.; Nygren, M. Molina-Aldareguia, J. M.; Odén, M. Thermomechanical Properties of Copper-Carbon Nanofiber Composites Prepared by Spark Plasma Sintering and Hot Pressing. Compos. Sci. Technol. 2010, 70, 2263 – 2268.

(4) Chu, K.; Wang, X. H.; Wang, F.; Li, Y. B.; Huang, D. J.; Liu, H.; Ma, W. L.; Liu, F. X.; Zhang, H. Largely Enhanced Thermal Conductivity of Graphene/Copper Composites with Highly Aligned Graphene Network. Carbon 2018, 127, 102 – 112.

(5) Chu, K.; Wang, X. H.; Li, Y. B.; Huang, D. J.; Geng, Z. R.; Zhao, X. L.; Liu, H.; Zhang, H. Thermal Properties of Graphene/Metal Composites with Aligned Graphene. Mater. Des. 2018, 140, 85 – 94.

(6) Yamamoto, Y.; Imai, T.; Tanabe, K.; Tsuno, T.; Kumazawa, Y.; Fujimori, N. The Measurement of Thermal Properties of Diamond. Diam. Relat. Mater. 1997, 6, 1057 – 1061.

(7) Nosaeva, K.; Weimann, N.; Rudolph, M.; John, W.; Krueger, O.; Heinrich, W. Improved Thermal Management of InP Transistors in Transferred-Substrate Technology with Diamond Heat-Spreading Layer. Electron. Lett. 2015, 51, 1010 – 1012.

(8) Sun, H.; Simon, R. B.; Pomeroy, J. W.; Francis, D.; Faili, F.; Twitchen, D. J.; Kuball, M. Reducing GaN-on-Diamond Interfacial Thermal Resistance for High Power Transistor Applications. Appl. Phys. Lett. 2015, 106, No. 111906.

(9) Francis, D.; Faili, F.; Babic, D.; Ejeckam, Nurmikko, F. A.; Maris, H. Formation and Characterization of 4-inch GaN-on-Diamond Substrates. Diamond Relat. Mater. 2012, 19, 229 – 233.

(10) Pomeroy, J. W.; Bernardoni, M.; Dumka, D. C.; Fanning, D. M.; Kuball, M. Low Thermal Resistance GaN-on-Diamond Transistors Characterized by Three-Dimensional Raman Thermography Mapping. Appl. Phys. Lett. 2014, 104, No. 083513.

(11) Hirama, K.; Taniyasu, Y.; Kasu, M. AlGaN/GaN High-Electron Mobility Transistors with Low Thermal Resistance Grown on Single-Crystal Diamond (111) Substrates by Metalorganic Vapor- Phase Epitaxy. Appl. Phys. Lett. 2011, 98, No.162112.

(12) Gerrer, T.; Cimalla, V.; Waltereit, P.; Müller, S.; Benkhelifa, F.; Maier, T.; Czap, H.; Ambacher, O.; Quay, R. Transfer of AlGaN/GaN RF-Devices onto Diamond Substrates Via Van Der Waals Bonding. International Journal of Microwave and Wireless Technologies 2018, 10, 666 – 673.

(13) Wu, Q.; Xu, Y.; Zhou, J.; Kong, Y.; Chen, T.; Wang, Y.; Lin, F.; Fu, Y.; Jia, Y.; Zhao, X.; Yan, B.; Xu, R. Performance Comparison of GaN HEMTs on Diamond and SiC Substrates Based on Surface Potential Model. ECS J. Solid State Sci. Technol. 2017,6, Q171 – Q178.

(14) Saura, A.; Ji, H.; Hilton, K. P.; Wallis, D. J.; Uren, M. J.; Martin, T.; Kuball, M. Thermal Boundary Resistance between GaN and Substrate in AlGaN/GaN Electronic Devices. IEEE Trans. Electron Devices 2007, 54, 3152 – 3158.

(15) Du, M.; Guo, Q.; Ouyang, Z.; Wei, K.; Hurley, W. G. Effects of Solder Layer Crack on the Thermal Reliability of Insulated Gate Bipolar Transistors. Case Studied in Thermal Engineering 2019, 14, No. 100492.

