リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Zinc transport via ZNT5-6 and ZNT7 is critical for cell surface glycosylphosphatidylinositol-anchored protein expression」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Zinc transport via ZNT5-6 and ZNT7 is critical for cell surface glycosylphosphatidylinositol-anchored protein expression

Wagatsuma, Takumi Shimotsuma, Keiko Sogo, Akiko Sato, Risa Kubo, Naoya Ueda, Sachiko Uchida, Yasuo Kinoshita, Masato Kambe, Taiho 京都大学 DOI:10.1016/j.jbc.2022.102011

2022.06

概要

Glycosylphosphatidylinositol (GPI)-anchored proteins play crucial roles in various enzyme activities, cell signaling and adhesion, and immune responses. While the molecular mechanism underlying GPI-anchored protein biosynthesis has been well studied, the role of zinc transport in this process has not yet been elucidated. Zn transporter (ZNT) proteins mobilize cytosolic zinc to the extracellular space and to intracellular compartments. Here, we report that the early secretory pathway ZNTs [ZNT5-ZNT6 heterodimers (ZNT5-6) and ZNT7-ZNT7 homodimers (ZNT7)], which supply zinc to the lumen of the early secretory pathway compartments are essential for GPI-anchored protein expression on the cell surface. We show, using overexpression and gene disruption/re-expression strategies in cultured human cells, that loss of ZNT5-6 and ZNT7 zinc transport functions results in significant reduction in GPI-anchored protein levels similar to that in mutant cells lacking phosphatidylinositol glycan anchor biosynthesis (PIG) genes. Furthermore, medaka fish with disrupted Znt5 and Znt7 genes show touch-insensitive phenotypes similar to zebrafish Pig mutants. These findings provide a previously unappreciated insight into the regulation of GPI-anchored protein expression and protein quality control in the early secretory pathway.

この論文で使われている画像

参考文献

1. Vembar, S. S., and Brodsky, J. L. (2008) One step at a time: endoplasmic

reticulum-associated degradation. Nat. Rev. Mol. Cell Biol. 9, 944–957

2. Kinoshita, T., and Fujita, M. (2016) Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling. J. Lipid Res. 57, 6–24

3. Kinoshita, T. (2020) Biosynthesis and biology of mammalian GPIanchored proteins. Open Biol. 10, 190290

4. Liu, Y. S., and Fujita, M. (2020) Mammalian GPI-anchor modifications

and the enzymes involved. Biochem. Soc. Trans. 48, 1129–1138

5. UniProt Consortium (2015) UniProt: a hub for protein information.

Nucleic Acids Res. 43, D204–D212

6. Bellai-Dussault, K., Nguyen, T. T. M., Baratang, N. V., Jimenez-Cruz, D.

A., and Campeau, P. M. (2019) Clinical variability in inherited glycosylphosphatidylinositol deficiency disorders. Clin. Genet. 95, 112–121

7. Wang, Y., Weisenhorn, E., MacDiarmid, C. W., Andreini, C., Bucci, M.,

Taggart, J., et al. (2018) The cellular economy of the Saccharomyces

cerevisiae zinc proteome. Metallomics 10, 1755–1776

8. Bird, A. J., and Wilson, S. (2020) Zinc homeostasis in the secretory

pathway in yeast. Curr. Opin. Chem. Biol. 55, 145–150

9. Kambe, T., Taylor, K. M., and Fu, D. (2021) Zinc transporters and their

functional integration in mammalian cells. J. Biol. Chem. 296, 100320

10. Ishihara, K., Yamazaki, T., Ishida, Y., Suzuki, T., Oda, K., Nagao, M., et al.

(2006) Zinc transport complexes contribute to the homeostatic maintenance of secretory pathway function in vertebrate cells. J. Biol. Chem.

