リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Gallium nitride wafer slicing by a sub-nanosecond laser: effect of pulse energy and laser shot spacing」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Gallium nitride wafer slicing by a sub-nanosecond laser: effect of pulse energy and laser shot spacing

Sena, Hadi Tanaka, Atsushi Wani,Yotaro Aratani, Tomomi Yui, Toshiki Kawaguchi, Daisuke Sugiura, Ryuji Honda, Yoshio Igasaki, Yasunori Amano, Hiroshi 名古屋大学

2021.08.10

概要

Gallium nitride (GaN)-based devices surpass the traditional silicon-based power devices in terms of higher breakdown voltage, faster-switching speed, higher thermal conductivity, and lower on-resistance. However, heteroepitaxial GaN growths like GaN on sapphire are not suitable for power devices due to the threading dislocation densities as high as 108/cm2. Recently, homoepitaxial GaN growth has become possible thanks to the native GaN substrates with dislocation densities in the order of 104/cm2 but the extremely high cost of the GaN substrates makes the homoepitaxy method unacceptable for industrial applications, and the slicing of wafers for reusing them is an effective solution for cost reduction. In this study, we will investigate a route for slicing the GaN single crystal substrate by controlling the laser pulse energy and changing the distance between each laser shot. The 2D and 3D crack propagations are observed by a multiphoton confocal microscope, and the cross section of samples is observed by a scanning electron microscope (SEM). The results showed that two types of radial and lateral cracking occurred depending on the pulse energy and shot pitch, and controlling them was of importance for attaining a smooth GaN substrate slicing. Cross-sectional SEM images showed that at suitable pulse energy and distance, crack propagation could be controlled with respect to the irradiation plane.

参考文献

1. A. Lidow, M. de Rooij, J. Strydom, D. Reusch and J. Glaser, GaN Transistors for Efficient Power Conversion (John Wiley & Sons, Ltd, 2019).

2. H. Amano, Y. Baines, E. Beam, M. Borga, T. Bouchet, P. R. Chalker, M. Charles, K. J. Chen, N. Chowdhury, R. Chu, C. De Santi, M. M. De Souza, S. Decoutere, L. Di Cioccio, B. Eckardt, T. Egawa, P. Fay, J. J. Freedsman, L. Guido, O. Häberlen, G. Haynes, T. Heckel, D. Hemakumara, P. Houston, J. Hu, M. Hua, Q. Huang, A. Huang, S. Jiang, H. Kawai, D. Kinzer, M. Kuball, A. Kumar, K. B. Lee, X. Li, D. Marcon, M. März, R. McCarthy, G. Meneghesso, M. Meneghini, E. Morvan, A. Nakajima, E. M. S. Narayanan, S. Oliver, T. Palacios, D. Piedra, M. Plissonnier, R. Reddy, M. Sun, I. Thayne, A. Torres, N. Trivellin, V. Unni, M. J. Uren, M. Van Hove, D. J. Wallis, J. Wang, J. Xie, S. Yagi, S. Yang, C. Youtsey, R. Yu, E. Zanoni, S. Zeltner, and Y. Zhang, "The 2018 GaN power electronics roadmap," Journal of Physics D: Applied Physics 51(16), 163001 (2018).

3. Joff Derluyn, Marianne Germain, and Elke Meissner, Gallium Nitride-Enabled High Frequency and High Efficiency Power Conversion (Springer, 2018).

4. M. Amilusik, T. Sochacki, B. Łucznik, M. Boćkowski, B. Sadovyi, A. Presz, I. Dzięcielewski, and I. Grzegory, "Analysis of self-lift-off process during HVPE growth of GaN on MOCVD-GaN/sapphire substrates with photolitographically patterned Ti mask," Journal of Crystal Growth 380, 99–105 (2013).

5. F. Lipski, T. Wunderer, S. Schwaiger, and F. Scholz, "Fabrication of freestanding 2″-GaN wafers by hydride vapour phase epitaxy and self-separation during cooldown," physica status solidi (a) 207(6), 1287–1291 (2010).

6. Ch. Hennig, E. Richter, M. Weyers, and G. Tränkle, "Freestanding 2-in GaN layers using lateral overgrowth with HVPE," Journal of Crystal Growth 310(5), 911–915 (2008).

7. D. Gogova, A. Kasic, H. Larsson, C. Hemmingsson, B. Monemar, F. Tuomisto, K. Saarinen, L. Dobos, B. Pécz, P. Gibart, and B. Beaumont, "Strain-free bulk-like GaN grown by hydride-vapor-phase-epitaxy on two-step epitaxial lateral overgrown GaN template," Journal of Applied Physics 96(1), 799–806 (2004).

8. A. D. Williams and T. D. Moustakas, "Formation of large-area freestanding gallium nitride substrates by natural stress-induced separation of GaN and sapphire," Journal of Crystal Growth 300(1), 37–41 (2007).