(16) Jourdain, A.; Stoukatch, S.; De Moor, P.; and Ruythooren, W. Simultaneous Cu-Cu and Compliant Dielectric Bonding for 3D Stacking of ICs. Proc. IITC, 2007, 207 – 209.

(17) Okuno, Y.; Aoki, M.; Tsuchiya, T.; and Uomi, K. Fabrication of (001) InP-Based 1.55-m Wavelength Lasers on a (110) GaAs Substrate by Direct Bonding (A Prospect for Free-Orientation Integration). Appl. Phys. Lett. 1995, 67, 810 – 812.

(18) Tan, C. M.; Yu, W.; and Wei, J. Comparison of Medium-Vacuum and Plasma-Activated Low- Temperature Wafer Bonding. Appl. Phys. Lett. 2006, 88, No. 114102.

(19) Liang, J.; Miyazaki, T.; Morimoto, M.; Nishida, S.; Watanabe, N.; Shigekawa, N. Electrical Properties of p-Si/n-GaAs Heterojunctions by Using Surface-Activated Bonding. Appl. Phys. Express 2013, 6, No. 021801.

(20) Higurashi, E.; Okumura, K.; Nakasuji, K.; and Suga, T. Surface Activated Bonding of GaAs and SiC Wafers at Room Temperature for Improved Heat Dissipation in High-Power Semiconductor Lasers. Jpn. J. Appl. Phys. 2015, 54, No. 030207.

(21) Liang, J.; Masuya, S.; Kasu, M.; Shigekawa, N. Realization of Direct Bonding of Single Crystal Diamond and Si Substrates. Appl. Phys. Lett. 2017, 110, No.111603.

(22) Sakata, M.; Oyake, T.; Maire, J.; Nomura, M.; Higurashi, E.; and Shiomi, J. Thermal Conductance of Silicon Interface Directly Bonded by Room-Temperature Surface Activation. Appl. Phys. Lett. 2015, 106, No. 081603.

(23) Liang, J.; Yamajo, S.; Kuball, M.; Shigekawa, N. Room-Temperature Direct Bonding of Diamond and Al. Scripta Mater. 2019, 159, 58 – 61.

(24) Kanda, S.; Shimizu, Y.; Ohno, Y.; Shirasaki, K.; Nagai, Y.; Kasu, M.; Shigekawa, N.; Liang, J. Fabrication of Diamond/Cu Direct Bonding Interface for Power Device Applications. Jpn. J. Appl. Phys. 2019, 59, No. SBBB03.

(25) Yamashita, Y.; Honda, K.; Yagi, T.; Jia, J.; Taketoshi, N.; Shigesato, Y. Thermal Conductivity of Hetero-Epitaxial ZnO Thin Films on C- and R-Plane Sapphire Substrates: Thickness and Grain Size Effect. J. Appl. Phys. 2019, 125, No. 035101.

(26) Taketoshi, N.; Baba, T.; Schaub, E.; Ono, A. Homodyne Detection Technique Using Spontaneously Generated Reference Signal in Picosecond Thermoreflectance Measurements. Rev. Sci. Instrum. 2003, 74, No. 5226.

(27) T Yagi. Kobayashi, K. In Proceedings of the 35th Japan Symposium Thermophysical Properties. 2014 Japan Society of Thermophysical Properties Symposium (JSTP); 2014, pp 16 – 20 (in Japanese).

(28) Taketoshi, N.; Baba, T.; Ono, A. Electrical Delay Technique in the Picosecond Thermoreflectance Method for Thermophysical Property Measurements of Thin Films. Rev. Sci, Instrum. 2005, 76, No. 094903.

(29) Chiristian, M.; Ludger, W. Thermal Boundary Conductance of Transition Metals on Diamond. Emerging Materials Research 2012, 1, 89 – 98.

(30) Wang, H. Xu, Y. Shimono, M. Tanaka, Y. Yamazaki, M. Computation of Interfacial Thermal Resistance by Phonon Diffuse Mismatch Model. Materials Transactions 2007, 48, 2349 – 2352.