281, 17743–17750

11. Kambe, T., Takeda, T. A., and Nishito, Y. (2016) Activation of zincrequiring ectoenzymes by ZnT transporters during the secretory process: biochemical and molecular aspects. Arch. Biochem. Biophys. 611,

37–42

12. Watanabe, S., Amagai, Y., Sannino, S., Tempio, T., Anelli, T., Harayama,

M., et al. (2019) Zinc regulates ERp44-dependent protein quality control

in the early secretory pathway. Nat. Commun. 10, 603

13. Suzuki, T., Ishihara, K., Migaki, H., Nagao, M., Yamaguchi-Iwai, Y., and

Kambe, T. (2005) Two different zinc transport complexes of cation

diffusion facilitator proteins localized in the secretory pathway operate to

activate alkaline phosphatases in vertebrate cells. J. Biol. Chem. 280,

30956–30962

14. Fujimoto, S., Tsuji, T., Fujiwara, T., Takeda, T. A., Merriman, C., Fukunaka, A., et al. (2016) The PP-motif in luminal loop 2 of ZnT transporters

plays a pivotal role in TNAP activation. Biochem. J. 473, 2611–2621

15. Tsuji, T., Kurokawa, Y., Chiche, J., Pouyssegur, J., Sato, H., Fukuzawa, H.,

et al. (2017) Dissecting the process of activation of cancer-promoting

zinc-requiring ectoenzymes by zinc metalation mediated by ZNT transporters. J. Biol. Chem. 292, 2159–2173

16. Suzuki, E., Ogawa, N., Takeda, T. A., Nishito, Y., Tanaka, Y. K., Fujiwara,

T., et al. (2020) Detailed analyses of the crucial functions of Zn transporter proteins in alkaline phosphatase activation. J. Biol. Chem. 295,

5669–5684

17. Takeda, T. A., Miyazaki, S., Kobayashi, M., Nishino, K., Goto, T., Matsunaga, M., et al. (2018) Zinc deficiency causes delayed ATP clearance

and adenosine generation in rats and cell culture models. Commun. Biol.

1, 113

18. Kambe, T. (2020) Metalation and maturation of zinc ectoenzymes: a

perspective. Biochemistry 59, 74–79

19. Gillet, L. C., Navarro, P., Tate, S., Rost, H., Selevsek, N., Reiter, L., et al.

(2012) Targeted data extraction of the MS/MS spectra generated by dataindependent acquisition: a new concept for consistent and accurate

proteome analysis. Mol. Cell. Proteomics 11, O111.016717

20. Nakano, Y., Fujita, M., Ogino, K., Saint-Amant, L., Kinoshita, T., Oda, Y.,

et al. (2010) Biogenesis of GPI-anchored proteins is essential for surface

expression of sodium channels in zebrafish Rohon-Beard neurons to

respond to mechanosensory stimulation. Development 137, 1689–1698

21. Carmean, V., Yonkers, M. A., Tellez, M. B., Willer, J. R., Willer, G. B.,

Gregg, R. G., et al. (2015) pigk Mutation underlies macho behavior and

affects Rohon-Beard cell excitability. J. Neurophysiol. 114, 1146–1157

22. Riordan, J. F. (2003) Angiotensin-I-converting enzyme and its relatives.

Genome Biol. 4, 225

23. Turner, A. J., and Hooper, N. M. (2002) The angiotensin-converting

enzyme gene family: genomics and pharmacology. Trends Pharmacol.

Sci. 23, 177–183

24. Arreaza, G., and Brown, D. A. (1995) Sorting and intracellular trafficking

of a glycosylphosphatidylinositol-anchored protein and two hybrid

J. Biol. Chem. (2022) 298(6) 102011

13

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Zn mediated by ZNTs is critical to GPI-AP expression

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

transmembrane proteins with the same ectodomain in Madin-Darby

canine kidney epithelial cells. J. Biol. Chem. 270, 23641–23647

Fukunaka, A., Kurokawa, Y., Teranishi, F., Sekler, I., Oda, K., Ackland, M.

L., et al. (2011) Tissue nonspecific alkaline phosphatase is activated via a

two-step mechanism by zinc transport complexes in the early secretory

pathway. J. Biol. Chem. 286, 16363–16373

Uchida, Y., Sasaki, H., and Terasaki, T. (2020) Establishment and validation of highly accurate formalin-fixed paraffin-embedded quantitative

proteomics by heat-compatible pressure cycling technology using phasetransfer surfactant and SWATH-MS. Sci. Rep. 10, 11271

Rong, Y., Nakamura, S., Hirata, T., Motooka, D., Liu, Y. S., He, Z. A., et al.