9. K. Yamane, M. Ueno, H. Furuya, N. Okada, and K. Tadatomo, "Successful natural stress-induced separation of hydride vapor phase epitaxy-grown GaN layers on sapphire substrates," Journal of Crystal Growth 358, 1–4 (2012).

10. S. W. Bedell, C. Bayram, K. Fogel, P. Lauro, J. Kiser, J. Ott, Y. Zhu, and D. Sadana, "Vertical Light-Emitting Diode Fabrication by Controlled Spalling," Applied Physics Express 6(11), 112301 (2013).

11. D. J. Rogers, F. Hosseini Teherani, A. Ougazzaden, S. Gautier, L. Divay, A. Lusson, O. Durand, F. Wyczisk, G. Garry, T. Monteiro, M. R. Correira, M. Peres, A. Neves, D. McGrouther, J. N. Chapman, and M. Razeghi, "Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN," Appl. Phys. Lett. 91(7), 071120 (2007).

12. J. Ha, S. W. Lee, H. Lee, H. Lee, S. H. Lee, H. Goto, T. Kato, K. Fujii, M. W. Cho, and T. Yao, "The Fabrication of Vertical Light-Emitting Diodes Using Chemical Lift-Off Process," IEEE Photonics Technology Letters 20(3), 175–177 (2008).

13. T.-Y. Tsai, R.-H. Horng, D.-S. Wuu, S.-L. Ou, M.-T. Hung, and H.-H. Hsueh, "GaN Epilayer Grown on Ga2O3 Sacrificial Layer for Chemical Lift-Off Application," Electrochemical and Solid-State Letters 14(11), H434 (2011).

14. C.-F. Lin, J.-J. Dai, M.-S. Lin, K.-T. Chen, W.-C. Huang, C.-M. Lin, R.-H. Jiang, and Y.-C. Huang, "An AlN Sacrificial Buffer Layer Inserted into the GaN/Patterned Sapphire Substrate for a Chemical Lift-Off Process," Applied Physics Express 3(3), 031001 (2010).

15. D. J. Meyer, B. P. Downey, D. S. Katzer, N. Nepal, V. D. Wheeler, M. T. Hardy, T. J. Anderson, and D. F. Storm, "Epitaxial Lift-Off and Transfer of III-N Materials and Devices from SiC Substrates," IEEE Transactions on Semiconductor Manufacturing 29(4), 384–389 (2016).

16. Yu. Melnik, A. Nikolaev, I. Nikitina, K. Vassllevski, and V. Dmitriev, "Properties of Free-Standing GaN Bulk Crystals Grown by HVPE," MRS Online Proceedings Library 482(1), 346–351 (1997).

17. M. Lesecq, V. Hoel, A. Lecavelier des Etangs-Levallois, E. Pichonat, Y. Douvry, and J. C. De Jaeger, "High Performance of AlGaN/GaN HEMTs Reported on Adhesive Flexible Tape," IEEE Electron Device Letters 32(2), 143–145 (2011).

18. M. Lee, D. Mikulik, J. Kim, Y. Tak, J. Kim, M. Shim, Y. Park, U. Chung, E. Yoon, and S. Park, "A Novel Growth Method of Freestanding GaN Using In situ Removal of Si Substrate in Hydride Vapor Phase Epitaxy," Applied Physics Express 6(12), 125502 (2013).

19. J. Kim, C. Bayram, H. Park, C.-W. Cheng, C. Dimitrakopoulos, J. A. Ott, K. B. Reuter, S. W. Bedell, and D. K. Sadana, "Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene," Nature Communications 5(1), 4836 (2014).

20. M. K. Kelly, O. Ambacher, R. Dimitrov, R. Handschuh, and M. Stutzmann, "Optical Process for Liftoff of Group III-Nitride Films," physica status solidi (a) 159(1), R3–R4 (1997).

21. C. Youtsey, R. McCarthy, R. Reddy, K. Forghani, A. Xie, E. Beam, J. Wang, P. Fay, T. Ciarkowski, E. Carlson, and L. Guido, "Wafer-scale epitaxial lift-off of GaN using bandgap-selective photoenhanced wet etching," physica status solidi (b) 254(8), 1600774 (2017).

22. C.-Y. Lee, Y.-P. Lan, P.-M. Tu, S.-C. Hsu, C.-C. Lin, H.-C. Kuo, G.-C. Chi, and C.-Y. Chang, "Natural substrate lift-off technique for vertical light-emitting diodes," Applied Physics Express 7(4), 042103 (2014).

23. Y.-H. Yeh, K.-M. Chen, Y.-H. Wu, Y.-C. Hsu, T.-Y. Yu, and W.-I. Lee, "Hydrogen etching of GaN and its application to produce free-standing GaN thick films," Journal of Crystal Growth 333(1), 16–19 (2011).

24. S. W. Bedell, P. Lauro, J. A. Ott, K. Fogel, and D. K. Sadana, "Layer transfer of bulk gallium nitride by controlled spalling," Journal of Applied Physics 122(2), 025103 (2017).