(31) Liang, J.; Miyazaki, T.; Morimoto, M.; Nishida, S.; Shigekawa, N. Electrical Properties of Si/Si Interfaces by Using Surface-Activated Bonding. J. Appl. Phys. 2013, 114, No. 183703.

(32) Liang, J.; Chai, L.; Nishida, S.; Morimoto, M.; and Shigekawa, N. Investigation on the Interface Resistance of Si/GaAs Heterojunctions Fabricated by Surface-Activated Bonding. Jpn. J. Appl. Phys. 2015, 54, No. 030211.

(33) Liang, J.; Nishida, S.; Arai, M.; Shigekawa, N. Effects of Thermal Annealing Process on the Eectrical Properties of p+-Si/n-SiC Heterojunctions. Appl. Phys. Lett. 2014, 104, No. 161604.

(34) Ohno, Y.; Yoshida, H.; Takeda, S.; Liang, J.; Shigekawa, N. Intrinsic Microstructure of Si/GaAs Heterointerfaces Fabricated by Surface-Activated Bonding at Room Temperature. Jpn. J. Appl. Phys. 2018, 57, No. 02BA01.

(35) Kim, T.; Howlader, H. M. M.; Itoh, R. T.; Suga, T. Room Temperature Cu–Cu Direct Bonding Using Surface Activated Bonding Method. J. Vac. Sci. & Technol. A 2003, 21, No. 449.

(36) Lee, S.; Hsu, H.; Tuan, W. Oxidation Behavior of Copper at a Temperature below 300 ℃ and the Methodology for Passivation. Mat. Res. 2016, 19, 51 – 56.

(37) Howlader, M. M. R.; Zhang, F. Void-Free Strong Bonding of Surface Activated Silicon Wafers from Room Temperature to Annealing at 600°C. Thin Solid Films 2010, 519, 804 – 808.

(38) Yamajo, S.; Yoon, S.; Liang, J.; Sodabanlu, H.; Watanabe, K.; Sugiyama, M.; Yasui, A.; Ikenaga, E.; Shigekawa, N. Hard X-Ray Photoelectron Spectroscopy Investigation of Annealing Effects on Buried Oxide in GaAs/Si Junctions by Surface-Activated Bonding. Appl. Surf. Sci. 2019, 473, 627 – 632.

(39) Liang, J.; Masuya, S.; Kim, S.; Oishi, T.; Kasu, M.; Shigekawa, N. Stability of Diamond/Si Bonding Interface During Device Fabrication Process. Appl. Phys. Express 2019, 12, No. 016501.

(40) Guillemet, T.; Geffroy, P. M.; Heintz, J. M.; Chandra, N.; Lu, Y. F.; Silvain, J. F. An Innovative Process to Fabricate Copper/Diamond Composite Films for Thermal Management Applications. Composites Part a: Applied Science and Manufacturing 2012, 43, 1746 – 1753.

(41) Liang, J.; Zhou, Y.; Masuya, S.; Gucmann, F.; Singh, M.; Pomeroy, J.; Kim, S.; Kuball, M.; Kasu, M.; Shigekawa, N. Annealing Effect of Surface-Activated Bonded Diamond/Si Interface. Diam. Relat. Mater. 2019, 93, 187 – 192.

(42) Suzuki, T. X-Ray Study on the Binding Properties of Cu2O and Ag2O Crystals. J. Phys. Soc. Jpn. 1960, 15, 2018 – 2024.

(43) Chu, K.; Wang, J.; Liu, Y. P.; Geng, Z. R. Graphene Defect Engineering for Optimizing the Interface and Mechanical Properties of Graphene/Copper Composites. Carbon 2018, 140, 112 – 123.

(44) Chu, K.; Wang, J.; Liu, Y. P.; Li, Y. B.; Geng, Z. R.; Zhang, H. Creating Defects on Graphene Basal-Plane Toward Interface Optimization of Graphene/CuCr Composites. Carbon 2019, 143, 85 – 96.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る