(2015) Genome-wide screening of genes required for glycosylphosphatidylinositol biosynthesis. PLoS One 10, e0138553

Liu, S. S., Liu, Y. S., Guo, X. Y., Murakami, Y., Yang, G., Gao, X. D., et al.

(2021) A knockout cell library of GPI biosynthetic genes for functional

studies of GPI-anchored proteins. Commun. Biol. 4, 777

Galperin, M. Y., and Jedrzejas, M. J. (2001) Conserved core structure and

active site residues in alkaline phosphatase superfamily enzymes. Proteins

45, 318–324

Mann, K. J., and Sevlever, D. (2001) 1,10-Phenanthroline inhibits glycosylphosphatidylinositol anchoring by preventing phosphoethanolamine

addition to glycosylphosphatidylinositol anchor precursors. Biochemistry

40, 1205–1213

Ellis, C. D., Wang, F., MacDiarmid, C. W., Clark, S., Lyons, T., and Eide,

D. J. (2004) Zinc and the Msc2 zinc transporter protein are required for

endoplasmic reticulum function. J. Cell Biol. 166, 325–335

Ohishi, K., Inoue, N., and Kinoshita, T. (2001) PIG-S and PIG-T, essential

for GPI anchor attachment to proteins, form a complex with GAA1 and

GPI8. EMBO J. 20, 4088–4098

Takeda, J., Miyata, T., Kawagoe, K., Iida, Y., Endo, Y., Fujita, T., et al.

(1993) Deficiency of the GPI anchor caused by a somatic mutation of the

PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 73, 703–711

Schuchman, E. H. (2010) Acid sphingomyelinase, cell membranes and

human disease: lessons from Niemann-Pick disease. FEBS Lett. 584,

1895–1900

Kornhuber, J., Rhein, C., Muller, C. P., and Muhle, C. (2015) Secretory

sphingomyelinase in health and disease. Biol. Chem. 396, 707–736

Ueda, S., Manabe, Y., Kubo, N., Morino, N., Yuasa, H., Shiotsu, M., et al.

(2022) Early secretory pathway-resident Zn transporter proteins

contribute to cellular sphingolipid metabolism through activation of

sphingomyelin phosphodiesterase 1. Am. J. Physiol. Cell Physiol. 322,

C948–C959

Murakami, Y., Kanzawa, N., Saito, K., Krawitz, P. M., Mundlos, S., Robinson, P. N., et al. (2012) Mechanism for release of alkaline phosphatase

caused by glycosylphosphatidylinositol deficiency in patients with hyperphosphatasia mental retardation syndrome. J. Biol. Chem. 287, 6318–6325

Ashok, A., and Hegde, R. S. (2008) Retrotranslocation of prion proteins

from the endoplasmic reticulum by preventing GPI signal transamidation.

Mol. Biol. Cell 19, 3463–3476

Couve, A., and Hetz, C. (2014) RESETing ER proteostasis: selective stress

pathway hidden in the secretory route. EMBO J. 33, 2444–2446

Yedidia, Y., Horonchik, L., Tzaban, S., Yanai, A., and Taraboulos, A.

(2001) Proteasomes and ubiquitin are involved in the turnover of the

wild-type prion protein. EMBO J. 20, 5383–5391

Wang, Y. J., Tayo, B. O., Bandyopadhyay, A., Wang, H., Feng, T., Franceschini, N., et al. (2014) The association of the vanin-1 N131S variant