25. D. Iida, S. Kawai, N. Ema, T. Tsuchiya, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, "Laser lift-off technique for freestanding GaN substrate using an In droplet formed by thermal decomposition of GaInN and its application to light-emitting diodes," Appl. Phys. Lett. 105(7), 072101 (2014).

26. A. Tauzin, T. Akatsu, M. Rabarot, J. Dechamp, M. Zussy, H. Moriceau, J. F. Michaud, A. M. Charvet, L. D. Cioccio, F. Fournel, J. Garrione, B. Faure, F. Letertre, and N. Kernevez, "Transfers of 2-inch GaN films onto sapphire substrates using Smart CutTM technology," Electronics Letters 41(11), 668-670(2) (2005).

27. O. Moutanabbir and U. Gösele, "Bulk GaN Ion Cleaving," Journal of Electronic Materials 39(5), 482–488 (2010).

28. R. B.-K. Chung, D. Kim, S.-K. Lim, J.-S. Choi, K.-J. Kim, B.-H. Lee, K. S. Jung, H.-J. Kim-Lee, W. J. Lee, B. Park, and K. Woo, "Layer-Transferred GaN Template by Ion Cut for Nitride-Based Light-Emitting Diodes," Applied Physics Express 6(11), 111005 (2013).

29. K. Huang, T. You, Q. Jia, A. Yi, S. Zhang, R. Zhang, J. Lin, M. Zhou, W. Yu, B. Zhang, X. Ou, and X. Wang, "Defects induced by MeV H+ implantation for exfoliating of free-standing GaN film," Applied Physics A 124(2), 118 (2018).

30. V. Voronenkov, N. Bochkareva, R. Gorbunov, A. Zubrilov, V. Kogotkov, P. Latyshev, Y. Lelikov, A. Leonidov, and Y. Shreter, "Laser slicing: A thin film lift-off method for GaN-on-GaN technology," Results in Physics 13, 102233 (2019).

31. Nadezhda M. Bulgakova and Vladimir P. Zhukov, Lasers in Materials Science (Springer, 2014), 191.

32. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Rosenfeld, and I. V. Hertel, "Theoretical investigations of material modification using temporally shaped femtosecond laser pulses," Applied Physics A 81(8), 1639–1645 (2005).

33. Y. Okamoto, M. Ota, and A. Okada, "Investigation of Separation Method for Gallium Nitride with Internal Modified Layer by Ultrashort Pulsed Laser," International Journal of Electrical Machining 24, 21–26 (2019).

34. O. Krüger, J.-H. Kang, M. Spevak, U. Zeimer, and S. Einfeldt, "Precision UV laser scribing for cleaving mirror facets of GaN-based laser diodes," Applied Physics A 122(4), 396 (2016).

35. O. Moutanabbir and U. Gösele, "Bulk GaN Ion Cleaving," Journal of Electronic Materials 39(5), 482–488 (2010).

36. M. V. Virko, V. S. Kogotkov, A. A. Leonidov, V. V. Voronenkov, Yu. T. Rebane, A. S. Zubrilov, R. I. Gorbunov, P. E. Latyshev, N. I. Bochkareva, Yu. S. Lelikov, D. V. Tarhin, A. N. Smirnov, V. Yu. Davydov, and Yu. G. Shreter, "On the laser detachment of n-GaN films from substrates, based on the strong absorption of IR light by free charge carriers in n+-GaN substrates," Semiconductors 50(5), 699–704 (2016).

37. S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, and Y. Ikuhara, "Optically produced cross patterning based on local dislocations inside MgO single crystals," Appl. Phys. Lett. 90(16), 163110 (2007).

38. M. Sakakura, Y. Ishiguro, N. Fukuda, Y. Shimotsuma, and K. Miura, "Modulation of laser induced-cracks inside a LiF single crystal by fs laser irradiation at multiple points," Opt. Express 21(22), 26921–26928 (2013).

39. L. Rapp, R. Meyer, L. Furfaro, C. Billet, R. Giust, and F. Courvoisier, "High speed cleaving of crystals with ultrafast Bessel beams," Opt. Express 25(8), 9312–9317 (2017).

40. Elena R. Dobrovinskaya, Leonid A. Lytvynov, and Valerian Pishchik, Sapphire: Material, Manufacturing, Applications (Springer, 2009).

41. P. B. Hirsch, P. Pirouz, S. G. Roberts, and P. D. Warren, "Indentation plasticity and polarity of hardness on {111} faces of GaAs," null 52(3), 759–784 (1985).

42. I. Ratschinski, H. S. Leipner, F. Heyroth, W. Fränzel, O. Moutanabbir, R. Hammer, and M. Jurisch, "Indentation-induced dislocations and cracks in (0001) freestanding and epitaxial GaN," Journal of Physics: Conference Series 281, 012007 (2011).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る