14 J. Biol. Chem. (2022) 298(6) 102011

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

with blood pressure is mediated by endoplasmic reticulum-associated

degradation and loss of function. PLoS Genet. 10, e1004641

Satpute-Krishnan, P., Ajinkya, M., Bhat, S., Itakura, E., Hegde, R. S.,

and Lippincott-Schwartz, J. (2014) ER stress-induced clearance of

misfolded GPI-anchored proteins via the secretory pathway. Cell 158,

522–533

Krawitz, P. M., Murakami, Y., Hecht, J., Kruger, U., Holder, S. E.,

Mortier, G. R., et al. (2012) Mutations in PIGO, a member of the GPIanchor-synthesis pathway, cause hyperphosphatasia with mental retardation. Am. J. Hum. Genet. 91, 146–151

Lieberwirth, J. K., Joset, P., Heinze, A., Hentschel, J., Stein, A., Iannaccone, A., et al. (2021) Bi-allelic loss of function variants in SLC30A5 as

cause of perinatal lethal cardiomyopathy. Eur. J. Hum. Genet. 29, 808–815

Wei, L., Alhenc-Gelas, F., Corvol, P., and Clauser, E. (1991) The two

homologous domains of human angiotensin I-converting enzyme are

both catalytically active. J. Biol. Chem. 266, 9002–9008

Fukushi, S., Mizutani, T., Sakai, K., Saijo, M., Taguchi, F., Yokoyama, M.,

et al. (2007) Amino acid substitutions in the s2 region enhance severe

acute respiratory syndrome coronavirus infectivity in rat angiotensinconverting enzyme 2-expressing cells. J. Virol. 81, 10831–10834

Hellman, N. E., Kono, S., Miyajima, H., and Gitlin, J. D. (2002)

Biochemical analysis of a missense mutation in aceruloplasminemia. J.

Biol. Chem. 277, 1375–1380

Kambe, T., Tada, J., Chikuma, M., Masuda, S., Nagao, M., Tsuchiya, T.,

et al. (1998) Embryonal carcinoma P19 cells produce erythropoietin

constitutively but express lactate dehydrogenase in an oxygen-dependent

manner. Blood 91, 1185–1195

Takahashi, S., Ono, H., Gotoh, T., Yoshizawa-Kumagaye, K., and

Sugiyama, T. (2011) Novel internally quenched fluorogenic substrates for

angiotensin I-converting enzyme and carboxypeptidase Y. Biomed. Res.

32, 407–411

Minato, T., Nirasawa, S., Sato, T., Yamaguchi, T., Hoshizaki, M., Inagaki,

T., et al. (2020) B38-CAP is a bacteria-derived ACE2-like enzyme that

suppresses hypertension and cardiac dysfunction. Nat. Commun. 11,

1058

Wieckowski, M. R., Giorgi, C., Lebiedzinska, M., Duszynski, J., and Pinton, P. (2009) Isolation of mitochondria-associated membranes and

mitochondria from animal tissues and cells. Nat. Protoc. 4, 1582–1590

Tezuka, K., Suzuki, M., Sato, R., Kawarada, S., Terasaki, T., and Uchida, Y.

(2022) Activation of Annexin A2 signaling at the blood-brain barrier in a

mouse model of multiple sclerosis. J. Neurochem. 160, 662–674

Uchida, Y., Higuchi, T., Shirota, M., Kagami, S., Saigusa, D., Koshiba, S.,

et al. (2021) Identification and validation of combination plasma

biomarker of afamin, fibronectin and sex hormone-binding globulin to

predict pre-eclampsia. Biol. Pharm. Bull. 44, 804–815

Murakami, Y., Futamata, R., Horibe, T., Ueda, K., and Kinoshita, M.

(2020) CRISPR/Cas9 nickase-mediated efficient and seamless knock-in of

lethal genes in the medaka fish Oryzias latipes. Dev. Growth Differ. 62,

554–567

Kinoshita, M., Kani, S., Ozato, K., and Wakamatsu, Y. (2000) Activity of

the medaka translation elongation factor 1alpha-A promoter examined

using the GFP gene as a reporter. Dev. Growth Differ. 42, 469–478

Perez-Riverol, Y., Bai, J., Bandla, C., Garcia-Seisdedos, D., Hewapathirana, S., Kamatchinathan, S., et al. (2022) The PRIDE database resources in

2022: a hub for mass spectrometry-based proteomics evidences. Nucleic

Acids Res. 50, D543–D552

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る